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A method for calculating the analytical solutions of the one-dimensional Schro¨dinger equation is suggested.
A general discussion of the possible forms of the potentials and wave functions that are necessary to get the
analytical solution is presented. In general, the analytical solutions appear in multiplets corresponding to the
quantum numbern of the harmonic oscillator. As an application, known solutions for the anharmonic oscilla-
tors are critically recalculated and a few additional results are found. Analytical solutions are also found for the
generalized Morse oscillators.
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I. INTRODUCTION

The solution of the one-dimensional Schro¨dinger equation
represents an important problem with numerous applications
in many fields of physics. This equation can always be
solved numerically. Despite this, analytical solutions yield a
more detailed and exact description of the physical reality
and are therefore of considerable interest.

The number of potentialsV(x) for which the analytic so-
lution of the one-dimensional Schro¨dinger equation,

Hc~x!5Ec~x!, ~1!

with the Hamiltonian

H52
d2

dx2
1V~x! ~2!

is known is rather limited. Except for trivial cases, examples
of analytically solvable problems include the harmonic oscil-
lator, some anharmonic oscillators@1–9#, the one-
dimensional hydrogen atom, the Morse oscillator@10#, and
some other simple cases~see, e.g,@11–14#!.

Analyzing these analytic solutions, we conclude that the
bound-state wave functions have the same structure. The
wave functions have the form of the exponential or other
related functions multiplied by a polynomial in a variable
that is a function ofx. In other words, the wave functions
c for all these problems can be written as a linear combina-
tion of functionscm5 f mg, wheref (x) andg(x) are suitably
chosen functions andm is an integer.

It is obvious that there is a chance of finding an analytical
solution if the Hamiltonian transforms the set of the basis
functionscm into itself. Namely, if the result ofHcm is a
finite linear combination ofcm , we can hope that the result-
ing finite order matrix problem is analytically solvable. As-
suming these properties of the wave function and Hamil-
tonian, we discuss in this paper conditions for the functions

f andg and the potentialV, which must be fulfilled to get
the analytical solution of the Schro¨dinger equation.

Using the approach indicated above we first use the basis
cm to transform the Schro¨dinger equation to the matrix form
with a non-Hermitian matrix~Sec. II!. Possible forms off ,
g, andV that can yield analytical solutions are discussed in
Sec. III. In the next three sections, known analytical results
for the anharmonic oscillators are critically recalculated. Sec-
tion IV is devoted to the problem of the quartic anharmonic
oscillator. In Sec. V, a detailed analysis of the sextic oscilla-
tor is performed and a few new analytical solutions are
found. Discussion of the higher-order anharmonic oscillators
is presented in Sec. VI. Another interesting problem is the
generalization of the Morse oscillator. The quadratic, quartic,
sextic, and higher-order generalized Morse oscillators are in-
vestigated in Secs. VII–IX.

II. TRANSFORMATION OF THE SCHRO¨ DINGER
EQUATION INTO THE MATRIX FORM

We assume the wave functionc in the form

c5(
m

cmcm , ~3!

where

cm5~ f !mg. ~4!

The standard approach to the solution of the Schro¨dinger
equation consists in substituting the assumption~3! into Eq.
~1!. Introducing the matrix elements

Hmn5E cm*Hcndx ~5!

and

Smn5E cm*cndx ~6!
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one gets the well-known eigenvalue problem

(
n

Hmncn5E(
n

Smncn . ~7!

In most cases, it appears impossible to calculateHmn and
Smn and solve Eq.~7! analytically. However, if the matrices
H andS are truncated, this method is suitable for calculating
approximate solutions.

There is a chance of finding analytical solutions of the
Schrödinger equation if the HamiltonianH transforms the set
of the basis functionscm into itself. We assume therefore
that the HamiltonianH fulfills the relation

Hcm5(
n

hmncn , ~8!

where the coefficientshmn are numbers. Let us introduce an
overlap between the basis functioncm and the exact wave
functionc

Mm5E cm*cdx. ~9!

Substituting Eqs.~8! and ~9! into the Schro¨dinger equation
~1! we get another matrix formulation known from the mo-
ment method@15–19#

(
n

hmn* Mn5EMm . ~10!

We see that the vector of the overlapsMm is the right eigen-
vector of the matrixh. The advantage of Eq.~10! is that, in
contrast to Eq.~7!, there is no matrixS in this equation. The
matrix h is usually sparse, which further simplifies the prob-
lem. On the other hand, the matrixh is non-Hermitian. The
equations

Hmn5(
p
Smphnp ~11!

and

Mm5(
n

Smncn ~12!

following from the assumptions~8! and~3! give the relation
of the quantities appearing in Eqs.~7! and ~10!. Application
of these equations is usually complicated by the infinite order
of the matrixS.

There is also another possibility close to the approaches
given above. If Eqs.~3! and ~8! are used directly in the
Schrödinger equation~1! the following result is obtained:

(
m,n

cmhmncn5E(
m

cmcm . ~13!

Assuming linear independence of the functionscm we get a
simple matrix problem,

(
m

cmhmn5Ecn . ~14!

The vector of the coefficientscm is the left eigenvector of the
matrix h.

The coefficientscm are obtained from Eq.~14! directly
without the necessity of using the transformation~12! as they
are in the moment method.

