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Quantum-state disturbance versus information gain: Uncertainty relations for quantum
information
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When an observer wants to identify a quantum state, which is known to be one of a given set of nonor-
thogonal states, the act of observation causes a disturbance to that state. We investigate the trade-off between
the information gain and that disturbance. This issue has important applications in quantum cryptography. The
optimal detection method, for a given tolerated disturbance, is explicitly found in the case of two equiprobable
nonorthogonal pure states.

PACS numbe(s): 03.65.Bz

[. INTRODUCTION communication channel and Eve is the eavesdropper. The
present paper discusses the situation in a general way, from
In the quantum folklore, the “uncertainty principle” is the point of view of what is possible in physics, and is not
often taken to assert that it is impossible to observe a propconcerned with any malicious motivatiops.
erty of a quantum system without causing a disturbance to First, we must define the notions fformation and dis-
some other property. However, when we seek the quantitdirbance If Eve knows strictly nothing of) (the state of
tive meaning of this vague declaration, all we find are uncerthe system that was prepared by Alicshe can gain very
tainty relations such asAxAp=#/2, whose meaning is to- little mformatlon by testing a single quantgm system: for
tally different. Such a relation means that if we prepare arfX@mPple, if she chooses an orthonormal bpsjsand ‘mea-
ensemble of quantum systems in a well defined viadyin sures,” in the von Neumann sense of this term, an observable

the same wayand we then measune on some of these corresponding to that basis, she forces the system into one of

systems and independently measpr@n someother sys- r{[he statede,). In that case, the answer only tells her that

. . . lg> before the measurement was not orthogonal to|¢he
tems, the various results obtained in these measureme : .
at she found. Meanwhile, the quantum state may be dis-

have standard deV|at'|onSx a‘f‘q Ap WhOS? product ,'S np turbed extensively in this process. On the other hand, if Eve
less than/2. No reciprocal “disturbance” of any kind is - yefinitely knows that the initidly) is one of the orthonormal
involved here since and p are measured on different sys- yeciors|e,), but she does not know which one of them it is,
tems(following identical preparations she can unambiguously settle this point byp@ndemolition
In this article, we shall give a quantitative meaning to themeasuremen[m], which leaves the state of the system un-
heuristic claim that observation in quantum physics entails ghanged.
necessary disturbance. Consider a quantum system preparedt js the intermediate case that is most interesting and has
in a definite way, unknown to the observer who tests it. Theapplications to cryptography: Eve knows that Alice prepared
question is how much information the observer can extracbne of a finite set of statdg,), with probability p,. How-
from the systenthow well he can determine the preparajion ever, these states amet all mutually orthogonal. Before Eve
and what the cost of that information is, in terms of thetests anything, a measure of her ignorance is the Shannon
disturbance caused to the system. This seemingly academigitropyH = — =p,Inp,. She can reduce that entropy by suit-
question recently acquired practical importance due to thebly testing the quantum system and making use of Bayes’s
development of quantum cryptograpfly-3], a new science rule for interpreting the resulias explained in Sec.)ll The
that combines quantum physics with cryptology. Followingdecrease in Shannon entropy is calledrtheual information
the established usage, the preparer of the quantum state willat Eve has acquired. The problem we want to investigate is
be called Alice, the observer who wants to get informationthe trade-off between Eve’s gain of information and the dis-
while causing as little disturbance as possible will be Eveturbance caused to the quantum system.
and a subsequent observer, who receives the quantum systemA convenient measure for this disturbance is the probabil-
disturbed by Eve, will be called Bolfln the cryptographical ity that a discrepancy would be detected by Bob, if he knew
environment, Alice and Bob are the legitimate users of awhich state|,) was sent by Alice, and tested whether the
state that he gets after Eve’s intervention stillis). In that
case, what Bob receives is not, in general, a pure state, but
*Present address: partement IRO, Universitde Montral, C.P.  has to be represented by a density magjx The distur-
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namely, a set of non-negativand therefore Hermitignop-
eratorsk,,, which act in the Hilbert space of Eve’s probe,
and sum up to the unit matrix:

ancilla ------- PO
~ > E,=1 5)
m

measuring apparatus

probe™-.. - - Here the indexu labels the various possible outcomes of the
- ’ POVM (their number may exceed the dimensionality of Hil-
bert spack The probability of getting outcomg is

P,=TrE,pp). (6)

Alice Bob Such a POVM can sometimes supply manatualinforma-
tion than a von Neumann measurement.

