PHYSICAL REVIEW A VOLUME 53, NUMBER 3 MARCH 1996

Internal dynamics of multilevel atoms near a vacuum-dielectric interface
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We show how the internal dynamics of a multilevel atom are modified in the vicinity of the interface
between a vacuum and a simple or multilayered lossless dielectric medium. Optical Bloch equations are
derived, which take into account the modifications of spontaneous emission rates and energy levels experi-
enced by the atom. van der Waals level shifts are evaluated using the method of images for dielectrics.
Spontaneous emission rates and radiation patterns are calculated in a simple way using the Lorentz reciprocity
theorem.
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I. INTRODUCTION n;(w), so that the real and imaginary partsmfw)—1 are
coupled by Hilbert transform dispersion relatiditd§. How-

The electromagnetic field surrounding an atom becomesver, we make the simplifying assumption that the imaginary
modified when the atom is located close to a surface. It haparts of the refractive indices vanish over all frequencies up
been known theoretically for many years that this affects thdo and including the optical region which concerns us, and
radiation properties of the atom. In particular, the presence g®nly become nonzero at much higher frequencies, say in the
the surface changes the natural lifetime and the energy of tH&r UV. Under these assumptions, the real parts of the refrac-
atomic levels, as well as the spontaneous emission radiatidive indices are nearly constant over the frequencies of inter-
distribution. Recent experimental investigations in selectiveest, andh; can be treated as a real number. An atom is placed
reflection spectroscopy at an interface between a dielectrifd vacuoa distanceZ above the surface of the dielectric
and a dilute vapor of alkali atomgl] have occasioned a medium, where it interacts with a laser field of frequency
renewed interest in these effects. From a different standpointy, . This laser is quasiresonant with a closed transition of
the development of atomic mirrors in atomic opt[@ has  the atom connecting its ground stagg of angular momen-
drawn attention to so-called evanescent wave mirf@ls tum Jg to an excited statge) of angular momentund,.
(obtained by total internal reflection of a laser beam at the The paper is organized as follows. In Sec. Il, we derive a
interface between a vacuum and a dielectric medjyrar-  general form of the optical Bloch equations characterizing
ticularly following the recent experimental demonstration ofthe internal dynamics of a multilevel atom near a vacuum-
evanescent field enhancement by means of surface plasmogiglectric interface. We show that the presence of the inter-
[4] or thin dielectric waveguidg$]. Both experimental situ-
ations(reflection spectroscopy and evanescent wave mijrrors

involve the interaction of multilevel atoms with light at dis- z atom
tances from a vacuum-dielectric interface which are smaller ®

than or comparable to the optical wavelength. Under such =1 IZ
conditions, it is no longer legitimate to neglect the influence 01 - - —

of the interface on the atomic dynamics. An evaluation of ) L

this influence is, therefore, timely.

In the present introductory study of the optical Bloch
equations for a multilevel atom near a vacuum-dielectric in-
terface, we consider a simple model which can be explicitly n, L
dealt with by elementary calculations. The simplest situation
is that of an infinite space which is filled below the plane
z=0 with one or several layers of nonmagnetic, transparent,
homogeneous, isotropic media of widthsand refractive

indicesn; (dielectric 90n5tant§i:ni2)= and which is empty FIG. 1. Schematic representation of the model considered in this
everywhere above this plari€ig. 1). In principle, the indi-  paper. An infinite space consists of a vacuum above the plane
cesn; must be considered as complex functions of the opticay=0, and one or more layers of dielectric media of widthend
frequencyw. Indeed, it is well known that the causality re- refractive indicesn; below the planez=0. An atom is placed a
quirement imposes constraints on the allowed form ofdistanceZ above the vacuum-dielectric interface.
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face modifies the atom-field coupling in two distinct ways. VaL(t)=—D- & (1), 3

First, the energy shifts of the atomic levels result in a space-

dependent frequency detuning between the laser field and theéhich describes the interaction of the atomic dipBlavith
atomic resonance frequencies. Second, the atomic relaxatiane laser field assumed to be in a coherent state and therefore
associated with spontaneous emission is significantly modidescribed by alassicalfunction &, (t); and the last term,

fied. On the one hand, the interface breaks the isotropy of

spontaneous emission and leads to different relaxation rates Var=—D-E, (4
depending on the polarization of the atomic dipole moment.

