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A method for calculating the analytical solutions of the one-dimensional 8iiger equation is suggested.
A general discussion of the possible forms of the potentials and wave functions that are necessary to get the
analytical solution is presented. In general, the analytical solutions appear in multiplets corresponding to the
guantum numben of the harmonic oscillator. As an application, known solutions for the anharmonic oscilla-
tors are critically recalculated and a few additional results are found. Analytical solutions are also found for the
generalized Morse oscillators.

PACS numbds): 03.65.Ge,31.15:p

[. INTRODUCTION f andg and the potentiaV/, which must be fulfilled to get
the analytical solution of the Schtimger equation.
The solution of the one-dimensional Sctimger equation Using the approach indicated above we first use the basis

represents an important problem with numerous applicationg,, to transform the Schibnger equation to the matrix form
in many fields of physics. This equation can always bewith a non-Hermitian matriXSec. ). Possible forms of,
solved numerically. Despite this, analytical solutions yield ag, andV that can yield analytical solutions are discussed in

more detailed and exact description of the physical realitySec. Ill. In the next three sections, known analytical results
and are therefore of considerable interest. for the anharmonic oscillators are critically recalculated. Sec-
The number of potentialg(x) for which the analytic so- tion IV is devoted to the problem of the quartic anharmonic
lution of the one-dimensional Schiimger equation, oscillator. In Sec. V, a detailed analysis of the sextic oscilla-
tor is performed and a few new analytical solutions are
Hy(x)=E(x), (1)  found. Discussion of the higher-order anharmonic oscillators
is presented in Sec. VI. Another interesting problem is the
with the Hamiltonian generalization of the Morse oscillator. The quadratic, quartic,
sextic, and higher-order generalized Morse oscillators are in-
2 vestigated in Secs. VII-IX.
H=- B +V(X) (2

Il. TRANSFORMATION OF THE SCHRO DINGER

. . - - EQUATION INTO THE MATRIX FORM
is known is rather limited. Except for trivial cases, examples

of analytically solvable problems include the harmonic oscil- We assume the wave functighin the form
lator, some anharmonic oscillator§1-9], the one-
dimensional hydrogen atom, the Morse oscillgtbd], and v=3 c i &)
some other simple casésee, e.g[11—14). moom
Analyzing these analytic solutions, we conclude that the
bound-state wave functions have the same structure. Th&here
wave functions have the form of the exponential or other _ ewm
related functions multiplied by a polynomial in a variable Ym=(1)"9. S

that is a function ofx. In other wor_ds, the wave functlon_s The standard approach to the solution of the Scimger
¢ for all these problems can be written as a linear Comb'”a'equation consists in substituting the assumpt®ninto Eq.

tion of functionsy,,,= f™g, wheref(x) andg(x) are suitably (1). Introducing the matrix elements
chosen functions andh is an integer.

It is obvious that there is a chance of finding an analytical
solution if the Hamiltonian transforms the set of the basis Hmn:f YmH Ydx 5
functions ¢, into itself. Namely, if the result oH,, is a
finite linear combination of/,,, we can hope that the result- and
ing finite order matrix problem is analytically solvable. As-
suming these properties of the wave function and Hamil- S, :J U ©®)
tonian, we discuss in this paper conditions for the functions n m¥n
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one gets the well-known eigenvalue problem The vector of the coefficients, is the left eigenvector of the
matrix h.
_ The coefficientsc,, are obtained from Eq(14) directly
Hnch=E Ch - 7 . m )
En: mn zn: SnrlCn @ without the necessity of using the transformatiag) as they

are in the moment method.

In most cases, it appears impossible to calculdfg, and Another disadvantage of the moment method is that even
Smn and solve Eq(7) analytically. However, if the matrices for the analytically solvable problems the overldds, are
H andS are truncated, this method is suitable for Ca|CU|atingusua||y different from zero and sometimes even diverge for
approximate solutions. m—o [9,15,16. The problem(10) of the infinite order is

There is a chance of finding analytical solutions of thegifficult to solve analytically and even when it is solved, the
Schralinger equation if the Hamiltoniad transforms the set  transformation12) of the usually infinite order must be ap-
of the basis functiong,, into itself. We assume therefore plied. On the other hand, the left eigenvectors of Bl

that the HamiltoniarH fulfills the relation with a finite number of nonzero coefficients, can often be
found directly and the analytical wave function can be found

Hy = E Rt (8) in the form ofa fin.ite Iinegr cqmbination aﬁm: For the sake
n of simplicity, we discuss in this paper one-dimensional prob-

o ) lems only. We note, however, that the moment method has
where the coefficienthy,, are numbers. Let us introduce an gyccessively been applied to one-dimensional as well as mul-
overlap between the basis functigh, and the exact wave igimensional problemssee, e.g[16,17],).
function ¢ The condition that only a finite number of the coefficients

C Is different from zero is known, for example, from the
Mmzf Y pdx. 9) solution of the harmonic oscillator wheg, are the coeffi-
cients of the Hermite polynomials. In the standard solution

Substituting Eqs(8) and (9) into the Schidinger equation of the harmonic oscillator a simple recurrence relation for the