Another disadvantage of the moment method is that even
for the analytically solvable problems the overlapsMm are
usually different from zero and sometimes even diverge for
m→` @9,15,16#. The problem~10! of the infinite order is
difficult to solve analytically and even when it is solved, the
transformation~12! of the usually infinite order must be ap-
plied. On the other hand, the left eigenvectors of Eq.~14!
with a finite number of nonzero coefficientscm can often be
found directly and the analytical wave function can be found
in the form of a finite linear combination ofcm . For the sake
of simplicity, we discuss in this paper one-dimensional prob-
lems only. We note, however, that the moment method has
successively been applied to one-dimensional as well as mul-
tidimensional problems~see, e.g.@16,17#,!.

The condition that only a finite number of the coefficients
cm is different from zero is known, for example, from the
solution of the harmonic oscillator wherecm are the coeffi-
cients of the Hermite polynomials. In the standard solution
of the harmonic oscillator a simple recurrence relation for the
coefficientscm of the Hermite polynomials is obtained. In
our approach, such a simple recurrence relation is replaced
by a general matrix equation~14! and can therefore lead to
analytical solutions that have not been known until now.

A problem similar to Eq.~14! is solved also in the Hill
determinant method~see, e.g.@5,20,21,13,14#,!. As we show
below, our approach is more general than this method. We
consider general functionsf and g and give a general dis-
cussion of Eq.~14!. We are also interested in a direct ana-
lytical solution of Eq.~14! for a finite linear combination in
(3) instead of discussing the infinite-order problem.

The wave functions given in this paper are not normal-
ized.

III. CONDITIONS FOR f AND g

In the previous section, the validity of Eq.~8! was as-
sumed. Now we derive conditions forf ,g, andV following
from this assumption.

Applying the Hamiltonian~2! to the basis function~4! we
get

Hcm5F2m~m21!
f 82

f 2
2mS 2 f 8f g8

g
1
f 9

f D2
g9

g
1VGcm .

~15!

Here, f 8 denotesd f /dx.
In order to getHcm as a linear combination ofcn the

expression in brackets must be a linear combination off n.
As different terms in Eq.~15! depend onm in a different way
any of the terms f 82/ f 2,2(f 8/ f )(g8/g)1 f 9/ f , and
2g9/g1V must be a linear combination off n. It follows
from the first and second terms thatf 8 must be a linear
combination off m,

f 85(
m

fm~ f !m, ~16!
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where f m are numbers. Analogously, the second and third
terms lead to

g852g(
m

gm~ f !m, ~17!

where the minus sign on the right-hand side is chosen for
further convenience. Finally, the last term gives

V5(
m

Vm~ f !m. ~18!

We see that the potentialsV considered in this paper must
have the form given by Eq.~18!. At the same time, the func-
tion f (x) appearing in this equation must satisfy Eq.~16!.
These two conditions restrict possible forms of the potentials
for which our method is applicable.

We note that there are a number of simple functions ful-
filling Eq. ~16! such asx,exp(x),coth(x), and cot(x). How-
ever, there are also more complex functions such as the or-
thogonal polynomials that can be used as the functionf .

The coefficientsf m ,gm , andVm are arbitrary until now. If
the coefficientsf m and gm are known, the functionsf and
g can be obtained by inverting

x~ f !5E 1

(mfm~ f !m
d f ~19!

and calculating

g~x!5expS 2E (
m

gm~ f !mdxD
5expS 2E (mgm~ f !m

(mfm~ f !m
d f D . ~20!

To get Eq.~14!, the functiong cannot be arbitrary and is
given by Eq. ~20!, wheregm are parameters. The way to
determine the coefficientsgm is described below.

In the moment method and the Hill determinant method
the function~20! is often replaced by a single Gaussian ex-
ponential. Obviously, such an approximate approach cannot
be used if analytic solutions are to be found.

As a result of the integration, the functiong(x) can have
a rather complex form. It shows that the assumption about
the polynomial form of the argument of the exponential
made in the Hill determinant method is too restrictive~see
the sections devoted to the generalized Morse potentials!.

There is also another conclusion following from Eq.~20!.
Let us assume that we search for the bound-state wave func-
tion in the form of a finite sum~3!. Then, investigating the
integral in Eq.~20!, it is easy to determinegm for which
g(x) is finite. For example, let us assume thatf (x)5x, gm
Þ0 for m5M andgm50 for m,0 andm.M . It follows
from Eq. ~20! that M must be odd, otherwise the function
g(x) diverges forx→` or x→2`. In fact, this is the reason
for which the analytical solutions for the quartic anharmonic
oscillator withM52 cannot have this form ofg(x) ~see Sec.
IV !.

Substituting Eqs.~16!–~18! into Eq. ~15! we get

Hcm5(
i

F2m~m21!(
j
f j f i2 j122m(

j
~22 f jgi2 j11

1 j f j f i2 j12!2(
j

~gjgi2 j2 j f i2 j11gj !1Vi Gcm1 i .

Therefore, the matrixhmn appearing in Eq.~14! equals

hm,m1 i52m~m21!(
j
f j f i2 j122m(

j
~22 f jgi2 j11

1 j f j f i2 j12!2(
j

~gjgi2 j2 j f i2 j11gj !1Vi .

~21!