) o _ ) Of course, Eve cannot measure all thg simultaneously,
FIG. 1. Eve’s probe interacts unitariy)) with the particle sent  gjnce in general they do not commute. What she may do is
by Alice to Bob and is then subjected to a generalized measuremegtdjoin to her probe amncilla [8,9] (namely, an auxiliary
(M). system which does not directly interact with the prpobad
then perform an ordinary von Neumann measurement on the

robe and the ancilla togethét is the measuring apparatus
hat interacts with both of them The advantage of the
POVM formalism, Eqs(5) and(6), is that it does not require
an explicit description of the ancillgust as the von Neu-

Note that the mutual information and discrepancy rate, a
defined above, may not be the quantities that are most re
evant to applications in quantum cryptograpby. An eaves-

dropper may not want to maximize mutual information, but

some other type of information, depending on the methodg, ;. 'formalism does not require an explicit description of
for error correction and privacy amplificatidi®] that are the measuring apparaus

used by the legitimate users. Likewise, the protocol followed Here the reader may wonder why we did not consider

by Bob may not be to measufe){yy| for a particulam,  gyeis probe, and her ancilla, and perhaps her measuring in-
but to perform some other type of measurement. In testryment too, as a single object. The answer is that a division
present paper, we have c_h_osen mutual mformatlon E.md ek the process into two steps has definite advantages for op-
discrepancy ratel) for definitenesgother possible choices (imizing it, as will be seen in detailed calculations in Sec. IlI.
are briefly discussed in the final secfion Moreover, in some cryptographical protocdls,2], Alice
_InSec. Il of this article, we investigate the process outyy, ,t send to Bob, at a later stage, classical information over
lined in Fig. 1. Alice prepares a quantum system, in a statg ., pjic channel. Eve, who also receives that information,
pa (for more generality, we may assume that this state is ngf,ay in principle postpone the observation of her probe until
pure and must be represented by a density matixe like-  4¢ior that classical information arrives, in order to optimize

wise prepares probg with statepe . The two systems inter- e povM that she uses for analyzing her probe. This would

act unitarily, not be possible if the two steps in Fig. 1 were combined into
a single one.
pa®pe—p' =U(pa®pg)UT, () 9
and their states become entangled. Bob receives the system Il. INFORMATION-DISTURBANCE TRADE-OFF

that Alice sent, in a modified state, .
Let{|em)}, m=1,...N, be an orthonormal basis for the

3) N-dimensional Hilbert space of the system sent by Alice to
Bob and let{|v,)} be an orthonormal basis for Eve’s probe.

where Tg means that the degrees of freedom of Eve’s probd he dimensionality of the latter has to be optimiZede Sec.
have been traced ousince they are inaccessible to Bob ). First, assume for simplicity that Alice sends one of the
Bob may then test whether this, differs from thep, that ~ Orthonormal statege,,) and that Eve’s probe too is prepared
was prepared by Alice. In the simple case whegds a pure N one of the stat_eq*;ua>. (Res_ults_for other |r_1|t|a_lly pure
state, the discrepancy ratels=1—Tr(paps), as in Eq.(1). states can be derived by taking linear combinations of the

How much information can Eve gain in that process? Hefduations below. Mixed states can then be dealt with by re-
probe comes out with a state writing these equations in terms of density matrices and tak-

ing suitable weighted averages of the lajt€he unitary evo-
pe=Trg(p"), (4) lution in Eq. (2) becomes, in the case we are considering,

ps=Tre(p'),

with notations similar to those in Eq3). Now, to extract
from p£ as much information as possible, Eve should not, in
general, perform a standafdon Neumann—typequantum
measuremenf7], whose outcomes correspond to a set ofwhere the notation

orthogonal projection operators. A more efficient method

[8,9] is to use gpositive operator valued measu(@OVM), lem,va)=|em)®|v,) (8)

|em’Ua>_)U|evaa>:nEB Amnaﬂlen’U,B)v (7
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was introduced for brevity. The numerical coefficients
Amnep are the matrix elements a&f: ley 129,

|1) |q)10)
Amnaﬁz<en!v,8|u|emava>' 9

In the following, we shall drop the index: any mixed state  (a) | « (b) 1D,
for Eve’s probe can always be thought of as arising from a 10)
partial trace over the degrees of freedom of a larger probe
prepared in a pure state. We therefore assume that the probe’s o
initial state is pure; since the dimensionality of its Hilbert ley) Ivor?
space still is a free variable, this will cause no loss in gener-
ality. Moreover, the final optimized results are completely
independent of the choice of that initial stateecause any
pure state can be unitarily transformed into any other pure 7 15

statg. The indexa is therefore unnecessary. We thus obtain > Xel2= > [Xel2=1,

K=0

FIG. 2. Choice of basis fai@) signal states antb) probe states.