(1) we get another matrix formulation known from the mo- coefficientsc,, of the ngmite polynomials is pbta_ined. In
ment method 15—19 our approach, such a simple recurrence relation is replaced

by a general matrix equatiofi4) and can therefore lead to
analytical solutions that have not been known until now.
En: hfM=EMp,. (10 A problem similar to Eq.(14) is solved also in the Hill
determinant methotsee, e.g[5,20,21,13,14). As we show
We see that the vector of the overlas, is the right eigen-  below, our approach is more general than this method. We
vector of the matrixh. The advantage of Eq10) is that, in ~ consider general functions andg and give a general dis-
contrast to Eq(7), there is no matrs in this equation. The ~ Cussion of Eq(14). We are also interested in a direct ana-
matrix h is usually sparse, which further simplifies the prob-ytical solution of Eq.(14) for a finite linear combination in
lem. On the other hand, the mattixis non-Hermitian. The ~(3) instead of discussing the infinite-order problem.

equations ~ The wave functions given in this paper are not normal-
ized.
Hm”:% Smph”p (11) Ill. CONDITIONS FOR f AND g
and In the previous section, the validity of E¢8) was as-
sumed. Now we derive conditions férg, andV following
from this assumption.
M= ; SmrCn (12 Applying the Hamiltonian2) to the basis functio4) we
get
following from the assumption&) and(3) give the relation 2

of the quantitigs appearing in Ec(g.)_ and(10). Appli(_:a_tion Him=| —m(m—1) f_z _ m( 2_, g_’+ ﬂ) _ g_H +V | .

of these equations is usually complicated by the infinite order f fg f 9

of the matrixS. (15
There is also another possibility close to the approaches

given above. If Egs(3) and (8) are used directly in the Here,f’ denotesdf/dx.

Schrainger equatior(1) the following result is obtained: In order to getHyr, as a linear combination ofs, the
expression in brackets must be a linear combinatiori"of

As different terms in Eq(15) depend omm in a different way
m2n thmn‘ﬂn:E% Cmm- (13 any of the terms f'2/f2,2(f'/f)(g'/g)+f"/f, and
' —g"/g+V must be a linear combination df'. It follows
Assuming linear independence of the functiahswe get a  from the first and second terms thét must be a linear
simple matrix problem, combination off™,

> Cohmn=ECy. (14) =2 fu(H)™, (16)
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where f, are numbers. Analogously, the second and third Substituting Eqs(16)—(18) into Eq.(15) we get
terms lead to

H'l/mzz —m(m—l)z fjfi—j+2_mz (=2fgi—j+1
9'=-92 gn(M™ (17) ! ) )

. . . o +ififio i) = 2 (95— ifioj+10) + Vi [ -
where the minus sign on the right-hand side is chosen for ]

further convenience. Finally, the last term gives . o
Therefore, the matrix,,,, appearing in Eq(14) equals

V=2 V()™ (18)
mo" hm,m+i:_m(m_1); fjfi—j+2_m; (—2fgij+1
We see that the potentials considered in this paper must _ _
have the form given by Eq18). At the same time, the func- +ififio )= 2 (98— ifi—j+10) + Vi
tion f(x) appearing in this equation must satisfy Ed6). !
These two conditions restrict possible forms of the potentials (22)

for which our method is applicable.

We note that there are a number of simple functions ful- Our method of finding analytical solutions of the Schro
filling Eq. (16) such asx,exp),cothf), and cotk). How-  dinger equation can be described as follows. First we deter-
ever, there are also more complex functions such as the omine the functionf(x) from the form of the potentiaV/(x)
thogonal polynomials that can be used as the function [see Eq.(18)]. Then we try to find the coefficients,, and

The coefficients ,,,9,,, andV,, are arbitrary until now. If  V, for which the left eigenvectors of the matiixexist with
the coefficientsf,, and g,, are known, the function§ and a finite number of nonzero components. This leads to a so-

g can be obtained by inverting lution of a system of equations fa,,, and V,,, which is
often possible to solve. If the analytical solutions of Etf)
1 are found the wave functions are determined from E8p.
X(f)zfmdf (19  and(20.

We note that the boundary conditions for the wave func-
tion have not been taken into consideration until now. This
means that this method can be used for the discrete as well as
continuous part of the energy spectrum. It also means that to

and calculating

g(x)=ex;{ _f E 9 (f)mdx) get wave functions for the discrete energies, only the solu-
m o tions satisfying the appropriate boundary conditions must be
taken.
—ex _f Emgm(f)mdf (20) In general, solution of Eq(14) leads to two linearly in-
Spfm(H)™ ) dependent solutions as it should be for the differential equa-

tion of the second order. For the bound states, only one of the
To get Eq.(14), the functiong cannot be arbitrary and is solutions or their suitable linear combination must be taken.
given by Eq.(20), whereg,, are parameters. The way to Now we search for the left eigenvector of the mathix
determine the coefficients,, is described below. with a finite number of nonzero components. In this paper,
In the moment method and the Hill determinant methodwe assumee,,=0 for m<0 andm>n, wheren=0 is an
the function(20) is often replaced by a single Gaussian ex-integer. It means that we search for the wave function in the
ponential. Obviously, such an approximate approach cannd@rm
be used if analytic solutions are to be found.
As a result of the integration, the functi@fx) can have i "
a rather complex form. It shows that the assumption about b= mE:O Cmf™g. (22
the polynomial form of the argument of the exponential
made in the Hill determinant method is too restricti\gee
the sections devoted to the generalized Morse potehtials
There is also another conclusion following from E20).
Let us assume that we search for the bound-state wave func-