Our method of finding analytical solutions of the Schro¨-
dinger equation can be described as follows. First we deter-
mine the functionf (x) from the form of the potentialV(x)
@see Eq.~18!#. Then we try to find the coefficientsgm and
Vm for which the left eigenvectors of the matrixh exist with
a finite number of nonzero components. This leads to a so-
lution of a system of equations forgm and Vm , which is
often possible to solve. If the analytical solutions of Eq.~14!
are found the wave functions are determined from Eqs.~3!
and ~20!.

We note that the boundary conditions for the wave func-
tion have not been taken into consideration until now. This
means that this method can be used for the discrete as well as
continuous part of the energy spectrum. It also means that to
get wave functions for the discrete energies, only the solu-
tions satisfying the appropriate boundary conditions must be
taken.

In general, solution of Eq.~14! leads to two linearly in-
dependent solutions as it should be for the differential equa-
tion of the second order. For the bound states, only one of the
solutions or their suitable linear combination must be taken.

Now we search for the left eigenvector of the matrixh
with a finite number of nonzero components. In this paper,
we assumecm50 for m,0 andm.n, wheren>0 is an
integer. It means that we search for the wave function in the
form

c5 (
m50

n

cmf
mg. ~22!

If necessary, the summation in this equation can be extended
to m,0.

The corresponding eigenvalue problem~14! becomes

(
m50

n

cm~hm,m1 i2Edm,m1 i !50, ~23!

where i5 . . . ,22,21,0,1,2,. . . . This formula represents
more equations than the number of unknown coefficients
cm and has in general only the trivial solutioncm50,
m50, . . . ,n. To get nonzerocm , the number of equations
must be reduced or they must be made linearly dependent.
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Our aim is to reduce the problem~23! to a standard eigen-
value problem with a square matrix.

General discussion of this problem is rather complex. In
this paper, we assume the potential in the form

V5(
i51

2M

Vi~ f !
i . ~24!

If necessary, negative powersi,0 can be also included. The
potential coefficients V1 , . . . ,V2M appear in hm,m1 i ,
i51, . . . ,2M . Assuming furthergm5 f m50 for m,0 and
m.M , the matrix$hi j % has nonzero elements in the rows
i50, . . . ,n and columnsj50, . . . ,n12M . To reduce the
number of columns, we start with the last onej5n12M and
determinegM in such a way that the only nonzero element
hn,n12M in this column becomes zero. This leads to
gM
2 5V2M so thatgM56AV2M.
Let us assume for a moment that the potential is quadratic

(M51). In this case we calculateg0 from the condition that
the remaining nonzero elementhn,n11 in the (n11)th row
equals zero. As a result, the eigenvalue problem~23! with a
square matrix is obtained. We see that the problem of the
quadratic oscillators can be solved easily.

For quartic and higher-order potentials (M52,3, . . . ),
however, we get more nonzero elements in the columns
j5n12M21, . . . ,n11 than in the case of the quadratic
oscillators. In this case,gM21 , . . . ,g0 must be determined
from the condition that the columnsj5n12M21,n
12M22, . . . ,n1M are linearly dependent on the columns
j50, . . . ,n of the matrixh2E. To reduce the number of
linearly independent columns ofh, we must continue to in-
troduce some constraints on the potential coefficients that
were arbitrary until now. Considering the columns
j5n1M21, . . . ,n11 we can calculateVM21 , . . . ,V1 as a
function ofVM , . . . ,V2M . Solving then the remaining prob-
lem ~23! with the square matrix$hi j %, i , j50, . . . ,n we can
find the solution in the form~22!. We see that the analytic
solution in the form~22! exists for nonquadratic potentials
only if additional constraints on the potential coefficients are
introduced.

We note that, in general, the values ofg0 , . . . ,gM and
V1 , . . . ,VM21 depend on the energyE andn. Forn50, we
can find only one analytical solution with the corresponding
values ofg0 , . . . ,gM andV1 , . . . ,VM21 . Then we can get
analytical solutions forn51, etc. Thus, the solutions are
obtained in certain multiplets corresponding to different val-
ues ofn. Ourn corresponds to the quantum numbern of the
harmonic oscillator for which the matrixh can be easily
diagonalized and the energiesEn5(2n11)g12g0

2

5\v(n11/2) are obtained.
In general, the best chance to find the analytical solution

is for n50 when the matrixh reduces to one row. The co-
efficients gm are then given by equationsh0 j50,

j52M , . . . ,M and the potential constraints follow from
h0 j50, j5M21, . . . ,1. Theenergy equalsE5h00 and the
corresponding wave function isc(x)5g(x). With increas-
ing n andM , the order of the problem and complexity of the
potential constraints increase and the chance to find explicit
analytic expressions for the energies and wave functions is
lower. In general case, a numerical solution of the problem
~23! is necessary.

Let us discuss now the case of the anharmonic and Morse
oscillators. For the anharmonic oscillators we putf (x)5x,
f m5dm,0 and for the generalized Morse oscillators we use
f (x)512exp(2x), f 051,f 1521 and f m50 otherwise.
The potential is assumed in the form~24!. As follows from
our discussion given above, analytical solutions for the an-
harmonic oscillators exist only ifM is odd, i.e., if
2M54k12, wherek is an integer. On the other hand, ana-
lytical solutions for the generalized Morse oscillators exist
for anyM . The way to solve the problem~23! is the same for
both types of oscillators. First, we choosen from the range
n50,1, . . . . Then we solve the equationhn,n12M50 lead-
ing to gM

2 5V2M . After that we continue with the solution of
the equationshn,n1 i50, i52M21, . . . ,M , which yield
gM21 , . . . ,g0 as a function ofVM , . . . ,V2M . Consequently,
all the coefficientsgm are determined and all columns of the
matrix h, j5n12M , . . . ,n1M are equal to zero. Then we
continue with the columnsj5n1M21, . . . ,n11 and de-
termine the corresponding constraints on the potential coef-
ficientsVM21 , . . . ,V1 . The total number of the nonzero co-
efficients gm (M11) plus the number of the potential
constraints (M21) equals 2M . If the potential is even, the
number of the constraints reduces to one-half.

