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When an observer wants to identify a quantum state, which is known to be one of a given set of nonor-
thogonal states, the act of observation causes a disturbance to that state. We investigate the trade-off between
the information gain and that disturbance. This issue has important applications in quantum cryptography. The
optimal detection method, for a given tolerated disturbance, is explicitly found in the case of two equiprobable
nonorthogonal pure states.
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I. INTRODUCTION

In the quantum folklore, the ‘‘uncertainty principle’’ is
often taken to assert that it is impossible to observe a prop-
erty of a quantum system without causing a disturbance to
some other property. However, when we seek the quantita-
tive meaning of this vague declaration, all we find are uncer-
tainty relations such asDxDp>\/2, whose meaning is to-
tally different. Such a relation means that if we prepare an
ensemble of quantum systems in a well defined way~all in
the same way! and we then measurex on some of these
systems and independently measurep on someother sys-
tems, the various results obtained in these measurements
have standard deviationsDx and Dp whose product is no
less than\/2. No reciprocal ‘‘disturbance’’ of any kind is
involved here sincex andp are measured on different sys-
tems~following identical preparations!.

In this article, we shall give a quantitative meaning to the
heuristic claim that observation in quantum physics entails a
necessary disturbance. Consider a quantum system prepared
in a definite way, unknown to the observer who tests it. The
question is how much information the observer can extract
from the system~how well he can determine the preparation!
and what the cost of that information is, in terms of the
disturbance caused to the system. This seemingly academic
question recently acquired practical importance due to the
development of quantum cryptography@1–3#, a new science
that combines quantum physics with cryptology. Following
the established usage, the preparer of the quantum state will
be called Alice, the observer who wants to get information
while causing as little disturbance as possible will be Eve,
and a subsequent observer, who receives the quantum system
disturbed by Eve, will be called Bob.~In the cryptographical
environment, Alice and Bob are the legitimate users of a

communication channel and Eve is the eavesdropper. The
present paper discusses the situation in a general way, from
the point of view of what is possible in physics, and is not
concerned with any malicious motivations.!

First, we must define the notions ofinformationanddis-
turbance. If Eve knows strictly nothing ofuc& ~the state of
the system that was prepared by Alice!, she can gain very
little information by testing a single quantum system: for
example, if she chooses an orthonormal basisuen& and ‘‘mea-
sures,’’ in the von Neumann sense of this term, an observable
corresponding to that basis, she forces the system into one of
the statesuen&. In that case, the answer only tells her that
uc& before the measurement was not orthogonal to theuen&
that she found. Meanwhile, the quantum state may be dis-
turbed extensively in this process. On the other hand, if Eve
definitely knows that the initialuc& is one of the orthonormal
vectorsuen&, but she does not know which one of them it is,
she can unambiguously settle this point by anondemolition
measurement@4#, which leaves the state of the system un-
changed.

It is the intermediate case that is most interesting and has
applications to cryptography: Eve knows that Alice prepared
one of a finite set of statesucn&, with probabilitypn . How-
ever, these states arenotall mutually orthogonal. Before Eve
tests anything, a measure of her ignorance is the Shannon
entropyH52(pnlnpn . She can reduce that entropy by suit-
ably testing the quantum system and making use of Bayes’s
rule for interpreting the result~as explained in Sec. II!. The
decrease in Shannon entropy is called themutual information
that Eve has acquired. The problem we want to investigate is
the trade-off between Eve’s gain of information and the dis-
turbance caused to the quantum system.

A convenient measure for this disturbance is the probabil-
ity that a discrepancy would be detected by Bob, if he knew
which stateucn& was sent by Alice, and tested whether the
state that he gets after Eve’s intervention still isucn&. In that
case, what Bob receives is not, in general, a pure state, but
has to be represented by a density matrixrn . The distur-
bance~discrepancy rate! detectable by Bob is

D512^cnurnucn&. ~1!
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Note that the mutual information and discrepancy rate, as
defined above, may not be the quantities that are most rel-
evant to applications in quantum cryptography@5#. An eaves-
dropper may not want to maximize mutual information, but
some other type of information, depending on the methods
for error correction and privacy amplification@6# that are
used by the legitimate users. Likewise, the protocol followed
by Bob may not be to measureucn&^cnu for a particularn,
but to perform some other type of measurement. In the
present paper, we have chosen mutual information and the
discrepancy rate~1! for definiteness~other possible choices
are briefly discussed in the final section!.