from Eq. (9) the unitarity conditions K=8
) (19
% A:cnn,BAm’n,b’: Sy - (10 Kz:o Xk Xk +8=0.
The final state, when Alice senfis,,), can also be written To further simplify the discussion, we assume that Alice
as prepares, with equal probabilities, one of the pure states
shown in Fig. Za):
% Amnﬁ|envvﬂ>=§n: len)®|Pmp, (11) |0) = cos| eg) + sina|e,),
. (15
where |1) = cosx|e;) + sina|ep).

By a suitable choice of phases, such a real representation can
|(I)mn>:§ Amnﬂ|vﬁ> (12 always be given to any two pure states. Their scalar product
will be denoted as
is a pure state of the probe. It is from these states and their
linear combinations that Eve will glean her information.
Note that, irrespective of the choice Uf, i.e., for an arbi-
trary set ofAn,5, there can be no more thad? linearly
independent vectorgb,,). That is to say, theN? vectors
|® ., span, at most, atN2-dimensional space. Therefore
there is no point in using a probe with more tHgf dimen-
sions if its initial state is taken to be pur@f the initial state
BB e ol gPbropiate vayas explained blow h set oA, 50
Has the 01 symmetry, namelyA,..s=Amws, Where

2 . . . . . . . 1C
kN<.) This point is ?ru0|al forany optimization pro_bl_em n'%=1—m, etc. This relationship can be written as
based solely on Eve's measurement outcome statistics, no

S=(0|1)=sin2a. (16)

These notations are manifestly symmetric under an ex-
change of labels ©:1. Since the two states are emitted with
equal probabilities, it is plausible that the optimal strategy
for Eve is to use instruments endowed with the samel0
symmetry, S0 tha{® oo @ o) =( P11/ P19} and(Pod P10)=
(®14Pgy). In particular, if Eve'sjv,s) basis is chosen in an

just the one for mutual information, which is considered X15- k= Xk (17)
here. It effectively delimits the difficulty of any such prob-
lem, reducing it to computable proportions. and the unitary relation€l4) become

As we shall see, it is convenient to replace thédex in

Eq. (10), which may takeN? values, by a pair of latin indi- ! )
ces, such ass, wherer ands take the samé values as KZ/O Xl*=1,
m or n. We shall thus writeA,,s instead ofAy, ;. (18)
We now restrict our attention to the case where the quan- 7
tum system prepared by Alice is described by a two- > X% X7_g=0.
K=0

dimensional Hilbert spacéor example, this may be the po-

larization degree of freedom of a phojonThe two . .
dimensions will be labeled 0 and 1, so e, runs from  Furthermore, we can safely drop the complex conjugation
Aoooot0 Ay115. This quadruple index can then be consideredSign: Since the signal statéss) involve only real coeffi-

as a single binary number, and we thus introduce the ne\ﬁlents. There is no reason for introducing complex numbers
notation in the present problem.

Still more simplification can be achieved by rotating the

Annmrs— Xk (K=0,...,15. (13 |le> basis in a way that does not conflict with 01 symmetry.