If necessary, the summation in this equation can be extended
to m<O0.
The corresponding eigenvalue problétd) becomes

tion in the form of a finite sum3). Then, investigating the n

integral in Eq.(20), it is easy to determing,, for which > Colhmmei—ESmmei) =0, (23)
g(x) is finite. For example, let us assume ttiéx) =x, g, m=0 ‘ ‘

#0 for m=M andg,=0 for m<0 andm>M. It follows

from Eq. (20) that M must be odd, otherwise the function wherei=...,—2,—1,0,1,2,.... This formula represents

g(x) diverges fox— o or x— —co, In fact, this is the reason more equations than the number of unknown coefficients
for which the analytical solutions for the quartic anharmonicc,, and has in general only the trivial solutioq,,=0,
oscillator withM =2 cannot have this form af(x) (see Sec. m=0, ... n. To get nonzera,,, the number of equations
V). must be reduced or they must be made linearly dependent.
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Our aim is to reduce the problef@3) to a standard eigen- j=2M, ... ,M and the potential constraints follow from

value problem with a square matrix. hej=0,j=M—1,...,1. Theenergy equal&=hgy, and the
General discussion of this problem is rather complex. Incorresponding wave function ig(x)=g(x). With increas-

this paper, we assume the potential in the form ing n andM, the order of the problem and complexity of the

potential constraints increase and the chance to find explicit
VZZ Vi(h) (24) analytic expressions for the ene_rgies ano_i wave functions is
= lower. In general case, a numerical solution of the problem
(23) is necessary.
If necessary, negative powers 0 can be also included. The Let us discuss now the case of the anharmonic and Morse

2M

potential coefficientsVy, ... Voy appear in hypmii, oscillators. For the anharmonic oscillators we pit) =X,
i=1,...,M. Assuming furtherg,,=f,=0 for m<0 and f,=dy,0 and for the generalized Morse oscillators we use
m>M, the matrix{h;;} has nonzero elements in the rows f(x)=1—exp(-X), fo=1f;=—1 and f,=0 otherwise.
i=0,...,n and columnsj=0, ... n+2M. To reduce the The potential is assumed in the forf24). As follows from

number of columns, we start with the last gren+2M and  our discussion given above, analytical solutions for the an-
determinegy, in such a way that the only nonzero elementharmonic oscillators exist only ifM is odd, i.e., if
hnn+om in this column becomes zero. This leads to2M=4k+2, wherek is an integer. On the other hand, ana-
ngZVzm so thatgy == V. Iytical solutions for the generalized Morse oscillators exist
Let us assume for a moment that the potential is quadratitor anyM. The way to solve the proble(@3) is the same for
(M=1). In this case we calculatg, from the condition that both types of oscillators. First, we choosgrom the range
the remaining nonzero elemeny ., in the (n+1)th row n=0,1,.... Then we solve the equatidm, . ,y=0 lead-
equals zero. As a result, the eigenvalue probiB) with a  ing to gf,lzv2M . After that we continue with the solution of
square matrix is obtained. We see that the problem of théhe equationsh, ,,;=0, i=2M-1,... M, which yield
guadratic oscillators can be solved easily. Om-1: - - - 0p as a function oV, , ... Vs, . Consequently,
For quartic and higher-order potentialsM&2,3,...), all the coefficientg,,, are determined and all columns of the
however, we get more nonzero elements in the columnsatrixh, j=n+2M, ... ,n+M are equal to zero. Then we
j=n+2M-1,... n+1 than in the case of the quadratic continue with the columng=n+M—-1,... n+1 and de-
oscillators. In this casegy_1, .. .,go must be determined termine the corresponding constraints on the potential coef-
from the condition that the columng=n+2M—-1n ficientsVy,_4, ...,V;. The total number of the nonzero co-
+2M -2, ... nh+M are linearly dependent on the columns efficients g, (M+1) plus the number of the potential
j=0,...n of the matrixh—E. To reduce the number of constraints 1 —1) equals M. If the potential is even, the
linearly independent columns of we must continue to in- number of the constraints reduces to one-half.
troduce some constraints on the potential coefficients that A less general discussion was performed[&j for the
were arbitrary untii now. Considering the columns anharmonic oscillators with the even potential.

j=n+M-1,... n+1 we can calculat¥/y,_4, ... ,V;as a The discussion given above shows that all the analytically
function ofVy,, ... Vo . Solving then the remaining prob- solvable problems with the wave function in the form of a
lem (23) with the square matrih;;}, i,j=0, ... n we can finite linear combination(3) have the same algebraic struc-

find the solution in the forn(22). We see that the analytic ture given by the matrix21). If the functionf is changed the
solution in the form(22) exists for nonquadratic potentials general discussion regarditg g, g,,, andV,, remains the
only if additional constraints on the potential coefficients aresame. Assuming that the potential coefficienis,,

introduced. m=M, ...,2M remain unchanged for neW we get new
We note that, in general, the values @, ..., gy and values of g, and potential constraints onV,,

Vi, ..., Vu_1 depend on the enerdy andn. Forn=0, we m=1,... M—1. However, because of the integration in Eq.

can find only one analytical solution with the corresponding(20), the functiong and the wave functiony can change

values ofgg, ..., gw andVq, ... Vy_1. Then we can get considerably.