In Sec. II of this article, we investigate the process out-
lined in Fig. 1. Alice prepares a quantum system, in a state
rA ~for more generality, we may assume that this state is not
pure and must be represented by a density matrix!. Eve like-
wise prepares aprobe, with staterE . The two systems inter-
act unitarily,

rA^ rE→r85U~rA^ rE!U†, ~2!

and their states become entangled. Bob receives the system
that Alice sent, in a modified state,

rB85TrE~r8!, ~3!

where TrE means that the degrees of freedom of Eve’s probe
have been traced out~since they are inaccessible to Bob!.
Bob may then test whether thisrB8 differs from therA that
was prepared by Alice. In the simple case whererA is a pure
state, the discrepancy rate isD512Tr(rArB8 ), as in Eq.~1!.

How much information can Eve gain in that process? Her
probe comes out with a state

rE85TrB~r8!, ~4!

with notations similar to those in Eq.~3!. Now, to extract
from rE8 as much information as possible, Eve should not, in
general, perform a standard~von Neumann–type! quantum
measurement@7#, whose outcomes correspond to a set of
orthogonal projection operators. A more efficient method
@8,9# is to use apositive operator valued measure~POVM!,

namely, a set of non-negative~and therefore Hermitian! op-
eratorsEm , which act in the Hilbert space of Eve’s probe,
and sum up to the unit matrix:

(
m

Em51. ~5!

Here the indexm labels the various possible outcomes of the
POVM ~their number may exceed the dimensionality of Hil-
bert space!. The probability of getting outcomem is

Pm5Tr~EmrE8 !. ~6!

Such a POVM can sometimes supply moremutual informa-
tion than a von Neumann measurement.

Of course, Eve cannot measure all theEm simultaneously,
since in general they do not commute. What she may do is
adjoin to her probe anancilla @8,9# ~namely, an auxiliary
system which does not directly interact with the probe! and
then perform an ordinary von Neumann measurement on the
probe and the ancilla together~it is the measuring apparatus
that interacts with both of them!. The advantage of the
POVM formalism, Eqs.~5! and~6!, is that it does not require
an explicit description of the ancilla~just as the von Neu-
mann formalism does not require an explicit description of
the measuring apparatus!.

Here the reader may wonder why we did not consider
Eve’s probe, and her ancilla, and perhaps her measuring in-
strument too, as a single object. The answer is that a division
of the process into two steps has definite advantages for op-
timizing it, as will be seen in detailed calculations in Sec. III.
Moreover, in some cryptographical protocols@1,2#, Alice
must send to Bob, at a later stage, classical information over
a public channel. Eve, who also receives that information,
may in principle postpone the observation of her probe until
after that classical information arrives, in order to optimize
the POVM that she uses for analyzing her probe. This would
not be possible if the two steps in Fig. 1 were combined into
a single one.

II. INFORMATION-DISTURBANCE TRADE-OFF

Let $uem&%, m51, . . .N, be an orthonormal basis for the
N-dimensional Hilbert space of the system sent by Alice to
Bob and let$uva&% be an orthonormal basis for Eve’s probe.
The dimensionality of the latter has to be optimized~see Sec.
III !. First, assume for simplicity that Alice sends one of the
orthonormal statesuem& and that Eve’s probe too is prepared
in one of the statesuva&. ~Results for other initially pure
states can be derived by taking linear combinations of the
equations below. Mixed states can then be dealt with by re-
writing these equations in terms of density matrices and tak-
ing suitable weighted averages of the latter.! The unitary evo-
lution in Eq. ~2! becomes, in the case we are considering,

uem ,va&→Uuem ,va&5(
n,b

Amnabuen ,vb&, ~7!

where the notation

uem ,va&[uem& ^ uva& ~8!

FIG. 1. Eve’s probe interacts unitarily~U! with the particle sent
by Alice to Bob and is then subjected to a generalized measurement
~M!.
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was introduced for brevity. The numerical coefficients
Amnab are the matrix elements ofU:

Amnab5^en ,vbuUuem ,va&. ~9!

In the following, we shall drop the indexa: any mixed state
for Eve’s probe can always be thought of as arising from a
partial trace over the degrees of freedom of a larger probe
prepared in a pure state. We therefore assume that the probe’s
initial state is pure; since the dimensionality of its Hilbert
space still is a free variable, this will cause no loss in gener-
ality. Moreover, the final optimized results are completely
independent of the choice of that initial state~because any
pure state can be unitarily transformed into any other pure
state!. The indexa is therefore unnecessary. We thus obtain
from Eq. ~9! the unitarity conditions

(
n,b

Amnb* Am8nb5dmm8. ~10!