For example, in Eq(12), we may arrange that the vectors

The unitary relation10) becomes lvoy and |vyg lie in the plane spanned by the vectors
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|®oy) and|® o) and that they are oriented in such a way thatand the density matrix of the combined system is
(®oalvo)=(P1dvig), because we want to have p’'=|4'){¢'|. (Here we temporarily returned to using a
Aoi0:=A1010 (N0 further rotation is then allowed in that single greek inde)3 for Eve’s probe, instead of the compos-
plane. This is illustrated in Fig. @&). Note that we automati- ite rs index) The reduced density matrices, for the two sub-
cally have (®g|vi9)=(P1dvos), since |®y) and |®,9)  systems considered separately, are then given by(Boand
have the same length, thanks to the 01 symmetry. The ved4). Explicitly, we have
tors |vgg) and|vqq) are orthogonal to the plane spanned by
v and|vig). We likewise have to rotate them in their N
plane, so as to have(®ylvgy=(Pylv1y) and (pB)m”_zﬁ Ymg Y 24
(@oglv12) =(P1sfvog)-

With this choice of basis vectors for the probe, theand
Amnrs COefficients obey the 01 symmetry and moreover we

haveAg105= Ap11:=0, so that /
0100~ Ao111 (PE) =2 YmgYmy» (25)
The unitary relation§18) become where
X2+ X2+ X2+ X2+ X2+ X2=1, Yns= 2 CrAmns- (26)
m

(20)
X1X6+ X2X5: 0 X A .
The discrepancy rate observed by Bob is given by(Eg.

The six survivingXk can then be represented by four inde-
endent paramete , 6, and¢ a ,
p p s wu, 0 ¢ as [3:1—%1 Can(pB)mn=1—% zz, (27)
Xo=SIiN\ cosu, Xz=Sin\ sinu, '
] where
Xi=cos\ cosf cosp, X,=cCOs\ cos sing, (21
X5=CO%\ sind cosp, Xg=—COS\ Sind sing. Z5=2 CaYnp= > CuCrAmng - (28)
n m,n

We are now ready to investigate the trade-off between the
information acquired by Eve and the disturbance inflicted orEXPlicitly, we have, when 01 symmetry holds,
the quantum system that Bob receives. Let

ZOO: C3X0+ C%XS y (29)
|¢>=§ Crnl€m) (22 Z 1= C3X 1+ CoCq (X5 + Xg) +C2X,, (30)
be the pure state sent by Alice, e.g., one of the two signal Z16=C3Xp+ CoC1( X5+ Xg) +CoX4, (312)
states in Eq(15). After Eve’s intervention, the new state is
Z11=C3X3+c2X,. (32)
"= CrAmnsl€n s 23 _ ) .
) m%ﬂ mAmns|n v p) 23 With the help of Eqs(15), (16), and(21), we finally obtain
|
D=cog\ sirf0—(S/2)cogA sin20 cos2p+ (S?2)[SiPA(1—sin2u)+co$\ cos20(1—sin2¢)]. (33

We now turn our attention to Eve, whose task is to gatheHaving found a particulag, Eve obtains the posterior prob-
information about whether Alice sef@) or[1). Thatis, Eve  ability Q;, for preparationp;, by means of Bayes'’s rule
must distinguish two different density matrices of ty(@%), [10]:
which differ by the interchange af, andc,. Let us denote
these density matrices a$, with i =0,1. Qin=PuiPi/0y, (39

Eve chooses a suitable POVM with elemehkts, as in
Eq. (5). From Eq.(6), the probability of getting outcome
w, following preparatiorp| , is

where
qﬂ=§ P.iP; (36)

PLi=Tr(E.p{). (34 s the prior probability for occurrence of outcome
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The Shannon entropgEve’s level of ignorande which  true for any two density matrices of arbitrary rank. In the
initially was H= —Xp;Inp;, now is, after resulix was ob- absence of a formal proof, we tested that conjecture numeri-
tained, cally, for more than 100 pairs of randomly chosen density

matrices, withN=3 or 4. Using the Powell algorithrfi3],
H o= E 0..In0, 37) we tried various values dfl,, in the range given by Eq40).
s = <ipllp In all these tests, it never happened that the number of vec-
tors had to exceel (namely, whenever we tried,, >N, we
Therefore the mutual informatioimamely, Eve’s average in- found that some of the optimized vectors were parallel and
formation gain is there were onlyN independentw,,).)
Therefore, in the present case, we assume Eve only has to
I=H- q,H (39) find the optimal four-dimensionalorthonormal basis
i {lw,)}. This result could have been expected, in view of the
above argument for the plausibility of E@L0), because in an
This quantity depends both on the properties of Eve’s probeptimal unitary evolution there cannot be more than four
(the variousAn,5) and the choice of the POVM elements different final outputs, if there are two inputs. We thus have
E,. now a standard optimization problem, which can be solved
numerically (the orthonormality constraint must be handled
l1l. OPTIMIZATION carefully, though, so that iterations convergdowever, Eve
has an additional problem, which is to find the optimal uni-