analytical solutions fom=1, etc. Thus, the solutions are

obtained in certain multiplets corresponding to different val- IV. QUARTIC ANHARMONIC OSCILLATOR

ues ofn. Ourn corresponds to the quantum numineof the

harmonic oscillator for which the matrik can be easily The potential has the form

diagonalized and the energiesE,=(2n+ 1)91—93

=fhw(n+1/2) are obtained. V(X)=Vix+Vox?+Vaxd+Vx?, V>0

In general, the best chance to find the analytical solution
is for n=0 when the matrixh reduces to one row. The co- corresponding tM =2. Assumingg,,#0 for m=0,1,2 and
efficients g, are then given by equationshg=0, f(x)=x the matrixh equals

Nmmei=—M(M—=1)8 _,+2mMgos; _1+(2mg; —g5+91) i o
+(2mg,—29:90+ 292+V1)5i,1+(_29290_95+V2)5i,2+ (—209:19,+V3) 5i,3+(_9§+v4) b 4-
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First we discuss the ground state corresponding=®. The P(X)=g(X)=exp(—goX— g,x2/2— g,x%/3) (25)
most simple wave function with no nodes is given by the left
eigenvectorc,= 6, o SO that(x)=g(x). To find ¢ it is for a.= + V. satisfy the Schidinaer equationl). How-
sufficient to findg,, and the potential constraint ow, for eve?,zthe_y\t/jgerge fgﬂw oF X—s _goo’ ag conc%o?éd in the
which hyj=0,j=4,...,1. Twopossible solutions of these previous section.
equations are as follows. The coefficiegis are given by For the higher multiplets>0 the situation is analogous.
We see therefore that the wave functions of the quartic an-
=+ = = —g2
92=* Vs 01=Vs/(202),  Go=(V2=09D)/(202) harmonic oscillator cannot have the for(@2) with g(x)

and the potential constraint giviny, as a function of 9iven by Eq.(25).
Vo, ... V,is

V. SEXTIC ANHARMONIC OSCILLATOR
V1=20190—29>.
The potential is assumed in the form
The energyE equals

V(X)=V x4 -+ +Vex8,  Ve>0.
E=hoo=01—03. (0=V1 6 6

It can easily be verified that both functions Assuming furtheg,,# 0, m=0, . . . ,3 thematrix h becomes

hmmsi=—M(M=1)8 _,+2mMged;, 1+ (2Mgy—95+91) i o
+(2mg,—29:190+29,+ V1) 6 1+(2mgs— 20200~ 03+ 393+ V) i 2

+(—20390— 29192+ V3) 6 3+ (— 209105~ 95+ V) 0i 4t (—20293+Vs) 6 s+ (— 9§+V6)5i,e-

A.n=0 much more simple formulas are obtained,

The values ofg,, and the potential constraints are found
by solving successiveliiy;=0, j=6,...,1.
The coefficientg,, equal

95=\WVe, 92=Vs/(293), 91=(V4—g3)/(293),

9o=(V3—20192)/(295), (26)

V,=V2/(4Vg) — 3V,
E=V,/(2\Vy),
and
P(x)=exi] =Vl (4\Ve) = Wex*/4].

This result has one more parameter than the example given
in [1]. These equations give the ground state of the sextic

where the+ sign before Vg follows from the boundary
conditions atx— *= . These equations faJ,, are also valid

for all the hlgh.er multipleta =12, ... .. . double-well potential. I1V,<0, the energ)E lies below the
The coefficientsVs, ... Vg can be arbitrary. Two re- . . ! :
o - . : . maximum of the potential at=0 and the wave function has
maining coefficients are given by the potential constraints .
two maxima atx= =+ —V,/(2Vsg).

V1=20:00—29;, Vo=07+20,00—30.

B.n=1
The corresponding energy and wave function equal In this case, we solve successively the equations
E=hoo=01-05 1
g 2, Cn(imj~Ed)) =0 27
PY(X)=exp( — goX— g1X%/12— g,x313— gsx*/4). for j=7,...,0. First we solve these equations for

j=7,...,4. This leads to Eqs(26). Then, Eq.(27) for
This function has no nodes and is therefore the ground-state=3 gives
wave function. We see that the analytic solution exists for the

asymmetric potential with general potential coefficients V2=g§+ 20,90~ 503.

V3, ..., Vg. In [8], the solutions were found for the even

potential only. Assuming for simplicityc;=1 we get from Eq.(27) for
In a special case of the even potential, i=2

V(X) = Vox?+V x4+ Vex®, Co=—h1a/hg=(V1—20:90+40,)/(295).
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Then we solve two equations following from E@7) for  we get conditiong,=g,=0. It follows from these equations

j=0 andj=1 and get the cubic equation ff that the potentiaV(x) must be even,
V3 +(109,—69:90) Vi + (3205 + 49195+ 1297305 V=Vox?+ Vx+ VexC.
—409,900,) V1 + 3295 — 89500 — 89395 — 649, 0095 The same form of the potential also will be assumed for the
2 2 0 higher-order multiplets. Because of the symmetry of the po-
~ 8019093+ 16919295+ 40919092 =0. tential the number of potential constraints reduces to one,
Thus, depending on the values\{, . .. Vg, we can get up V2=gi—793-

to three real values of ; for which the analytical solution of
the Schralinger equation exists. The corresponding energyrhere are two energies,

obtained from Eq(27) for j=0,1 equals
E.=3g,*+2g°+2g
E=(V3+(69,—49:190) V1 + 49295 — 129,909, + 893 PoTE e
and wave functions