The final state, when Alice sendsuem&, can also be written
as

(
n,b

Amnbuen ,vb&5(
n

uen& ^ uFmn&, ~11!

where

uFmn&5(
b

Amnbuvb& ~12!

is a pure state of the probe. It is from these states and their
linear combinations that Eve will glean her information.
Note that, irrespective of the choice ofU, i.e., for an arbi-
trary set ofAmnb , there can be no more thanN2 linearly
independent vectorsuFmn&. That is to say, theN2 vectors
uFmn& span, at most, anN2-dimensional space. Therefore
there is no point in using a probe with more thanN2 dimen-
sions if its initial state is taken to be pure.~If the initial state
of the probe is a density matrix of rankk, the final states of
that probe span a Hilbert space of dimension not exceeding
kN2.) This point is crucial forany optimization problem
based solely on Eve’s measurement outcome statistics, not
just the one for mutual information, which is considered
here. It effectively delimits the difficulty of any such prob-
lem, reducing it to computable proportions.

As we shall see, it is convenient to replace theb index in
Eq. ~10!, which may takeN2 values, by a pair of latin indi-
ces, such asrs, wherer and s take the sameN values as
m or n. We shall thus writeAmnrs instead ofAmnb .

We now restrict our attention to the case where the quan-
tum system prepared by Alice is described by a two-
dimensional Hilbert space~for example, this may be the po-
larization degree of freedom of a photon!. The two
dimensions will be labeled 0 and 1, so thatAmnrs runs from
A0000 to A1111. This quadruple index can then be considered
as a single binary number, and we thus introduce the new
notation

Amnrs→XK ~K50, . . . ,15!. ~13!

The unitary relation~10! becomes

(
K50

7

uXKu25 (
K58

15

uXKu251,

~14!

(
K50

7

XK*XK1850.

To further simplify the discussion, we assume that Alice
prepares, with equal probabilities, one of the pure states
shown in Fig. 2~a!:

u0&5cosaue0&1sinaue1&,
~15!

u1&5cosaue1&1sinaue0&.

By a suitable choice of phases, such a real representation can
always be given to any two pure states. Their scalar product
will be denoted as

S5^0u1&5sin2a. ~16!

These notations are manifestly symmetric under an ex-
change of labels 0↔1. Since the two states are emitted with
equal probabilities, it is plausible that the optimal strategy
for Eve is to use instruments endowed with the same 0↔1
symmetry, so that̂F00uF01&5^F11uF10& and ^F00uF10&5
^F11uF01&. In particular, if Eve’suv rs& basis is chosen in an
appropriate way~as explained below!, the set ofAmnrs also
has the 01 symmetry, namely,Amnrs5Am̄n̄r̄ s̄ , where
m̄512m, etc. This relationship can be written as

X152K5XK ~17!

and the unitary relations~14! become

(
K50

7

uXKu251,

~18!

(
K50

7

XK*X72K50.

Furthermore, we can safely drop the complex conjugation
sign, since the signal states~15! involve only real coeffi-
cients. There is no reason for introducing complex numbers
in the present problem.

Still more simplification can be achieved by rotating the
uvb& basis in a way that does not conflict with 01 symmetry.
For example, in Eq.~12!, we may arrange that the vectors
uv01& and uv10& lie in the plane spanned by the vectors

FIG. 2. Choice of basis for~a! signal states and~b! probe states.
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uF01& anduF10& and that they are oriented in such a way that
^F01uv01&5^F10uv10&, because we want to have
A01015A1010 ~no further rotation is then allowed in that
plane!. This is illustrated in Fig. 2~b!. Note that we automati-
cally have ^F01uv10&5^F10uv01&, since uF01& and uF10&
have the same length, thanks to the 01 symmetry. The vec-
tors uv00& and uv11& are orthogonal to the plane spanned by
uv01& and uv10&. We likewise have to rotate them in their
plane, so as to have ^F00uv00&5^F11uv11& and
^F00uv11&5^F11uv00&.

With this choice of basis vectors for the probe, the
Amnrs coefficients obey the 01 symmetry and moreover we
haveA01005A011150, so that

X45X750. ~19!