If Eve wants to maximize the mutual informatidn she  tary interaction for her probe, in E¢7). She must therefore

has to choose the POVM elemeritg in an optimal way. include, in the optimization procedure, the four angles

This is a complicated nonlinear optimization problem, for,, ¢, and ¢, defined in Eq.(21). Moreover, she may also
which there is no immediate solution. There are, howeveryant to control the disturband®, given by Eq.(33).

useful theorems, due to Davigkl]. First, an optimal POVM Many different trade-offs can be chosen when we want to
consists of matrices of rank one: maximize| and to minimizeD. A simple figure of merit
could beM=1—-kD, where the positive coefficierk ex-
E.= |WM><W#|' (39 presses the value of the informatibncompared to the cost

o?f causing a disturbancB. We could also imagine other,

[nore complex figures of merit, involving nonlinear functions
f | andD. With cryptographical applications in mind, we

investigated the problem of maximizingsubject to the con-

straintD<D,,, so that the disturbance be less than a certain

tolerable one. This was done by maximizing the function

M=1-1000 O —Dy,)? for many randomly chosen values

N<N,<N?2 (400 of @ in Eq.(15).

In all the cases that we tested, the optimization procedure
whereN is the dimensionality of Hilbert space. A rigorous led toA =0 (or to an integral multiple ofr) in Eq. (21). This
proof of this relationship, given by Davigd1], is fairly = implies Xo=X3;=0, and since we already havg,=X;=0,
intricate. A plausibility argumentnot a real proof can be this means thatV rs, Ao=A;s1;=0, and therefore
based on the reasoning subsequent to(Eg). If the POVM | @) =[P ;)=0. We remain with only®q;) and|® ). In
is implemented by an instrument obeying the laws of quanother words, Eve’s optimal probe has only two dimensions,
tum mechanics, the interaction with this instrument is uni-not four.
tary. Therefore, the instrument's final state after the interac- We have no formal proof for this result, which was found
tion must reside in a fixed subspace of no more thgn by numerical experiments. However, this result is quite plau-
dimensions(if the initial state of the instrument was pire sible: it is clear from Eq(33) thatD is an even function of
When we perform a von Neumann measurement on tha and therefore is extremized whar-0. Unfortunately, it is
instrument—which is the upshot of the POVM procedure—itmore difficult to evaluate explicitly the mutual information
is thus plausible that it should never be necessary to involvé, which is a complicated function of the matrix elements
more thanN? distinct outcomes. However, it is not known (pg)mnrs in Ed. (25). However, when we write explicitly
whether this plausibility argument can be extended to a rigthese matrix elements, we see that they are even or odd func-
orous proof. tions of A, according to the parity of the sum of indices

In the present casé&y=4 (the number of dimensions of (m+n+r+s). This symmetry property then holds for any
Eve’s probg and Davies'’s theorem guarantees that Eve doeproduct of such matrices and the trace of any such product
not need more than 16 different vectdvs,), subject to the always is an even function of. Sincel is a scalar, i.e., is
constraint2 ,|w,)(w,|=1. Moreover, while there are cases invariant under a change of the basis, it is plausible Ithrain
where the upper limit if40) is indeed reachethn example be written, or at least approximated, by expressions involv-
is given in Davies’s work there also are cases for which it is ing only these traces, so thhtalso is an even function of
known thatN,, need not exceell. It is so when we have to \. ThereforeA =0 is an extremum of our figure of merit and
distinguish two pure states, or even two density matrices oft might be possible to prove, with some effort, that 0
rank 2, lying in the same two-dimensional subspace of Hil-indeed gives the global maximum of the figure of merit.
bert spacg12]. It has been conjecturdd?] that this is also  Anyway, the validity of this result is likely to be restricted to

(To be precise, there may be POVMs made of matrices
higher rank that give the same mutual information as thes
optimal matrices of rank one, but they can never give mor
mutual information).