A less general discussion was performed in@8# for the
anharmonic oscillators with the even potential.

The discussion given above shows that all the analytically
solvable problems with the wave function in the form of a
finite linear combination~3! have the same algebraic struc-
ture given by the matrix~21!. If the functionf is changed the
general discussion regardingh, g, gm , andVm remains the
same. Assuming that the potential coefficientsVm ,
m5M , . . . ,2M remain unchanged for newf we get new
values of gm and potential constraints onVm ,
m51, . . . ,M21. However, because of the integration in Eq.
~20!, the functiong and the wave functionc can change
considerably.

IV. QUARTIC ANHARMONIC OSCILLATOR

The potential has the form

V~x!5V1x1V2x
21V3x

31V4x
4, V4.0

corresponding toM52. AssuminggmÞ0 for m50,1,2 and
f (x)5x the matrixh equals

hm,m1 i52m~m21!d i ,2212mg0d i ,211~2mg12g0
21g1!d i ,0

1~2mg222g1g012g21V1!d i ,11~22g2g02g1
21V2!d i ,21~22g1g21V3!d i ,31~2g2

21V4!d i ,4 .
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First we discuss the ground state corresponding ton50. The
most simple wave function with no nodes is given by the left
eigenvectorcm5dm,0 so thatc(x)5g(x). To find c it is
sufficient to findgm and the potential constraint onV1 for
which h0,i50,i54, . . . ,1. Twopossible solutions of these
equations are as follows. The coefficientsgm are given by

g256AV4, g15V3 /~2g2!, g05~V22g1
2!/~2g2!

and the potential constraint givingV1 as a function of
V2 , . . . ,V4 is

V152g1g022g2 .

The energyE equals

E5h005g12g0
2 .

It can easily be verified that both functions

c~x!5g~x!5exp~2g0x2g1x
2/22g2x

3/3! ~25!

for g256AV4 satisfy the Schro¨dinger equation~1!. How-
ever, they diverge forx→` or x→2`, as concluded in the
previous section.

For the higher multipletsn.0 the situation is analogous.
We see therefore that the wave functions of the quartic an-
harmonic oscillator cannot have the form~22! with g(x)
given by Eq.~25!.

V. SEXTIC ANHARMONIC OSCILLATOR

The potential is assumed in the form

V~x!5V1x1•••1V6x
6, V6.0.

Assuming furthergmÞ0,m50, . . . ,3 thematrix h becomes

hm,m1 i52m~m21!d i ,2212mg0d i ,211~2mg12g0
21g1!d i ,0

1~2mg222g1g012g21V1!d i ,11~2mg322g2g02g1
213g31V2!d i ,2

1~22g3g022g1g21V3!d i ,31~22g1g32g2
21V4!d i ,41~22g2g31V5!d i ,51~2g3

21V6!d i ,6 .

A. n50

The values ofgm and the potential constraints are found
by solving successivelyh0 j50, j56, . . . ,1.

The coefficientsgm equal

g35AV6, g25V5 /~2g3!, g15~V42g2
2!/~2g3!,

g05~V322g1g2!/~2g3!, ~26!

where the1 sign beforeAV6 follows from the boundary
conditions atx→6`. These equations forgm are also valid
for all the higher multipletsn51,2, . . . .

The coefficientsV3 , . . . ,V6 can be arbitrary. Two re-
maining coefficients are given by the potential constraints

V152g1g022g2 , V25g1
212g2g023g3 .

The corresponding energy and wave function equal

E5h005g12g0
2

and

c~x!5exp~2g0x2g1x
2/22g2x

3/32g3x
4/4!.

This function has no nodes and is therefore the ground-state
wave function. We see that the analytic solution exists for the
asymmetric potential with general potential coefficients
V3 , . . . ,V6 . In @8#, the solutions were found for the even
potential only.

In a special case of the even potential,

V~x!5V2x
21V4x

41V6x
6,

much more simple formulas are obtained,

V25V4
2/~4V6!23AV6,

E5V4 /~2AV6!,

and

c~x!5exp@2V4x
2/~4AV6!2AV6x

4/4#.

This result has one more parameter than the example given
in @1#. These equations give the ground state of the sextic
double-well potential. IfV4,0, the energyE lies below the
maximum of the potential atx50 and the wave function has
two maxima atx56A2V4 /(2V6).

B. n51

In this case, we solve successively the equations

(
m50

1

cm~hmj2Edmj!50 ~27!

for j57, . . . ,0. First we solve these equations for
j57, . . . ,4. This leads to Eqs.~26!. Then, Eq. ~27! for
j53 gives

V25g1
212g2g025g3 .