The unitary relations~18! become

X0
21X1

21X2
21X3

21X5
21X6

251,
~20!

X1X61X2X550.

The six survivingXK can then be represented by four inde-
pendent parametersl, m, u, andf as

X05sinl cosm, X35sinl sinm,

X15cosl cosu cosf, X25cosl cosu sinf, ~21!

X55cosl sinu cosf, X652cosl sinu sinf.

We are now ready to investigate the trade-off between the
information acquired by Eve and the disturbance inflicted on
the quantum system that Bob receives. Let

uc&5(
m

cmuem& ~22!

be the pure state sent by Alice, e.g., one of the two signal
states in Eq.~15!. After Eve’s intervention, the new state is

uc8&5 (
m,n,b

cmAmnbuen ,vb& ~23!

and the density matrix of the combined system is
r85uc8&^c8u. ~Here we temporarily returned to using a
single greek indexb for Eve’s probe, instead of the compos-
ite rs index.! The reduced density matrices, for the two sub-
systems considered separately, are then given by Eqs.~3! and
~4!. Explicitly, we have

~rB8 !mn5(
b

YmbYnb ~24!

and

~rE8 !bg5(
m

YmbYmg , ~25!

where

Ynb5(
m

cmAmnb . ~26!

The discrepancy rate observed by Bob is given by Eq.~1!:

D512(
m,n

cmcn~rB8 !mn512(
b

Zb
2 , ~27!

where

Zb5(
n

cnYnb5(
m,n

cmcnAmnb . ~28!

Explicitly, we have, when 01 symmetry holds,

Z005c0
2X01c1

2X3 , ~29!

Z015c0
2X11c0c1~X51X6!1c1

2X2 , ~30!

Z105c0
2X21c0c1~X51X6!1c1

2X1 , ~31!

Z115c0
2X31c1

2X0 . ~32!

With the help of Eqs.~15!, ~16!, and~21!, we finally obtain

D5cos2l sin2u2~S/2!cos2l sin2u cos2f1~S2/2!@sin2l~12sin2m!1cos2l cos2u~12sin2f!#. ~33!

We now turn our attention to Eve, whose task is to gather
information about whether Alice sentu0& or u1&. That is, Eve
must distinguish two different density matrices of type~25!,
which differ by the interchange ofc0 andc1 . Let us denote
these density matrices asr i8 , with i50,1.

Eve chooses a suitable POVM with elementsEm , as in
Eq. ~5!. From Eq. ~6!, the probability of getting outcome
m, following preparationr i8 , is

Pm i5Tr~Emr i8!. ~34!

Having found a particularm, Eve obtains the posterior prob-
ability Qim for preparationr i8 , by means of Bayes’s rule
@10#:

Qim5Pm i pi /qm , ~35!

where

qm5(
j
Pm j pj ~36!

is the prior probability for occurrence of outcomem.
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The Shannon entropy~Eve’s level of ignorance!, which
initially was H52(pi lnpi , now is, after resultm was ob-
tained,

Hm52(
i
QimlnQim . ~37!

Therefore the mutual information~namely, Eve’s average in-
formation gain! is

I5H2(
m

qmHm . ~38!

This quantity depends both on the properties of Eve’s probe
~the variousAmnb) and the choice of the POVM elements
Em .

III. OPTIMIZATION

If Eve wants to maximize the mutual informationI , she
has to choose the POVM elementsEm in an optimal way.
This is a complicated nonlinear optimization problem, for
which there is no immediate solution. There are, however,
useful theorems, due to Davies@11#. First, an optimal POVM
consists of matrices of rank one:

Em5uwm&^wmu. ~39!

~To be precise, there may be POVMs made of matrices of
higher rank that give the same mutual information as these
optimal matrices of rank one, but they can never give more
mutual information.!

Second, the required numberNw of different vectors
uwm& is bracketed by

N<Nw<N2, ~40!

whereN is the dimensionality of Hilbert space. A rigorous
proof of this relationship, given by Davies@11#, is fairly
intricate. A plausibility argument~not a real proof! can be
based on the reasoning subsequent to Eq.~12!. If the POVM
is implemented by an instrument obeying the laws of quan-
tum mechanics, the interaction with this instrument is uni-
tary. Therefore, the instrument’s final state after the interac-
tion must reside in a fixed subspace of no more thanN2

dimensions~if the initial state of the instrument was pure!.
When we perform a von Neumann measurement on the
instrument—which is the upshot of the POVM procedure—it
is thus plausible that it should never be necessary to involve
more thanN2 distinct outcomes. However, it is not known
whether this plausibility argument can be extended to a rig-
orous proof.