Second, the required numbe\,, of different vectors
|w,) is bracketed by
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the highly symmetric case where Alice prepares two equi-

probable pure states, as in E45). I
However, once this result is taken for granted, the calcu-

lation becomes considerably simpler, and can be done ana- | s

lytically rather than numerically. First, we note that, by virtue 0.5 o=n/16
of the 01 symmetry, Eve’s two density matrices can be writ-
ten as
a ¢ b ¢ 0.4
! — , ! — , 41
Po c b P1 c a (41)

with a+b=1. These two matrices have the same determi-
nant

d=ab-c?=0. (42

In that case, the mutual information that can be extracted
from them is explicitly given by12,14]

I=[(1+2)In(1+2)+(1-2)In(1—-2)]/2, (43

where

z=[1-2d—Tr(pHp;)]1¥?=(1-4ab)*2 (44)

We therefore need only the diagonal element&i5). These

. FIG. 3. Maximal mutual information obtainable for a given
are, by virtue of(21) and(26), g

disturbanceD, for two equiprobable pure input signals. The angle
« is defined by Eq(15). The dashed lines represent the maximal

(pPE)oro= 2 Yﬁm (45) obtainablel, which cannot be exceeded by accepting a further in-
’ n crease oD.
=(CoX1+C1Xg) %+ (CoXs5+C1X5)2 (46)  and that minimal value ob is
= (1+c0S2x cOS2)/2 47) 2Do=1—{S?cof2¢+[1—S*(1—sin2¢4)]}¥2 (53
and likewise Let us consider various values @f For ¢=0, we obtain
the maximal value of:
(Pg)1016=(1—cos 2 cos 2$)/2, (49

I mas=IN2+ coga In(coga) +sirfa In(sirfa), (54)

wherea is the angle defined in EG15). (Here, to conform 55 ¢qyid have been found more directly. The minimal distur-
with our earlier notations, each one of the two dimensions OBance corresponding to thig,,, is
ax

the probe’s space is denoted by a double index 01 gnA®.
thus obtain D;=[1—-(1-S*+SH*?)/2. (55)

z2=[1-4(pE)o10d PE)101d>=Ccos 2x cos 2p. Clearly, it is possible to hav®,<D, only by accepting
(49 | <lmax- By solving Eq.(53) for ¢ and using Eq(55), one
gets an explicit relation between the maximal information
When substituted in E¢43), this result gives a remarkably and the minimal disturbance caused by the measurement.
simple expression for the mutual information. In particular, This is given by Eq(43) with

| does not depend o#.
The discrepancy rat®, given by Eq.(33), also simpli- z=c0s2x{1—[1—yDo(1—Dg)/D4(1—D;)]?}¥2 -
fies: 56

D =sir?6—(S/2) sin20 cos2p+ (S%/2) cos29(1— sin24) This relation completely specifies the information-
(56) disturbance trade-off. The result is plotted in Fig. 3 for three

values of the anglea defined by Eq. (15, namely,

whence a=7/16,7/8, andw/5 (these are the values that were inves-
_ ) _ tigated in Ref[5]).
2D =1-S cos2¢ sin26—[1—S%(1—sin2¢)]cos2s. The limit Dy—0 is obtained forg= (m/4)—(e/2), with

(51)  ¢-0. We then have
For each¢, the anglefd= 6, makingD minimal is given by | —Z%/2= (€ cos2w)?/2 (57)
tan20,=S cos2p/[1— S?(1—sin2¢)] (520 and
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Do— €*(S?—S*)/16=(I tan2a)?/4. (58)
The quadratic behavidd,~12, which was derived for the le,) |1)
pair of nonorthogonal signals in E(L5), may, however, not 1)
hold for more complicated types of quantum information
[15], such as the two orthogonal pairs in Rgf].
Finally, let us examine the correlation between the result
observed by Eve and the quantum state delivered to Bob. We |07
can write Eq.(23) as |0)
v)=2 lup el (59
leg)
where
FIG. 4. Stateg0) and|1) are sent by Alice and stat¢8’) and
|%> = 2 CmAmnB|en> (60) |1') are re-sent by Eve so as to cause the least possible disturbance
m,n rate in Bob’s observations.
is (except for normalizatiorthe state received by Bob when- IV OTHER TRADE-OEE CRITERIA
ever Eve observes outconge For example, if Alice sends
|0) and Eve observels o,), Bob receives Until now, we usedD in Eg. (1) as a measure of the
disturbance: this was the probability for an observer to find
| 4o = (CoX1+C1Xg)|€0) + (CoX5+C1X5)|€1) (61  the quantum system in a state orthogonal to the one prepared
by Alice. This may not always be the most useful criterion,
= (cos COsY Cosp—Sina sing sing)|eq) and in some cases it indeed is a very poor one. For example,
. . . if the two states in Eq(15) havea close tow/4, the states
+(cosw sing cosp+sina cod sing)|ey). (62 sent to Bob will be even closer /4, as may be seen from
Eqg. (65). The states themselves change very little, but the
Note that information that they carry is drastically reduced, as the fol-

lowing example shows.