+69195—29593)/(293)

and the wave function is P (X)=[1+ (g, — E+)x?/2]exp( — gx*/2— g3x*/4)
W(X) = (Cot CrX)eXP( — GoX— gix2— X33~ gax*/4). solving the Schidinger equation in this case. The sign
denotes the ground stafghe wave functiony_ has no
This function has one node and represents the first excitediodes. The + sign denotes the second excited stétee

state wave function. wave function has two nodesWe also see thdE_<E, .
In a special casey=0 a more simple result with three
potential constraints instead of two is obtained. The potential D.n=3

constraints are . .
Now we search for a special solution of Ed4) corre-

Vi=—44g,, V,=-503+02, V3=20:0,. sponding toc,#0 for m=1,3 (the solution with the odd
parity) and the even potential. We get the following result:
The last constraint leads tg,=0. The energy and wave

function with one node corresponding to this potential equal V,=gi- 99,
E=39; E.=50:%2V01+603
and and
P(X) =xexp( — g1x%12— g,x313— g5x*/4). (28) e () =X[ 1+ (301 .. )x2/6]exp( — g x2/2— gex*4).

In [8], a special analytic solution corresponding to Eg.
(28) for the even potential was given. In this paper, we hav
found solutions for a more general asymmetric potential.

The — sign denotes the first excited stdthe corresponding
Svave function has one noderhe + sign denotes the third
excited stat€the wave function has three nogles
C.n=2 E. Higher-order multiplets for n even
General discussion leads to rather complicated expres- Th . q functi ding to th
sions that will not be given here. We discuss only the special € ene(g||es and wave hunc lons corresponding to the
casecy# 0,c,=0,c,#0. Analyzing the equations even potential are given by the constraint

V,=g2—(2n+3)g,

2
hmi—Edénmi)=0, j=0,...,8 29 . . .
mE:O SN~ E Omy) J 29 and eigenvalues and eigenvectors of the matrix

g1 —2ngs 0 0 0 0
~2 59, (—2n+4)gs 0 0 0

0 —12 991 (_2n+8)93 0 0

0 0 —-(n—=2)(n—=3) (2n—-3)g,; —49;
0 0 0 -n(h—1) (2n+1)g,

The left eigenvectors of this matrix with the componegysc,, . . . ,c, give n/2+1 even wave functions



53 METHOD FOR CALCULATIONS ANALYTICAL SOLUTIONS OF. .. 2015

n/2
P(X)= D, ComX2Mexp — gix2/2— gax*4).
m=0

F. Higher-order multiplets for n odd
Again, we assume the even potential. The energies and wave functions corresponding to the potential constraint

V,=gi—(2n+3)gs

are given by the eigenvalues and eigenvectors of the matrix

30; (—2n+2)g; 0 0 0 0
-6 791 (—2n+6)gs 0 0
0 —-20 11g, (—2n+10)g; 0 0
0 0 —(n-2)(n=3) (2n-3)g;  —4g;
0 0 0 -n(n—-1) (2n+1)g,
The left eigenvectors of this matrix with the componetyscs, . . . ¢, give (n+1)/2 odd wave functions:
(n—1)/2

YX)= D Comp1X2™ Lexp(— g1x22— gax*/4).
0

m=

VI. HIGHER-ORDER ANHARMONIC OSCILLATORS

As shown in Sec. lIl, analytically solvable anharmonic oscillators are only those with the highest-ordef'téfmwhere
k is an integer.

The solution of the problem of the higher-order oscillators is analogous to that for the sextic oscillator. As an example we
consider the decadic oscillator with

V=Vx+ - +V;x¥, V0.
Assumingg,#0 for m=0, ... ,5 thematrix h has the form
hmm+i = —M(M=1) 8 _,+2mgod; _1+(2Mg; —g5+91) 8 o
+(2M@— 29190+ 20, + V1) 8 1+ (2M g3 — 20,00~ 95+ 303+ V,) 8
+(2Mgy— 29300~ 20192+ 404+ V3) 8 3+ (2Ms— 29103~ 20490~ g5+ 595+ V) & 4
+(—29194— 20205~ 29590+ Vs) & 51 (— 20105~ 20204~ 93+ V6) 8, 6
+(— 20394~ 20295+ V1) 8 7+ (— 20305~ 95+ Ve) 8 g+ (— 20495+ Vo) 8 o+ (— 95+ V10 8 10.

Solving equations, ;=0 for i=10,...,5 thefollowing V1=20100—29,, V»=20,90—303+93,
values ofg,, are obtained:

V3=20300+20:10>—40,,
0s=+ V1o  04=Vo/(29s), 9s5=(Vs—03)/(20s), § osEe T mEe

V,=20:93+29490— 595+93.
92=(V7—209594)/(205),  91=(Ve—0g3—209,94)/(29s) 4TPIs AR TR e

Again, the analytic solution exists for the asymmetric poten-

and tial. The ground-state wave function of the singhet 0 is
90= (V5= 209293~ 20:94)/(29s). given by
6
Similarly to the sextic anharmonic oscillator we take m
X)=exp — _X™'m.
0s5= VvV These values are the same for all the multiplets. W(x) p( mE:l Om-1 )

Let us consider for example=0. Then, the potential con-
straints following fromhg;=0,i=4,...,1 are The corresponding energy equals
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n

P(x)= D, cul1—exp(—x)]Mg(x)

m=0

E=9,—95.