In the present case,N54 ~the number of dimensions of
Eve’s probe! and Davies’s theorem guarantees that Eve does
not need more than 16 different vectorsuwm&, subject to the
constraint(muwm&^wmu51. Moreover, while there are cases
where the upper limit in~40! is indeed reached~an example
is given in Davies’s work!, there also are cases for which it is
known thatNw need not exceedN. It is so when we have to
distinguish two pure states, or even two density matrices of
rank 2, lying in the same two-dimensional subspace of Hil-
bert space@12#. It has been conjectured@12# that this is also

true for any two density matrices of arbitrary rank. In the
absence of a formal proof, we tested that conjecture numeri-
cally, for more than 100 pairs of randomly chosen density
matrices, withN53 or 4. Using the Powell algorithm@13#,
we tried various values ofNw in the range given by Eq.~40!.
In all these tests, it never happened that the number of vec-
tors had to exceedN ~namely, whenever we triedNw.N, we
found that some of the optimized vectors were parallel and
there were onlyN independentuwm&.)

Therefore, in the present case, we assume Eve only has to
find the optimal four-dimensionalorthonormal basis
$uwm&%. This result could have been expected, in view of the
above argument for the plausibility of Eq.~40!, because in an
optimal unitary evolution there cannot be more than four
different final outputs, if there are two inputs. We thus have
now a standard optimization problem, which can be solved
numerically~the orthonormality constraint must be handled
carefully, though, so that iterations converge!. However, Eve
has an additional problem, which is to find the optimal uni-
tary interaction for her probe, in Eq.~7!. She must therefore
include, in the optimization procedure, the four anglesl,
m, u, andf, defined in Eq.~21!. Moreover, she may also
want to control the disturbanceD, given by Eq.~33!.

Many different trade-offs can be chosen when we want to
maximize I and to minimizeD. A simple figure of merit
could beM5I2kD, where the positive coefficientk ex-
presses the value of the informationI , compared to the cost
of causing a disturbanceD. We could also imagine other,
more complex figures of merit, involving nonlinear functions
of I andD. With cryptographical applications in mind, we
investigated the problem of maximizingI subject to the con-
straintD<D tol , so that the disturbance be less than a certain
tolerable one. This was done by maximizing the function
M5I21000 (D2D tol)

2, for many randomly chosen values
of a in Eq. ~15!.

In all the cases that we tested, the optimization procedure
led tol50 ~or to an integral multiple ofp) in Eq. ~21!. This
implies X05X350, and since we already haveX45X750,
this means that; rs, Ars005Ars1150, and therefore
uF00&5uF11&50. We remain with onlyuF01& and uF10&. In
other words, Eve’s optimal probe has only two dimensions,
not four.

We have no formal proof for this result, which was found
by numerical experiments. However, this result is quite plau-
sible: it is clear from Eq.~33! thatD is an even function of
l and therefore is extremized whenl50. Unfortunately, it is
more difficult to evaluate explicitly the mutual information
I , which is a complicated function of the matrix elements
(rE8 )mn,rs in Eq. ~25!. However, when we write explicitly
these matrix elements, we see that they are even or odd func-
tions of l, according to the parity of the sum of indices
(m1n1r1s). This symmetry property then holds for any
product of such matrices and the trace of any such product
always is an even function ofl. SinceI is a scalar, i.e., is
invariant under a change of the basis, it is plausible thatI can
be written, or at least approximated, by expressions involv-
ing only these traces, so thatI also is an even function of
l. Thereforel50 is an extremum of our figure of merit and
it might be possible to prove, with some effort, thatl50
indeed gives the global maximum of the figure of merit.
Anyway, the validity of this result is likely to be restricted to
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the highly symmetric case where Alice prepares two equi-
probable pure states, as in Eq.~15!.

However, once this result is taken for granted, the calcu-
lation becomes considerably simpler, and can be done ana-
lytically rather than numerically. First, we note that, by virtue
of the 01 symmetry, Eve’s two density matrices can be writ-
ten as

r085S a c

c bD , r185S b c

c aD , ~41!

with a1b51. These two matrices have the same determi-
nant

d5ab2c2>0. ~42!