Consider the case= 7/5 (depicted by the lowest line in
Fig. 3. Eve then had,,=0.048 536. Let us rename this
expressior pg (the mutual information for Alice and Eye
Two different mutual informations can likewise be defined
for Bob: I gz, namely, what Bob may be able to know on the
result registered by Eve, andg, what he may still be able
to know on the original state, prepared by Alice.

The calculation of g is easy. As explained after E(R5),

[ o4|>=coda cod¢p+sirfa sirfe (63

is the probability that Bob getisyy;) when Alice sends$0)
and Eve observel ).

Let us consider two extreme casesgl: /4, so that Eve
obtains no information, we may chooge=0 in accordance
with Eg. (52) and it then follows from Eq(50) that there is
no disturbance at all. Indeed, in that case,thmatrix in Eq.

(7) simply is a unit matrix. evervthi ; ;
. . ything happens as if Eve would knowingly send to Bob
On the other hand, ith=0 so that Eve acquires all the one of two pure states, like those in E(L5), but with

accessible information, Bob receives, with probability  _ 540 replaced byg=42.1332°. We then have, from Eq.

cosa, a state (54), 1 eg=0.004 998 7, about one-tenth bf .
~, . What Bob may still be able to know about the state that
|h01) = costleg) + sind|ey). (64) was sent by Alice is even less than that. Bob receives the
quantum system in a state described by the density matrices
(24). Due to 01 symmetry, these matrices have the same form
(41) as those of Eve and the mutual informatiqe is again
given by Eqgs(43) and(44). Now, however,

(The tilde indicates that this state has been normaliZeuke
angle 6 that minimizesD is given by Eq.(52), which now
becomes

tan20=S/(1— S?) = sin2a/coS2a=tan2ua/cos2u.

(65 a=(pp)oo=YgorT Yd16= (CoX1+C1Xe)?+ (CoXp+ Clxésé;
Everything happens as if, when Eve observes the state clos-
est to|0), she sends to Bob, n¢d), but a slightlydifferent  gng
state|0’), with a new angle¥, slightly larger thana. For
example, ifa=22.5°, we havey=27.3678°. These angles
are illustrated in Fig. 4. It must, however, be pointed out that,
in the scenario described in Fig. 1, Eve releases Bob'’s par-
ticle beforeobserving her probe. What she actually has to do
is to make them interact with the appropridte and this It follows that, regardless of the value df,
guarantees that the final state is correctly correlated, as in Eq.
(59). Z=C0S2x C0S26. (68)

b: (pIB) 11— Yl2,01+ Yl2,10: (CoX5+ C1X2)2+ (COX6+ Clxl)z.

(67)
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If we now take 6 given by Eq. (65, we obtain mation[16]. The latter quantifies the discrepancy between
z=0.0308718, whencd,g=0.0004766. This is more the frequencies of outcomes for a quantum measurement on
than 100 times smaller than the mutual information BobAlice’s states versus that same measurement on Bob’s states
could have had if Eve's probe had not been in the way. Thug,17]. Alternatively, one might consider using the Chernoff

in that sense, Eve caused a major disturbance, even thoughrformation[16], which quantifies Bob’s difficulty in guess-
was as small as it could be by the previous critelifan the  jng whether Eve has tampered with the statea given way

given amount of information she gajns or not[17]. In any case, the best measure of disturbance is

Note, however, that Eve, who controls bogh and 6,  the one that is relevant to the actual application in which we
could just as well se§=0. In that case, Bob would be able zre interested.

to recoup all the mutual information sent by Alice, simply by
measuring the orthogonal states forwarded on to him. Nev-

erthgles_s, this scgnario can hardly count as a r_ninimally dis- ACKNOWLEDGMENTS
turbing intervention on Eve'’s part, because in that case
D=S?%/2=0.452 254, as can be seen from E5p). C.AF. thanks H. Barnum and D. Mayers for discussions.
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