On the other hand, because of the loss of translation symmeepresents the coupling between the atom and the reservoir
try in the direction orthogonal to the dielectric surface, theassociated with the vacuum quantum fieldWe note that in
spontaneous emission rates become space-dependent. In S&g. (1), both fields¢#, (t) andE are evaluated at the location

[ll, we describe more explicitly two situations of experimen- of the atom. In the second step, the master equation for the
tal interest in which multilevel alkali atoms are located closeatomic density matriy is obtained by applying second order

to a simple vacuum-dielectric interface, or to a multilayeredperturbation theory to the atom-reservoir interaction, and by
dielectric waveguide. Using the method of images for dielectracing away the degrees of freedom associated with the res-
trics, we evaluate the shifts of the atomic levels in the limitervoir. This yields a dynamical evolution equation where the
of small distances from the interface, where they arise esseimfluence of the reservoir is manifest through two contribu-
tially from the van der Waals interaction between the atomtions. The first, associated with an effective Hamiltonian, de-
and the dielectric medium. Finally, we derive in a simple andscribes the energy shifts undergone by the atomic levels as a
rigorous way the spontaneous emission rates as well as tmesult of their coupling to the vacuum fieldlamb shifts.
radiation patterns for an atom at any distance from the interThese shifts are traditionally assimilated in the definition of

face, using Lorentz’s reciprocity theorem. Hy, yielding the actual internal Hamiltoniat, ... The sec-
ond contribution,p,ejax -, represents the dissipation of the
Il. OPTICAL BLOCH EQUATIONS atomic system due to its coupling with the reservgipon-

taneous emissionFinally, the free-space time evolution of
The internal dynamics of an atom interacting with a laserthe atomic density matrix takes the form
field are conveniently characterized by a master equation for
its density matrix(optical Bloch equations This section is p=%.p, (5)
devoted to the derivation of such an equation in the particu-
lar case where a multilevel atom is located close to the in- B )
terface between a vacuum and a dielectric medium. Lap= 7 [HaxtVar.pl+ pretax (6)

A. General where we have introduced the free-space Liouvillian super-

To begin, we identify the general features of the opticaIOperator:%*'

coch equsions at an neriae. In e Space.the masic 15 "3 ConSde ap atom ocaed b e vty o &
equation describing the interaction of a single multilevel )

atom with a monochromatic laser field is well knoWn). tmhg d%a;ge::ﬁgfagsg?u'snedg??gebr{;aeblgme(;;y'ngoﬂglt?;rt]rs'c the
Basically, its derivation proceeds in two steps. In the first ) ’ y ’

step, one considers the evolution equation for the total den':nOdes of & (t) and of the quantized electromagnetic

sity matrix of the system constituted by the atom and thevacuum field are altered and may become evanescent. It is

electromagnetic field. In the framework of nonrelativistic Clear that this does not affect the operatbtg, Hg, and

guantum electrodynamics and in the electric dipole approxi-VAL' which keep the same form as in the free-space case. In

mation, this equation relies upon the atom-field Hamiltoniancontrast, the structure of the reservoir becomes modified. The
' contributions ofV,g to the atom dynamicsenergy level
H=Ho+Hg+Va +Var. ) shifts and spontaneous emission ratee therefore expected
to be different from the free-space situation. Moreover, as a
The first term on the right-hand side of E@) is the purely resul'; of the instantgneous Coulomb interaction between the
internal Hamiltonian describing the energy level structure offomic and dielectric charges, one expects a supplementary
the bare atom electrostatic contributiofl . to the energy level shiftdd
corresponds to the London—van der Waals interaction of the
instantaneous atomic dipole with its imdgein the dielec-
HO:Z Eili)i], (2) tric medium. Higher multipoles can be neglected provided
i the atomic radius is much less than the distance between the
atom and the dielectric surfadevhich will always be as-
the indexi being short for a complete set of internal quantumsumed in this papgr Finally, denoting by AH, and
numbers(in the following, we will be mainly interested in  p o axine the modifications of the Hamiltonian and dissipa-
the quantum numberd and M, denoting, respectively, the tive parts of the atomic density matrix evolution due to the
magnitude and the component of the total angular momen- interface, one obtains the general form of the optical Bloch
tum); the second term is the free Hamiltonian of the equations in the presence of the dielectric medium
Coulomb-gauge quantized electromagnetic fiald; is the
time-dependent, purely atomic Hamiltonian p="Lowp+ LiniP: @
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where does not shift the net average of the Zeeman sublevels, and
produces a splitting pattern which has the same symmetry as