In that case, the mutual information that can be extracted
from them is explicitly given by@12,14#

I5@~11z!ln~11z!1~12z!ln~12z!#/2, ~43!

where

z5@122d2Tr~r08r18!#1/25~124ab!1/2. ~44!

We therefore need only the diagonal elements in~25!. These
are, by virtue of~21! and ~26!,

~rE8 !01,015(
n

Yn01
2 ~45!

5~c0X11c1X6!
21~c0X51c1X2!

2 ~46!

5~11cos2a cos2f!/2 ~47!

and likewise

~rE8 !10,105~12cos 2a cos 2f!/2, ~48!

wherea is the angle defined in Eq.~15!. ~Here, to conform
with our earlier notations, each one of the two dimensions of
the probe’s space is denoted by a double index 01 or 10.! We
thus obtain

z5@124 ~rE8 !01,01~rE8 !10,10#
1/25cos 2a cos 2f.

~49!

When substituted in Eq.~43!, this result gives a remarkably
simple expression for the mutual information. In particular,
I does not depend onu.

The discrepancy rateD, given by Eq.~33!, also simpli-
fies:

D5sin2u2~S/2! sin2u cos2f1~S2/2! cos2u~12sin2f!,
~50!

whence

2D512S cos2f sin2u2@12S2~12sin2f!#cos2u.
~51!

For eachf, the angleu5u0 makingD minimal is given by

tan2u05S cos2f/@12S2~12sin2f!# ~52!

and that minimal value ofD is

2D0512$S2cos22f1@12S2~12sin2f!#2%1/2. ~53!

Let us consider various values off. Forf50, we obtain
the maximal value ofI :

Imax5 ln21cos2a ln~cos2a!1sin2a ln~sin2a!, ~54!

as could have been found more directly. The minimal distur-
bance corresponding to thisImax is

D15@12~12S21S4!1/2#/2. ~55!

Clearly, it is possible to haveD0,D1 only by accepting
I,Imax. By solving Eq.~53! for f and using Eq.~55!, one
gets an explicit relation between the maximal information
and the minimal disturbance caused by the measurement.
This is given by Eq.~43! with

z5cos2a$12@12AD0~12D0!/D1~12D1!#
2%1/2.

~56!

This relation completely specifies the information-
disturbance trade-off. The result is plotted in Fig. 3 for three
values of the anglea defined by Eq. ~15!, namely,
a5p/16,p/8, andp/5 ~these are the values that were inves-
tigated in Ref.@5#!.

The limit D0→0 is obtained forf5(p/4)2(e/2), with
e→0. We then have

I→z2/2.~e cos2a!2/2 ~57!

and

FIG. 3. Maximal mutual informationI obtainable for a given
disturbanceD, for two equiprobable pure input signals. The angle
a is defined by Eq.~15!. The dashed lines represent the maximal
obtainableI , which cannot be exceeded by accepting a further in-
crease ofD.
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D0→e4~S22S4!/16.~ I tan2a!2/4. ~58!

The quadratic behaviorD0;I 2, which was derived for the
pair of nonorthogonal signals in Eq.~15!, may, however, not
hold for more complicated types of quantum information
@15#, such as the two orthogonal pairs in Ref.@1#.

Finally, let us examine the correlation between the result
observed by Eve and the quantum state delivered to Bob. We
can write Eq.~23! as

uc8&5(
b

ucb8 & ^ uvb&, ~59!

where

ucb8 &5(
m,n

cmAmnbuen& ~60!

is ~except for normalization! the state received by Bob when-
ever Eve observes outcomeb. For example, if Alice sends
u0& and Eve observesuv01&, Bob receives

uc018 &5~c0X11c1X6!ue0&1~c0X51c1X2!ue1& ~61!

5~cosa cosu cosf2sina sinu sinf!ue0&

1~cosa sinu cosf1sina cosu sinf!ue1&. ~62!

Note that

ic018 i25cos2a cos2f1sin2a sin2f ~63!

is the probability that Bob getsuc018 & when Alice sendsu0&
and Eve observesuv01&.

Let us consider two extreme cases. Iff5p/4, so that Eve
obtains no information, we may chooseu50 in accordance
with Eq. ~52! and it then follows from Eq.~50! that there is
no disturbance at all. Indeed, in that case, theU matrix in Eq.
~7! simply is a unit matrix.