Assuming for simplicityc151 we get from Eq.~27! for
j52

c052h12/h025~V122g1g014g2!/~2g3!.
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Then we solve two equations following from Eq.~27! for
j50 and j51 and get the cubic equation forV1

V1
31~10g226g1g0!V1

21~32g2
214g1g3112g1

2g0
2

240g1g0g2!V1132g2
328g3

2g028g1
3g0

3264g1g0g2
2

28g1
2g0g3116g1g2g3140g1

2g0
2g250.

Thus, depending on the values ofV3 , . . . ,V6 , we can get up
to three real values ofV1 for which the analytical solution of
the Schro¨dinger equation exists. The corresponding energy
obtained from Eq.~27! for j50,1 equals

E5~V1
21~6g224g1g0!V114g1

2g0
2212g1g0g218g2

2

16g1g322g0
2g3!/~2g3!

and the wave function is

c~x!5~c01c1x!exp~2g0x2g1x
2/22g2x

3/32g3x
4/4!.

This function has one node and represents the first excited-
state wave function.

In a special casec050 a more simple result with three
potential constraints instead of two is obtained. The potential
constraints are

V1524g2 , V2525g31g1
2 , V352g1g2 .

The last constraint leads tog050. The energy and wave
function with one node corresponding to this potential equal

E53g1

and

c~x!5xexp~2g1x
2/22g2x

3/32g3x
4/4!. ~28!

In @8#, a special analytic solution corresponding to Eq.
~28! for the even potential was given. In this paper, we have
found solutions for a more general asymmetric potential.

C. n52

General discussion leads to rather complicated expres-
sions that will not be given here. We discuss only the special
casec0Þ0,c150,c2Þ0. Analyzing the equations

(
m50

2

cm~hmj2Edmj!50, j50, . . . ,8 ~29!

we get conditionsg05g250. It follows from these equations
that the potentialV(x) must be even,

V5V2x
21V4x

41V6x
6.

The same form of the potential also will be assumed for the
higher-order multiplets. Because of the symmetry of the po-
tential the number of potential constraints reduces to one,

V25g1
227g3 .

There are two energies,

E653g162Ag1212g3

and wave functions

c6~x!5@11~g12E6!x2/2#exp~2g1x
2/22g3x

4/4!

solving the Schro¨dinger equation in this case. The2 sign
denotes the ground state~the wave functionc2 has no
nodes!. The 1 sign denotes the second excited state~the
wave function has two nodes!. We also see thatE2,E1 .

D. n53

Now we search for a special solution of Eq.~14! corre-
sponding tocmÞ0 for m51,3 ~the solution with the odd
parity! and the even potential. We get the following result:

V25g1
229g3 ,

E655g162Ag1216g3

and

c6~x!5x@11~3g12E6!x2/6#exp~2g1x
2/22g3x

4/4!.

The2 sign denotes the first excited state~the corresponding
wave function has one node!. The1 sign denotes the third
excited state~the wave function has three nodes!.

E. Higher-order multiplets for n even

The energies and wave functions corresponding to the
even potential are given by the constraint

V25g1
22~2n13!g3

and eigenvalues and eigenvectors of the matrix

S g1 22ng3 0 0 0 0

22 5g1 ~22n14!g3 0 0 0

0 212 9g1 ~22n18!g3 0 0

••• ••• ••• ••• ••• •••

0 ••• 0 2~n22!~n23! ~2n23!g1 24g3

0 ••• 0 0 2n~n21! ~2n11!g1

D .

The left eigenvectors of this matrix with the componentsc0 ,c2 , . . . ,cn give n/211 even wave functions
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c~x!5 (
m50

n/2

c2mx
2mexp~2g1x

2/22g3x
4/4!.

F. Higher-order multiplets for n odd

Again, we assume the even potential. The energies and wave functions corresponding to the potential constraint

V25g1
22~2n13!g3

are given by the eigenvalues and eigenvectors of the matrix

S 3g1 ~22n12!g3 0 0 0 0

26 7g1 ~22n16!g3 0 0 0

0 220 11g1 ~22n110!g3 0 0

••• ••• ••• ••• ••• •••

0 ••• 0 2~n22!~n23! ~2n23!g1 24g3

0 ••• 0 0 2n~n21! ~2n11!g1

D .

The left eigenvectors of this matrix with the componentsc1 ,c3 , . . . ,cn give (n11)/2 odd wave functions:

c~x!5 (
m50

~n21!/2

c2m11x
2m11exp~2g1x

2/22g3x
4/4!.

VI. HIGHER-ORDER ANHARMONIC OSCILLATORS

As shown in Sec. III, analytically solvable anharmonic oscillators are only those with the highest-order termx4k12, where
k is an integer.

The solution of the problem of the higher-order oscillators is analogous to that for the sextic oscillator. As an example we
consider the decadic oscillator with

V5V1x1•••1V10x
10, V10.0.

AssuminggmÞ0 for m50, . . . ,5 thematrix h has the form

hm,m1 i52m~m21!d i ,2212mg0d i ,211~2mg12g0
21g1!d i ,0

1~2mg222g1g012g21V1!d i ,11~2mg322g2g02g1
213g31V2!d i ,2

1~2mg422g3g022g1g214g41V3!d i ,31~2mg522g1g322g4g02g2
215g51V4!d i ,4

1~22g1g422g2g322g5g01V5!d i ,51~22g1g522g2g42g3
21V6!d i ,6

1~22g3g422g2g51V7!d i ,71~22g3g52g4
21V8!d i ,81~22g4g51V9!d i ,91~2g5

21V10!d i ,10.