_ 1 . the Stark shifts that would be produced by a fictitious static
. = — :
LimP= i [AHAPIT Pretaxint ®  electric field parallel to the axis,
entirely describes the influence of the interface on the atomic AEQx3M?-J(J+1). (11)

internal dynamics. In particularZ;p tends toward zero
when the atom is far from the dielectric surface. We discuss The influence of the interface-induced energy level shifts
the two contributions to Eg®8) in more detail below. on the internal atomic dynamics is described by the first term
on the right-hand side of Eq8). The physical implications
B. General properties of the interface-induced energy-level  of this term become more transparent when distinguishing
shifts between the contributions afH(Y and AH(Y. First, be-

We first consider the energy shifts undergone by the:auseAH(AS) produces a global shift of the energy levels, it
atomic levels due to the presence of the lower-lying dielecmodifies the atomic transition frequency inZadependent
tric medium. Our aim in this section is to describe someway. As a result, the frequency detuningoetween the laser
general properties of the level shifts, and to identify theirand the atomic resonance, which plays an important role in
contributions to the atomic dynamics. We defer the explicitthe internal atomic dynamics, becomes space-dependent,
expressions of these shifts to Sec. lll, since they depend on
the particular structure of the atom and of the dielectric me- A(Z)=A.+(AEY - AED) /4, (12)
dium.

As emphasized above, the interface-induced energy shifthere A, denotes the free-space frequency detuning. Sec-
AE; of level |i) results from the interaction Hamiltonian ond, AH(® lifts the degeneracy between the atomic Zeeman
Hest Var. One can thus distinguish two contributions to thesublevels, provided, however, that the corresponding energy
atomic level shiftd8] state has an(a)ngular momentuhr 1/2 [see Eq.(11)]. In

_ particular, AH(?) does not affect the ground state of alkali-
ABi=ABesi TAEAR) ©) metal atoms ?or whichl=1/2 (this result still holds when
where AE,q; arises fromHgs, while AEg; arises, in taking into account the_ hyperfipe structure pf th_e atomic en-
second-order perturbation theory, frofyp. In particular, €9y states Moreover, in situations of prapucal interest, the
AEag; embodies the effect analogous to the free-spacéfluence ofAHRY on the frequency detuning turns out to
Lamb shift. Becaus@E,y; andAEg; are defined relative be aslmost always negligible compared to thg contrllbuuon of
to their corresponding values in free spatie latter being AHY or to the free-space frequency detuning. Finally, al-
included in Hu..), both contributions tend towards zero though we do not address the issue of external atomic dy-
when the atom is far from the dielectric surface. namics in this paper, it is interesting to note that the

Let us now discuss the symmetry properties of the Systerinterface-induced level shifts can manifest themselves in the
under rotations of the internal atomic variables. First, there i@tomic motion through a modification in the force experi-
a manifest invariance under rotations about zhaxis. The  enced by the atomic center of maaspoint which is of great
z component of the total angular momentiynis therefore a  interest in the field of atom optigsThis is because on the
good quantum number. Second, because of invariance undene hand, the radiative force ariSing from the laser field is
time reversal, the energy shifts can depend only on the magnodified through theZ-dependent frequency detuniny,
nitude, but not on the sign, df. It then follows from the and on the other hand, because the spatial variation of the
preceding considerations that the purely internal effectiveenergy levels leads to additional forces, such as van der
HamiltoniansAH,s and AH g associated with the energy Waals or Casimir forces.
shifts in Eq.(9), and hence the total HamiltoniatH 5 asso-

ciated with these shifts, split into a scalar pAﬂfI(AS) and a C. Master equation treatment of spontaneous emission
quadrupolar paraH{Q [8]: We next consider the relaxation processes undergone by
the atom as a result of its coupling with the vacuum quantum
AHA=AHP +AHQ . (10)  field. As is well known, these processes are conveniently

described by a master equation for the atomic density matrix.
The scalar pamHgS) shifts the atomic levels, but does not In this section, we derive such an equation, taking into ac-
lift their Zeeman degeneracy, nor mix energy levels of dif-count the presence of the lower-lying dielectric medium. In
ferent angular momentd. The quadrupolar paraH(?), particular, we show that the knowledge of the damping rates
which transforms likeY,, under rotations, can in principle 0f two classicaloscillating dipoles polarized parallel and or-
mix atomic levels of the same parity but differed (pro-  thogonal to thez=0 plane is sufficient to completely char-
vided they differ by at most 2). It turns out that as far as theacterize the atomic relaxation associated with spontaneous
fine structure of the atom is concerned, such a mixing igmission.
almost always negligible in experimental situations of inter-
est (for a more detailed discussion, and for the case of hy- 1. Atom-quantum-field coupling
perfine atomic levels, see Sec.)llDne is therefore mainly As stated above, the coupling between the atom and the
concerned with the effect dkH{?) inside the Zeeman de- quantized electromagnetic fielthich is responsible for
generacy subspace of a single atomic level, whbre(AQ) spontaneous emissipris described by the Hamiltonian
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Var=—D-E. The atomic dipole operatdd changes sign