Results for the higher-order multiplets are analogous to

those for the sextic oscillator and will not be given here. that to fulfill these boundary conditions the relation

VIl. QUADRATIC MORSE OSCILLATOR go+9,>0

The Morse oscillatof10] with the potential must be valid. Taking into account the formaf=gy(n) we

V(r)=D{1—exd — (r—ra)/al}2 30 see that there is a maximum valuerof n ., for which the
(r)=D{ XL~ (r=ro)/al} (30 boundary conditions are obeyed. We get

is of considerable interest in molecular physics. In this paper,
we use the variabl=(r —ry)/a and discuss generalized
Morse potentials in the form

Nmax=[V1/(291) —1/2+9,],

where[] denotes the integer part. Therefore, only a finite

2M number of bound states for=0, . . . n,. €xists. There are
V(X)= > Vi[1—exp(—x)]'. (31)  no bound states fov,/(2g,) — 1/2+g;<0.
=1 To get the eigenvalues we assumg,,;=h, ,,,=0 for

) o a givenn and make use of the summation rule
Such potentials are more general than the original Morse

potential and can describe, for example, potentials with reso- 5
nances when the barrier higher than the value of the potential > hmmei=(2n+1)g; - g3.
at x—oo exists. As we pointed out in Sec. lll, in case of the '

generalized Morse oscillators we are not limited by the-l-hiS equation shows that the eneraies
2M=4k+2 rule valid for the anharmonic oscillators and a g

M can be an arbitrary positive integer. - Y. _ _ 2
We take nowf(x)=1—exp(—x) so thatfo=1f;=—1, En=(2n+1)6:—g5=(2n+1)8:~[V/(20) (n+1/%)3]3)
andf,=0 otherwise.
First we discuss briefly the quadratic Morse oscillatorare the eigenvalues of the matfik;;}, i,j=0, ... n since
with the potential the columns of the matrih;;}—E, i,j=0, ... n are lin-

early dependent. It is worth noting that, except for the ex-
V=Vi[1-exp—x)]+V[1-exp(—x)]% V,>0, (32  pression fom,, Eq.(33) is the same as that for the energy of
the harmonic oscillator with the potentisll=V,x+ V,x2.
To get corresponding,, we solve Eq(23), leading to the
following system of recurrence equations:

which is equivalent to the original Morse potent{&D).

For the quadratic Morse oscillatoM(=1) there are no
potential constraints so that all the multiplets=0,1, . . .
belong to the same potential. c,=1,

Assumingg,,=0 for m>1 the matrixh becomes

_Jh_qat h,,—E)=0,
A= — M(M—1)8, o+ m(2m—1+2gg) 3, Cn-afa-107 Cnlhnn~E)

+[—m(m+ 290—291)4—91—93]&’0 Ch—2hn—2n-1+Ch-1(Npn-1p-1—E)+Chhy n-1=0,
(34)
+[—g1(2m+2go+1) + V418 1+ (Vo—03) 6 5. Ci—1hi— 1+ Ci(hi ; —E) + i1 1hj 41 +Ci42Ni 1 2;=0,
Taking into account the expression fofx), i=n—-2,...,1,
g<x>=exp( - f [0+ 9 (x)]dx | =expf — (go+ g1)X Colhoo™ B)+ Cahaot C2Nzo=0.
It can be shown that the results of this section agree with
~gaexp(—Xx)] known results for the standard Morse oscillator with the po-
tential (30).
the value
g;= \/V_z VIIl. QUARTIC MORSE OSCILLATOR

Now we discuss the quartic oscillator with the potential
(31) for M =2. For the quartic and higher-order Morse oscil-
lators, we write the functiog as

must be taken. Similarly, to gét, ,,,=0 for a givenn, the
value

9o=V1/(291)—1/2—n

must be used. In contrast to the anharmonic oscillatpy$s
a function ofn. In order to get bound states the wave func-
tion ¢ must be finite forx— * . It follows from where

M
g(x)= eXp( - mE:o gme(x)) ,
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Gm(x)=f [1—f(x)]™dx. Go(X) =X+ 2exp —x) —exp(— 2x)/2.

These functions equal for the quartic oscillator The matrixh for the quartic oscillator is given by the

Go(x)=X%, Gi(X)=x+exp—Xx), formula

Npmei=—M(M—1)8, o+ (2m*—m+2mg) 8, 1+ (—m?—2mgy+2mg; —g5+91) i o
+(—=2mg; +2mg,—29:99+29,— 09,1+ V1) 5i,1+(_2m92_29290_gi_292+\/2) bi 2
+(—20105+Va) 8 s+ (— 95+ V4) 8 4.