Solving equationshn,n1 i50 for i510, . . . ,5 thefollowing
values ofgm are obtained:

g556AV10, g45V9 /~2g5!, g35~V82g4
2!/~2g5!,

g25~V722g3g4!/~2g5!, g15~V62g3
222g2g4!/~2g5!

and

g05~V522g2g322g1g4!/~2g5!.

Similarly to the sextic anharmonic oscillator we take
g55AV10. These values are the same for all the multiplets.
Let us consider for examplen50. Then, the potential con-
straints following fromh0,i50,i54, . . . ,1 are

V152g1g022g2 , V252g2g023g31g1
2 ,

V352g3g012g1g224g4 ,

V452g1g312g4g025g51g2
2 .

Again, the analytic solution exists for the asymmetric poten-
tial. The ground-state wave function of the singletn50 is
given by

c~x!5expS 2 (
m51

6

gm21x
m/mD .

The corresponding energy equals
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E5g12g0
2 .

Results for the higher-order multiplets are analogous to
those for the sextic oscillator and will not be given here.

VII. QUADRATIC MORSE OSCILLATOR

The Morse oscillator@10# with the potential

V~r !5D$12exp@2~r2r 0!/a#%2 ~30!

is of considerable interest in molecular physics. In this paper,
we use the variablex5(r2r 0)/a and discuss generalized
Morse potentials in the form

V~x!5(
i51

2M

Vi@12exp~2x!# i . ~31!

Such potentials are more general than the original Morse
potential and can describe, for example, potentials with reso-
nances when the barrier higher than the value of the potential
at x→` exists. As we pointed out in Sec. III, in case of the
generalized Morse oscillators we are not limited by the
2M54k12 rule valid for the anharmonic oscillators and
M can be an arbitrary positive integer.

We take nowf (x)512exp(2x) so that f 051,f 1521,
and f m50 otherwise.

First we discuss briefly the quadratic Morse oscillator
with the potential

V5V1@12exp~2x!#1V2@12exp~2x!#2, V2.0, ~32!

which is equivalent to the original Morse potential~30!.
For the quadratic Morse oscillator (M51) there are no

potential constraints so that all the multipletsn50,1, . . .
belong to the same potential.

Assuminggm50 for m.1 the matrixh becomes

hm,m1 i52m~m21!d i ,221m~2m2112g0!d i ,21

1@2m~m12g022g1!1g12g0
2#d i ,0

1@2g1~2m12g011!1V1#d i ,11~V22g1
2!d i ,2 .

Taking into account the expression forg(x),

g~x!5expS 2E @g01g1f ~x!#dxD5exp@2~g01g1!x

2g1exp~2x!#

the value

g15AV2

must be taken. Similarly, to gethn,n1150 for a givenn, the
value

g05V1 /~2g1!21/22n

must be used. In contrast to the anharmonic oscillators,g0 is
a function ofn. In order to get bound states the wave func-
tion c must be finite forx→6`. It follows from

c~x!5 (
m50

n

cm@12exp~2x!#mg~x!

that to fulfill these boundary conditions the relation

g01g1.0

must be valid. Taking into account the form ofg05g0(n) we
see that there is a maximum value ofn5nmax for which the
boundary conditions are obeyed. We get

nmax5@V1 /~2g1!21/21g1#,

where @ # denotes the integer part. Therefore, only a finite
number of bound states forn50, . . . ,nmax exists. There are
no bound states forV1 /(2g1)21/21g1<0.

To get the eigenvalues we assumehn,n115hn,n1250 for
a givenn and make use of the summation rule

(
i
hm,m1 i5~2n11!g12g0

2 .

This equation shows that the energies

En5~2n11!g12g0
25~2n11!g12@V1 /~2g1!2~n11/2!#2

~33!

are the eigenvalues of the matrix$hi j %, i , j50, . . . ,n since
the columns of the matrix$hi j %2E, i , j50, . . . ,n are lin-
early dependent. It is worth noting that, except for the ex-
pression forg0 , Eq.~33! is the same as that for the energy of
the harmonic oscillator with the potentialV5V1x1V2x

2.
To get correspondingcm we solve Eq.~23!, leading to the

following system of recurrence equations:

cn51,

cn21hn21,n1cn~hn,n2E!50,

cn22hn22,n211cn21~hn21,n212E!1cnhn,n2150,
~34!

ci21hi21,i1ci~hi ,i2E!1ci11hi11,i1ci12hi12,i50,

i5n22, . . . ,1,

c0~h0,02E!1c1h101c2h2050.

It can be shown that the results of this section agree with
known results for the standard Morse oscillator with the po-
tential ~30!.

VIII. QUARTIC MORSE OSCILLATOR

Now we discuss the quartic oscillator with the potential
~31! for M52. For the quartic and higher-order Morse oscil-
lators, we write the functiong as

g~x!5expS 2 (
m50

M

gmGm~x!D ,
where
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Gm~x!5E @12 f ~x!#mdx.

These functions equal for the quartic oscillator

G0~x!5x, G1~x!5x1exp~2x!,

G2~x!5x12exp~2x!2exp~22x!/2.

