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Variational solutions are given for problems involving diverse fermionic and bosonicN52–7-body systems.
The trial wave functions are chosen to be combinations of correlated Gaussians, which facilitate a fully
analytical calculation of the matrix elements. The nonlinear parameters of the trial function are selected by a
stochastic technique. The method has proved efficient, accurate, and seems feasible for any few-body bound-
state problems emerging in atomic or nuclear physics.

PACS number~s!: 31.15.Pf, 21.45.1v

The solution of the many-body Schro¨dinger equation for
bound states of more than two particles is generally difficult.
To treat anN-body system one needs to cope with the large
number of variables required to specify the wave function.
By usingN21 relative coordinates to describe the system,
for example, the discretization on a mesh withp points, or
the expansion of the relative wave functions in terms ofp
suitable chosen functions, leads top(N21) numbers or basis
functions, which becomes prohibitively large as the number
of particles increases.

The variational foundation for the time-independent
Schrödinger equation provides a solid and arbitrarily improv-
able framework for the solution of bound-state problems.
The crucial point of the variational approach is the choice of
the trial function. There are two widely applied strategies:~1!
to select the most appropriate functional form to describe the
short-range as well as long-range correlations and to com-
pute the matrix elements by Monte Carlo technique, or~2! to
use a number, possibly a great number, of simple terms,
which facilitate the analytical calculation of the matrix ele-
ments. We follow the second course by using an expansion
over a correlated Gaussian ‘‘basis’’@1#. An N-particle basis
function looks like

F~LS!JM~x,a!5A$e21/2xax@uL~x!fS#JM%, ~1!

wherex5$x1 , . . . ,xN21% is a set of Jacobi coordinates,a is
a positive-definite, symmetric matrix of nonlinear param-
eters, specific to each basis element,uLML

(x) is a vector-

coupled product of solid spherical harmonics,fS is the spin
function, andA is an antisymmetrizer~or, for bosons, a
symmetrizer!. The quantum numbers of the intermediate
couplings are suppressed. Note that the form~1! encom-

passes Gaussian products, exp$2 1
2 (iai8xi8

2
%, of any sets of

Jacobi coordinatesx8, thereby allowing for various correla-
tions flexibly. The correlated Gaussian basis functions
proved to be an accurate tool and is widely used in atomic
and molecular physics@2–4#.

The variational approximation, however, may run into dif-
ficulties for the following reasons:~i! when the nonlinear
parameters are varied, it is difficult to optimize them,~ii !
when they are not, then the number of terms required may be

excessively large, and, in both cases,~iii ! the properly sym-
metrized trial function becomes extremely involved. We
show, however, that instead of performing an optimization, it
is expedient to choose these parameter sets randomly and
keep or discard them by trial and error. The original proce-
dure of the stochastic variational method~SVM! proposed in
@5# has recently been greatly developed and sussessfully ap-
plied to multicluster descriptions of light exotic nuclei,
such as 6He5a1n1n, 8He5a1n1n1n1n, 9Li5
a1t1n1n, and 9C5a13He1p1p @6,7#. By learning
from these applications, we have now generalized and re-
fined the method further. At this stage of maturity the method
appears to be powerful and generally applicable in few-body
physics.

Conventional methods@2,8# for the choice of Gaussian
parameters lead to prohibitively large bases for more than
three or four particles as shown above. However, due to the
nonorthogonality of the basis functions, there are different
sets ofa that represent the wave function equally well. This
enables one to select the most appropriate parameters ran-
domly. As one more basis state always lowers the energy, its
‘‘utility’’ may be quantified by the energy gained by includ-
ing it in the basis. We set up the basis stepwise by choosing
a from a preset domain of the parameter space. In the first
step we select a number of parameter setsa randomly, and
we keep the one that gives the lowest energy. Next we gen-
erate a new random set and calculate the energy with this
two-element basis. If the energy gain is larger than a preset
valuee, then we admit this state to the basis, otherwise we
discard it and try a new random candidate. A discarded state
is not excluded from the calculation but can be tested again
at a later stage. This process is repeated until the energy
converges. The rate of convergence can be controlled by dy-
namically decreasing the value ofe during the search. This
procedure is superior to earlier versions@5,6# and, although
not a full optimization, results in very good and relatively
small bases. A similar procedure, called ‘‘stochastic diago-
nalization’’ has been used to determine the smallest eigen-
value of extremely large matrices@9#.