On the other hand, iff50 so that Eve acquires all the
accessible information, Bob receives, with probability
cos2a, a state

uc̃018 &5cosuue0&1sinuue1&. ~64!

~The tilde indicates that this state has been normalized.! The
angleu that minimizesD is given by Eq.~52!, which now
becomes

tan2u5S/~12S2!5sin2a/cos22a5tan2a/cos2a.
~65!

Everything happens as if, when Eve observes the state clos-
est tou0&, she sends to Bob, notu0&, but a slightlydifferent
stateu08&, with a new angleu, slightly larger thana. For
example, ifa522.5°, we haveu527.3678°. These angles
are illustrated in Fig. 4. It must, however, be pointed out that,
in the scenario described in Fig. 1, Eve releases Bob’s par-
ticle beforeobserving her probe. What she actually has to do
is to make them interact with the appropriateU, and this
guarantees that the final state is correctly correlated, as in Eq.
~59!.

IV. OTHER TRADE-OFF CRITERIA

Until now, we usedD in Eq. ~1! as a measure of the
disturbance: this was the probability for an observer to find
the quantum system in a state orthogonal to the one prepared
by Alice. This may not always be the most useful criterion,
and in some cases it indeed is a very poor one. For example,
if the two states in Eq.~15! havea close top/4, the states
sent to Bob will be even closer top/4, as may be seen from
Eq. ~65!. The states themselves change very little, but the
information that they carry is drastically reduced, as the fol-
lowing example shows.

Consider the casea5p/5 ~depicted by the lowest line in
Fig. 3!. Eve then hasImax50.048 536. Let us rename this
expressionI AE ~the mutual information for Alice and Eve!.
Two different mutual informations can likewise be defined
for Bob: I EB , namely, what Bob may be able to know on the
result registered by Eve, andI AB , what he may still be able
to know on the original state, prepared by Alice.

The calculation ofI EB is easy. As explained after Eq.~65!,
everything happens as if Eve would knowingly send to Bob
one of two pure states, like those in Eq.~15!, but with
a536° replaced byu542.1332°. We then have, from Eq.
~54!, I EB50.004 998 7, about one-tenth ofI AE .

What Bob may still be able to know about the state that
was sent by Alice is even less than that. Bob receives the
quantum system in a state described by the density matrices
~24!. Due to 01 symmetry, these matrices have the same form
~41! as those of Eve and the mutual informationI AB is again
given by Eqs.~43! and ~44!. Now, however,

a5~rB8 !005Y0,01
2 1Y0,10

2 5~c0X11c1X6!
21~c0X21c1X5!

2

~66!

and

b5~rB8 !115Y1,01
2 1Y1,10

2 5~c0X51c1X2!
21~c0X61c1X1!

2.
~67!

It follows that, regardless of the value off,

z5cos2a cos2u. ~68!

FIG. 4. Statesu0& and u1& are sent by Alice and statesu08& and
u18& are re-sent by Eve so as to cause the least possible disturbance
rate in Bob’s observations.
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If we now take u given by Eq. ~65!, we obtain
z50.030 871 8, whenceI AB50.000 476 6. This is more
than 100 times smaller than the mutual information Bob
could have had if Eve’s probe had not been in the way. Thus,
in that sense, Eve caused a major disturbance, even though it
was as small as it could be by the previous criterion~for the
given amount of information she gains!.

Note, however, that Eve, who controls bothf and u,
could just as well setu50. In that case, Bob would be able
to recoup all the mutual information sent by Alice, simply by
measuring the orthogonal states forwarded on to him. Nev-
ertheless, this scenario can hardly count as a minimally dis-
turbing intervention on Eve’s part, because in that case
D5S2/250.452 254, as can be seen from Eq.~50!.

What appears to be needed is a measure of disturbance
that is itself of an information theoretic nature. There are
many ways of comparing the states sent by Alice to the states
received by Bob, which have more information-theory flavor
than the measure used in the previous sections. For instance,
one might consider using the Kullback-Leibler relative infor-

mation @16#. The latter quantifies the discrepancy between
the frequencies of outcomes for a quantum measurement on
Alice’s states versus that same measurement on Bob’s states
@17#. Alternatively, one might consider using the Chernoff
information @16#, which quantifies Bob’s difficulty in guess-
ing whether Eve has tampered with the state~in a given way!
or not @17#. In any case, the best measure of disturbance is
the one that is relevant to the actual application in which we
are interested.
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