The matrix h for the quartic oscillator is given by the
formula

hm,m1 i52m~m21!d i ,221~2m22m12mg0!d i ,211~2m222mg012mg12g0
21g1!d i ,0

1~22mg112mg222g1g012g22g11V1!d i ,11~22mg222g2g02g1
222g21V2!d i ,2

1~22g1g21V3!d i ,31~2g2
21V4!d i ,4 .

Solving successivelyhn,n1 i50,i54, . . . ,2 for agivenn we
get the coefficientsgm :

g256AV4, g15V3 /~2g2!,

g05~V22g1
2!/~2g2!2n21. ~35!

To get bound states, we take

g252AV4,

whereV4.0. A further obvious condition for the existence
of the bound states is

g01g11g2.0.

The expression for the maximumn giving the bound states is
as follows:

nmax5@~V22g1
2!/~2g2!211g11g2#.

If the argument of the integer part is less than or equal to
zero, there are no bound states.

Assuming thatn is given, the summation rule for the
quartic Morse oscillator equals

(
i
hm,m1 i52~n11!g22g0

222g1g01V1 .

Similarly to the case of the quadratic Morse oscillator, this
equation shows that the energies of the quartic Morse oscil-
lator equal

En52~n11!g22g0
222g1g01V1 . ~36!

A. n50

For n50, we solve the conditionh0150 and get the po-
tential constraint

V152g1g022g21g1 .

The energy and ground-state wave functions are given by

E5h005g12g0
2 ~37!

and

c~x!5expS 2 (
m50

2

gmGm~x!D . ~38!

B. n51

For n51 we proceed similarly as in the case of the sextic
anharmonic oscillator. The system of equations~27! must be
fulfilled for j55, . . . ,0. Theequations forj55,4,3 are valid
because of~35!. Assumingc151, we calculatec0 from Eq.
~27! for j52

c052~V123g114g222g1g0!/~2g2!.

Equation~27! for j51 gives the potential constraint

V1524g212g112g1g06Ag1224g2g022g2. ~39!

Equation~27! for j50 is satisfied since the energy~36! for
n51

E54g22g0
222g1g01V1

is the eigenvalue. The corresponding wave function equals

c~x!5$c01c1@12exp~2x!#%expS 2 (
m50

2

gmGm~x!D .
Because of Eq.~39!, we can get two wave functions. One
function has no nodes and the other has one node.

There is also a special solution corresponding tocm
5dm1 . This assumption leads to the additional potential con-
straint 2g01150 or

V25V3
2/~4V4!23AV4.

The energy and wave function with one node equal in this
case

E53g12g0
2

and

c~x!5@12exp~2x!#expS 2 (
m50

2

gmGm~x!D .
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C. n52

Similarly to case n51, we solve Eq. ~29! for
j56, . . . ,0. Theequations forj56,5,4 are satisfied because
of Eq. ~35!. Assumingc251 we first solve Eq.~27! for
j53 and then forj52. This leads to expressions forc1 and
c0 . Substituting these expressions to Eq.~23! for j51, we
get the cubic equation forV1 . The resulting expressions for
V1 ,c1 , andc0 are complex and will not be given here. The
energy is given by Eq.~36! and the wave function equals

c~x!5$c01c1@12exp~2x!#1c2@12exp~2x!#2%

3expS 2 (
m50

2

gmGm~x!D .
In this case, up to three analytical solutions can be obtained.
These solutions have one, two, and three nodes.

Similarly to casen51 a special solution withc0Þ0,
c150, andc2Þ0 corresponding to two additional potential
constraints

g15g2 , 2g01350

exists. Detailed discussion will not be given here.

D. Higher-order multiplets

The solution of Eq.~23! for highern can be obtained in a
similar way as described above. However, the results are
complex and in general the numerical solution of Eq.~23! is
necessary.

E. Transition to anharmonic oscillator

The transition from the quartic Morse potential to the
quartic anharmonic potential can be made if the function

f ~x!5@12exp~2ax!#/a'x2ax2/21a2x3/62•••,

wherea→01 is used. The functiong equals in this case

g~x!5exp$2g0x2g1@x/a1exp~2ax!/a2#

2g2@x/a
212exp~2ax!/a32exp~22ax!/~2a3!#%.

To get finiteg(x) for x→2` we use

g252AV4.

From the same condition atx→` we get

g01g1 /a1g2 /a
2.0.

Using the coefficients

g05~V22g1
2!/~2g2!2a~n11!

and

g15V3 /~2g2!

the last condition becomes

@V3
2/~4V4!2V2#/~2AV4!2a~n11!2V3 /~2aAV4!

.AV4/a
2.

For a.0, this condition can be fulfilled only for certain val-
ues of n, n50, . . . ,nmax. It is obvious that fora→01
nmax is less than zero and in agreement with our conclusion
in Sec. IV there are no bound states in the form assumed in
this paper.

IX. SEXTIC AND HIGHER-ORDER MORSE OSCILLATOR

For the sextic oscillatorM53 and the functionG3 equals

G3~x!5E @12 f ~x!#3dx5x13exp~2x!23exp~22x!/2

1exp~23x!/3.