To keep the computational cost at minimum, the follow-
ing scheme has been developed. With aK3K matrix diago-
nalized, the inclusion of the (K11)th element results in a

PHYSICAL REVIEW A MARCH 1996VOLUME 53, NUMBER 3

531050-2947/96/53~3!/1907~4!/$10.00 1907 © 1996 The American Physical Society



matrix whose elements are only nonzero in the (K11)th row
and column and in the diagonal. The lowest eigenvalue of
this simple matrix, the only one required for judging the
utility of a candidate, is calculated by an explicit formula.
When a suitable (K11)th basis state has been found, the
Hamiltonian matrix is to be rediagonalized, but that is also
relatively simple if we take advantage of its special form.
Thus the random selection procedure does not involve a
great number of time-consuming diagonalizations. Most
computing time is spent on the evaluation of the matrix ele-
ments.

We have used a systematic analytical method for evaluat-
ing matrix elements. This procedure is different from the
conventional way of evaluating the matrix elements of the
correlated Gaussians@2–4#. As the symmetrization postulate
can be most easily imposed on single-particle coordinates,
we start from a properly symmetrized product of single-
particle functions. The calculation consists of three steps:~i!
evaluation of theN-body matrix elements in a single-particle
~SP! generator-coordinate~GC! representation,~ii ! transfor-
mation from the SP GC’s to Jacobi GC’s, and~iii ! integral
transformation from the GC’s to the parametersa of the
correlated Gaussian basis. TheN-body functions used in step
~i! are Slater determinants~or, for bosons, ‘‘Slater perma-
nents’’! of the SP functions

f~r i ,si !5~2n/p!3/4exp@2n~r i2si !
2#xst , ~2!

wherexst are the spin-isospin functions. TheN-body matrix
elements, given in closed analytic forms as functions of the
GC’s, are then subjected to orthogonal transformations in the
second step. The dependence on the center-of-mass GC thus
factors out, and, by omitting this factor, the center-of-mass
motion itself is eliminated. The integral transformation be-
tween the Jacobi GC vectors anda is similar to that given by
@10#. For the potential-energy matrix elements first a generic
form is evaluated by replacing the spatial factor of the two-
particle interaction withd(ur j2r i u2r ). The resulting ex-
pression consists of terms of the form ofD(r );r ke2pr2, and
from these the matrix element of anyV(r ) is obtained via
*0

`D(r )V(r )dr. This calculation scheme of matrix elements
is a generalization of the techniques used in nuclear cluster
models@10#. The details of the evaluation of the matrix ele-
ments will be given elsewhere@11#. The dependence of the
matrix elements ona being known, one can organize the
numerical calculations involved in the random search eco-
nomically. A change of the value ofa does not require recal-
culation of the whole matrix element, and a change of Jacobi
coordinatesx is also just a matter of settinga. Once the
matrix elements have been calculated for one value ofa, to
calculate them for many more requires virtually no time.
This organization is again an essential prerequisite of per-
forming extensive calculations.

To makea positive definite, it is expressed asa5udut,
whereu is an (N21)3(N21) orthogonal matrix containing
(N21)(N22)/2 parameters andd is a diagonal matrix with
N21 positive parameters. Although no restriction onu is
necessary, we found that those transformingx into other Ja-
cobi coordinates are especially suitable, and used only such
u, so as to alternate the Jacobi coordinates in a random se-
quence.

In the following we show tables for the ground-state en-
ergies E and point-matter root-mean-square~rms! radii
^r 2&1/2 calculated with the SVM for some few-body systems
with different interactions. The basis dimensionsK of the
SVM listed in the tables are those beyond which the energies
and the radii do not change in the digits shown. Each calcu-
lation was repeated several times to confirm the conver-
gence. The average computational time is 10 min for a four-
body and 2 h for a six-body calculation on the VPP500
computer at the Institute of Physical and Chemical Research
~RIKEN!.