Solving successivelfr, . i=0,j=4, ...,2 for agivenn we 2
get the coefficients),,: p(x)=exg = 2 guGm(X) | (38)
m=0
02=*VVa4  0:=V3/(202),
5 B.n=1
90=(V2~g1)/(2gz) ~n—1. (35) Forn=1 we proceed similarly as in the case of the sextic
To get bound states, we take anharmonic oscillator. The system of equati¢?2g must be
fulfilled for j=5, ... ,0. Theequations folj =5,4,3 are valid
go=— Va4, because 0f35). Assumingc,;=1, we calculatec, from Eq.
(27) for j=2
whereV,>0. A further obvious condition for the existence
of the bound states is Co=—(V1—301+409>—29100)/(29,).
9o+ 01+9,>0. Equation(27) for j=1 gives the potential constraint
The expression for the maximumgiving the bound states is Vi=—4g,+29;+ 29190+ Vg5 —49,00— 20,.  (39)
as follows:
, Equation(27) for j=0 is satisfied since the energg6) for
Nmax=[(V2—07)/(292) —1+0:+ 5] n=1
If the argument of the integer part is less than or equal to E=4g,— 02— 20100+ V4

zero, there are no bound states.

Assuming thatn is given, the summation rule for the s the eigenvalue. The corresponding wave function equals
quartic Morse oscillator equals

2
Z Nmm+i=2(N+1)g2— 95— 20190+ V1. w(x)={co+cl[1—exr(—x)]}ex;{ _mE:O gme(x)>.

Because of Eq(39), we can get two wave functions. One
function has no nodes and the other has one node.

There is also a special solution corresponding ctp
=61 - This assumption leads to the additional potential con-

E,=2(n+1)d,— g5~ 20290+ V1. (36)  straint o+ 1=0 or

Vo= V3/(4V,) ~ 3V,

Similarly to the case of the quadratic Morse oscillator, this
equation shows that the energies of the quartic Morse osci
lator equal

A.n=0
For n=0, we solve the conditiohy;=0 and get the po- The energy and wave function with one node equal in this
tential constraint case
V1=20:90— 20921 0s. E=3g9,—03

The energy and ground-state wave functions are given by gpq

E=hgp=0:1— gg (37) 2
¢<x>=[1—exrx—x>]exp( —mgo gme(x>> :

and



2018 L. SKALA, J. CIZEK, J. DVORAK, AND V. SPIRKO 53

C.n=2 g(x)=exp{— goX— g4 x/a+ exp —ax)/a?]

Similarly to case n=1, we solve Eq. (29) for _ 2, _ 3 _ 3
j=6,...,0. Theequations foij =6,5,4 are satisfied because gzl x/a+2exp —ax)/a’—exp(—2ax)/(2a%) ]}
of Eqg. (35. Assumingc,=1 we first solve Eq.27) for  To get finiteg(x) for x— — we use
j=3 and then foij = 2. This leads to expressions foy and
Co. Substituting these expressions to E2@) for j=1, we g,=—V,.
get the cubic equation fov,. The resulting expressions for N
V,,c;, andc, are complex and will not be given here. The From the same condition at—% we get
energy is given by Eq36) and the wave function equals

P(x)={co+ci[1—exp(—x)]+c,[ 1—exp —x) 1%}

2
XGX% - ZO gme(X)

go+9;/a+g,/a®>0.
Using the coefficients
. go=(V2—g5)/(2g2) —a(n+1)
nd

a

In this case, up to three analytical solutions can be obtained.

These solutions have one, two, and three nodes. 91=V3/(29,)
Similarly to casen=1 a special solution withcy#0, .

¢,=0, andc,#0 corresponding to two additional potential the 1ast condition becomes

constraints [VZ(4V,) — V,1/(24V5) —a(n+1) — Vs /(2aVy)
91=02, 2Q9o+3=0

>V, /a2
exists. Detailed discussion will not be given here. . N i ]
Fora>0, this condition can be fulfilled only for certain val-
ues ofn, n=0, ... N It is obvious that fora—0+

D. Higher-order multiplets . ) . .
Nmax IS less than zero and in agreement with our conclusion

~ The solution of Eq(23) for highern can be obtained in a in Sec. IV there are no bound states in the form assumed in
similar way as described above. However, the results arghjs paper.

complex and in general the numerical solution of E2§) is
necessary. IX. SEXTIC AND HIGHER-ORDER MORSE OSCILLATOR

E. Transition to anharmonic oscillator For the sextic oscillatoM =3 and the functiors; equals

The transition from the quartic Morse potential to the 3
quartic anharmonic potential can be made if the function ~ G3(X)= | [1=f(x)]°dx=x+3expg —x) — 3expg — 2x)/2

f(x)=[1—exp —ax)]/a~x—ax?/2+a’x3/6— - - -, +exp( — 3x)/3.

wherea— 0+ is used. The functiolg equals in this case The matrixh for the sextic oscillator is

N i = —M(M=1) & _5+(2M° —m+2mgo) &, -1+ (—M*+2M(91—Go) — 5+ 91) 81 0
+(—2mg;+2mg,— 29190+ 20— g1+ V1) 8 1+ (2M(g3—02) — 20200~ 95— 205+ 303+ V) 5 »
+(—2mMgs—29:9,— 29003~ 393+ V3) & 3+ (— 29105~ 95+V4) 5 4
+(—29,05+ Vs) 8 5+ (— 95+ Ve) 8 6,

wheregm=0 for m>_3 is assumgd. O3= \/V—e
Solving successivelft, ,+i=0,i=86, ... ,3 we get the co-
efficientsg,, for a givenn where Vg>0. Further condition for the existence of the
bound states is
93=* W6, 0,=Vs/(203), 9:1=(V4—05)/(203)
9o+ 91+92+93>0.
and
The expression for the maximum giving the bound states
Oo=(V3—2019,)/(293) —n—3/2. equals

To get the bound states, we take Nmax=[(V3—20919,)/(293) — 3/2+ g1+ g+ ga].
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If the argument of the integer part is less than or equal taorresponding to different values of the quantum number
zero, there are no bound states. of the harmonic oscillator. In general, different solutions cor-

The summation rule for the sextic Morse oscillator, respond to different potentials.