The matrixh for the sextic oscillator is

hm,m1 i52m~m21!d i ,221~2m22m12mg0!d i ,211~2m212m~g12g0!2g0
21g1!d i ,0

1~22mg112mg222g1g012g22g11V1!d i ,11~2m~g32g2!22g2g02g1
222g213g31V2!d i ,2

1~22mg322g1g222g0g323g31V3!d i ,31~22g1g32g2
21V4!d i ,4

1~22g2g31V5!d i ,51~2g3
21V6!d i ,6 ,

wheregm50 for m.3 is assumed.
Solving successivelyhn,n1 i50,i56, . . . ,3 we get the co-

efficientsgm for a givenn

g356AV6, g25V5 /~2g3!, g15~V42g2
2!/~2g3!

and

g05~V322g1g2!/~2g3!2n23/2.

To get the bound states, we take

g35AV6,

where V6.0. Further condition for the existence of the
bound states is

g01g11g21g3.0.

The expression for the maximumn giving the bound states
equals

nmax5@~V322g1g2!/~2g3!23/21g11g21g3#.
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If the argument of the integer part is less than or equal to
zero, there are no bound states.

The summation rule for the sextic Morse oscillator,

(
i
hm,m1 i52g0

22g1
222g1g022g2g022g1g222g3g0

1V11V21V3 ,

leads to the energies

En52g0
22g1

222g1g022g2g022g1g222g3g01V11V2

1V3 ,

whereg05g0(n) and constraints onV1 ,V2 ,V3 depend also
on n.

For example, forn50 we get

V152g0g122g21g1 , V25g1
212g2g012g223g3 ,

V352g1g212g3g013g3 ,

E5g12g0
2

and

c~x!5expS 2 (
m50

3

gmGm~x!D .
The other calculations for the sextic and higher-order

Morse oscillators are analogous to that for the quadratic
Morse oscillator. They will not be given here.

X. CONCLUSIONS

In this paper, a method for calculating the analytic solu-
tions of the Schro¨dinger equation similar to the moment
method and the Hill determinant method has been suggested.

First, the potential is assumed in the formV(x)
5(mVmf

m, where f5 f (x) is a function that must satisfy
certain conditions described below. In general, the summa-
tion can also run over the negative values ofm. Then, the
wave function is assumed to be a finite linear combination of
the functionscm5 f mg, whereg5g(x) is a convenient func-
tion. To get analytical solutions, it is assumed that the Hamil-
tonian transforms this basis set into itself. From the last as-
sumption, we conclude that the derivative off must be a
finite linear combination off m with the coefficientsf m . The
same condition must be valid for the logarithmic derivative
of g, i.e., g8/g. For a given functionf , the functiong can
easily be calculated from the equationg(x)
5exp(2*(mgmf

mdx), wheregm are constants. If the last ex-
pression and the expression forf 8 are used in the Schro¨-
dinger equation, a simple eigenvalue problem~14! with the
matrix ~21! is obtained. To get the analytic solution, the con-
stantsgm must be determined in such a way that the analytic
eigenvalues and left eigenvectors of this matrix exist. In gen-
eral, some constraints on the potential coefficients also must
be introduced. It appears that the solutions exist in multiplets

corresponding to different values of the quantum numbern
of the harmonic oscillator. In general, different solutions cor-
respond to different potentials.

Let us assume now that the potential has the form
V5(m

2MVmf
m, V2M.0. It has been shown that the condi-

tions forgm necessary for the existence of bound states fol-
low from the form of the functiong(x). For f (x)5x, ana-
lytic solutions exist only for 2M54k12, wherek is an
integer.

This method is a generalization of the approaches known
from the moment method and the Hill determinant method
and its main advantages are~1! known properties off (x) for
which the analytical solution exist,~2! a formula forg(x)
with parametersgm that can be found from the solution of
the eigenvalue problem~14!, ~3! a straightforward discussion
of the conditions for the existence of the bound states,~4! a
unique approach to all analytically solvable problems of this
kind leading to the matrix~21! in which only f m and gm
appear. In this way, a common algebraic representation for
all these problems has been found.

As the first application of our method, known results for
the anharmonic oscillators have been critically recalculated
and some new results have been obtained. It has been shown
that the analytic solution is possible only if 2M54k12,
where k is an integer. For the sextic (k51) and decadic
(k52) oscillators a few new solutions for the asymmetric
potentialV have been given.

Another interesting problem is the generalized Morse os-
cillator, which is of interest in molecular physics. In contrast
to the anharmonic oscillators, the analytic solutions exist for
any 2M . We have discussed analytic solutions for the qua-
dratic, quartic, sextic, and higher-order oscillators. New re-
sults have been found for the quartic and higher-order gen-
eralized Morse oscillators. For the quartic oscillator, analytic
solutions for the multipletsn50,1 andn52 have been dis-
cussed. The transition from the quartic Morse oscillator to
the quartic anharmonic oscillator has also been made, con-
firming our previous conclusions. For the sextic oscillator,
general formulas forgm and the multipletn50 have been
investigated.

Our method is applicable to any problem with the poten-
tial V and function f satisfying assumptions given above.
Generalization to more dimensions is also possible.
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APPENDIX

It is interesting to notice that the case of the quadratic
Morse potential, Eq.~30!, can be treated using the algebraic
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methods. This was recognized by many authors and it is
described, for example, in@22#. However, it is convenient for
experimental purposes~see, e.g.,@23#, p. 8! to consider the
potential in the form~32!. For the algebraic approaches, we

refer to the paper@25#, namely, to Eq.~45!. If we put n51,
B5V2 , D5V112V2 , b051/21AV22V12E and
j5V11V22E21/4 into Eqs.~42! and~52! of @24#, the for-
mula ~33! is obtained.
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