As is shown in Table I, the method works for the pure
Coulomb interaction. For the ground state of~2e1,e2), our
calculation reproduces the first six digits of the variational
calculation of Ref.@12#, and the rms radius also agrees with
it. For the dipositronium molecule (2e1,2e2) our result is
slightly better than the energy calculated@3,4# with a trial
function similar to that of Ref.@12#, but now containing
many more nonlinear parameters. This shows the powerful-
ness of the random selection of the parameters. We found no
bound states for the (3e1,2e2) and (3e1,3e2) systems. The
energy of (3e1,3e2), for example, converges to the sum of
the energy of a dipositronium molecule and of a positronium
~0.51598910.25 a.u.50.765989 a.u.!, with the rms radius
growing excessively. The system of a negative and a positive
positronium ion thus forms no bound state but dissociates
into a dipositronium molecule and a positronium. This result
suggests that the Coulomb force cannot bind more than four
particles out of identical charged fermions and their antipar-
ticles.

We repeated the same calculation by replacing the fermi-
ons with bosonic equivalents. On a different scale, these sys-
tems may be identified, e.g., by systems ofp2 andp1 with
their strong interaction neglected@13#. Such bosons turn out
to form bound states even forN55. As may have been ex-
pected, the radius of the charged boson system decreases by
increasing the number of particles.

In Table II we show results for bosonic and fermionic
systems with a purely attractiveGm2/r ~‘‘gravitational’’ ! in-
teraction. Self-gravitating boson systems have recently at-
tracted some interest@14#. For these systems, both varia-

TABLE I. Energies and rms radii of electron-positron systems
treated as fermions (f ) and as bosons (b). Atomic units are used.

System Method E ^r 2&1/2 K

(e1,e2) b, f SVM 20.25 1.732 10
exact 20.25 1.732

(2e1,e2) b, f SVM 20.262004 4.592 150
Var. @12# 20.26200507 4.594 700

(2e1,2e2) b, f SVM 20.515989 3.608 300
Var. @4# 20.515980 3.600 300

(3e1,2e2) f SVM no bound states
found

1000

(3e1,2e2) b SVM 20.5493 3.53 200
(3e1,3e2) f SVM no bound states

found
1000

(3e1,3e2) b SVM 20.820 3.42 300
Var. @13# 20.789 5
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tional lower and upper bounds are now available. In this case
even the five-fermion system is bound. Thus the lack of
bound states in five-electron-positron systems is a joint effect
of the antisymmetry and of the repulsion between identical
particles. As the force is attractive, the binding energy of the
boson systems rapidly increases with the number of particles.

Finally, we mention an example involving an excited
state. WithK5500, the ground and first excited state of the
t1d1m2 system was put at2111.3640 and2100.9121
a.u., while the coupled rearrangement channel Gaussian ba-
sis variational~CRCGBV! method on a similar basis with
K51442 gave2111.364342 and2100.916421 a.u., respec-
tively @15#.

Various calculations have used the Malfliet-Tjon potential
@16#, which is sum of two Yukawa potentials, as a benchmark
test to compare the accuracy and feasibility of the different
methods of solution of theN-body Schro¨dinger-equation.
Table III shows our results~SVM!, together with results of
others, for this potential to systems withN52–7 nucleons.
This agreement corroborates that the SVM is as accurate as
the direct solution of the Faddeev-Yakubovsky~FY! and the
Faddeev equations@17,18# or the method of the amalgam-
ation of two-body correlations into multiple scattering
~ATMS! @19# or the variational Monte Carlo~VMC! method
@20#. The basis used in the CRCGBV method@8# is similar to
that of the SVM but the Gaussian parameters follow geomet-
ric progressions. The fact that the basis size needed in the

SVM is much smaller proves the efficiency of our selection
procedure.

In summary, the method we have reported on is a combi-
nation of refined analytical techniques developed to calculate
the matrix elements of the correlated Gaussian basis func-
tions and the stochastic basis selection procedure and
problem-conform numerical strategy. We have demonstrated
its power in solving bound-state few-body problems. In none
of the test cases has it proved to be inferior to any of the
alternative methods, and it did not require excessive effort to
reach with it the present-day record of precisely describing a
six-body bound state. Since the calculations involved are al-
most completely analytical, it looks straightforward to go
beyond the six-body problem, although, of course, the re-
quired basis size becomes excessive sooner or later. The
method has turned out to be much more economical than
similar non-stochastic methods, and its basis has proved very
flexible in adapting itself to both Coulomb-interacting and
nuclear sytems. The application of this method for more
complex system is underway~see, for example@11#!.
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