Let us assume now that the potential has the form
v=32My ™ V,,,>0. It has been shown that the condi-
tions for g,,, necessary for the existence of bound states fol-
low from the form of the functiorg(x). For f(x) =X, ana-
Iytic solutions exist only for 81=4k+2, wherek is an
integer.

This method is a generalization of the approaches known
E,= —93—gi—29190—29290—29192—29390+V1+V2 from. the moment method and the Hill detgrminant method

and its main advantages da® known properties of (x) for

+Vs, which the analytical solution exist2) a formula forg(x)
with parameterg,, that can be found from the solution of
the eigenvalue probletfid), (3) a straightforward discussion
of the conditions for the existence of the bound staté¢sa
unigue approach to all analytically solvable problems of this
kind leading to the matrix21) in which only f,, and g,,
appear. In this way, a common algebraic representation for
all these problems has been found.

As the first application of our method, known results for
E=gl—g§ the anharmonic oscillators have been critically recalculated

and some new results have been obtained. It has been shown
and that the analytic solution is possible only ifve=4k+ 2,
wherek is an integer. For the sextik&1l) and decadic
3 (k=2) oscillators a few new solutions for the asymmetric
P(x)=ex _mzo ImGm(X) |. potentialV have been given.
Another interesting problem is the generalized Morse os-

The other calculations for the sextic and higher-ordercillator, which is of interest in molecular physics. In contrast

Morse oscillators are analogous to that for the quadrati¢0 the anharmonic oscillators, the analytic solutions exist for

Ei Rmym+i=— 9(2)_ gi_ 29190~ 29290~ 209192~ 209390

+V+V,y+ V3,

leads to the energies

wherego=go(n) and constraints oW,,V,,V; depend also
onn.
For example, fom=0 we get

V1=20001—202+01, V2=03+20,00+ 29, 303,

V3=2010,+ 203090+ 393,

Morse oscillator. They will not be given here. any 2M. We have discussed analytic solutions for the qua-
dratic, quartic, sextic, and higher-order oscillators. New re-
X. CONCLUSIONS sults have been found for the quartic and higher-order gen-

eralized Morse oscillators. For the quartic oscillator, analytic
In this paper, a method for calculating the analytic solu-solutions for the multiplet®=0,1 andn=2 have been dis-
tions of the Schrdinger equation similar to the moment cussed. The transition from the quartic Morse oscillator to
method and the Hill determinant method has been suggestethe quartic anharmonic oscillator has also been made, con-
First, the potential is assumed in the forM(x)  firming our previous conclusions. For the sextic oscillator,
=32 Vnf™, wheref=f(x) is a function that must satisfy general formulas fog,, and the multiplen=0 have been
certain conditions described below. In general, the summanvestigated.
tion can also run over the negative valuesnof Then, the Our method is applicable to any problem with the poten-
wave function is assumed to be a finite linear combination otjal V and functionf satisfying assumptions given above.
the functionsy,,=f™g, whereg=g(x) is a convenient func- Generalization to more dimensions is also possible.
tion. To get analytical solutions, it is assumed that the Hamil-
tonian transforms this basis set into itself. From the last as-
sumption, we conclude that the derivative fofmust be a
finite linear combination of ™ with the coefficients ,,. The This work was supported by a Natural Sciences and En-
same condition must be valid for the logarithmic derivativegineering Research Council Grant in Aid of Reseaitit.),
of g, i.e.,g’/g. For a given functiorf, the functiong can  which is hereby acknowledged. Further, we would like to
easily be calculated from the equationg(x) express our gratitude to Professor R. LeRoy, Department of
=exp(—[Z,9,fMdx), whereg,, are constants. If the last ex- Chemistry, University of Waterloo, for his assistance with
pression and the expression for are used in the Schro the use of the Silicon Graphics computer where the majority
dinger equation, a simple eigenvalue problé) with the  of our results was obtained.
matrix (21) is obtained. To get the analytic solution, the con-
stantsg,, must be determined in such a way that the analytic APPENDIX
eigenvalues and left eigenvectors of this matrix exist. In gen-
eral, some constraints on the potential coefficients also must It is interesting to notice that the case of the quadratic
be introduced. It appears that the solutions exist in multipletdlorse potential, Eq(30), can be treated using the algebraic
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methods. This was recognized by many authors and it isefer to the papef25], namely, to Eq(45). If we putn=1,
described, for example, {122]. However, it is convenient for B=V,, D=V;+2V,, by=1/2++V,—V;—E and
experimental purposesee, e.9.[23], p. 8 to consider the ¢=V,+V,—E—1/4 into Eqs.(42) and(52) of [24], the for-
potential in the form(32). For the algebraic approaches, we mula (33) is obtained.
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