under parity, and therefore has only zero matrix elementélectromagnetic fieldg,o’ =
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where () denotes the average in the vacuum state of the
+, andq,q'=0,=1. In our

inside the Zeeman degeneracy subspaces of both the grougdse, the correlation functioi$9) can be expressed in terms

and excited states. Furthermore, becalggeand |e) have

of a small number of independent parameters. First, the

well-defined angular momenta, it is possible following the positive-frequency component of the electric field operator

Wigner-Eckart theorem to writ® in terms of a dimension-
less, reduced dipole operatdy

D=2, (13

whose matrix elements contain the Clebsch-Gordan coeffi-
cients associated with the addition of the angular momenta

1+J4—Je. In Eq. (13), & is a real number characterizing

only involves photon annihilation operators. Second, in the
case we are studying here, the system is invariant under ro-
tations about the axis, leading to further simplifications. As

a result, one gets

the electric dipole moment amplitude of the atomic transi-

tion. Denoting byP, and P, the projection operators on the

ground and excited states, respectively, we decompose the

reduced dipole operator as

d=PdPy+ P dP,=d" +d" (14)

and we expandl™ andd~=(d")" onto the standard basis
{u.,=7(exig)/\2,us=¢,} (wheree,, , are the unitary
vectors associated with the Cartesian coordinate system

dy=d*-ug=(dy)". (15)
The matrix elements ofi(;r are then given by the simple
expression

<JeMe

where (J3 IMq|JeM,) is the Clebsch-Gordan coefficient
connecting the Zeeman sublevels|J;My) and
|[JeMe=Mg+q). Finally, using the rotating-wave approxi-
mation, the interaction Hamiltonia¥i, g takes the more ex-
plicit form

(16)

dq [IgMg) =(Jg IM4q|IeM e>,

1

Var= _@q;l deEq +dg Ey . (17)
where
1
Ef= > Egug=(E")' (18)

q=-1

Coo [w]=Cql ]84 8, 8y (20
and
C,]_: C]_E C” ,
Co=C, . (22)

Note that contrary to the free-space situation, where
C_,=Cy=C4, the fluctuation spectrum of the vacuum is
determined here by two different quantiti€g andC, . This

is a consequence of the vacuum isotropy breaking induced
by the presence of the semi-infinite dielectric medium. As-
suming a white noise fluctuation spectrum for the vacuum
field, or more precisely a spectrum whose variations around
the atomic resonance frequency are negligible, it is then pos-
sible using the Markov approximation to derive the relax-
ation equation for the expectation val(®)=tr{ pS] of any
atomic observabl& [9],

d(S) 9? . _
a = W% Col wal(dy dg S+Sd; dg

—2d,Sd,), (22)
where w, is the free-space atomic resonance frequency.
Equationg16) and(22) indicate that for a given atomic tran-
sition, the relaxation equation of any atomic observable is
completely characterized by the component of the vacuum
fluctuation spectrum at the atomic transition frequefy.

As is well known, the derivation of the functions
Cql wa] can be carried out from the radiation reaction view-
point which only involvesclassical electrodynamicq 11].
The somewhat surprising fact that quantities such as
Cglwal, which are quantum in nature, can be rigorously
derived in the framework of classical theory can be under-
stood as follows. First, the relaxation of the atomic dipole

is the positive-frequency component of the electric field op4nvolves the vacuum fluctuation spectrum only at the atomic

erator.

2. Relaxation equation for an arbitrary atomic observable

resonance frequency,, irrespective of any other atomic
energy states. In fact, treamecoefficientsC [ w, ] intervene
in the relaxation of any quantum dipole of oscillation fre-

We now consider the effect of the atom-field couplingquencyw, . Specifically, this is the case for the relaxation of
(17) on the time evolution of an arbitrary internal atomic a quantum harmonic oscillator of oscillation frequengy.
observableS. Since we are not interested in the free evolu-Second, it is known that in the case of a harmonic oscillator
tion of the system, we turn to the interaction representatiofinearly coupled to a harmonic reservoir, the evolution equa-
associated with the individual Hamiltonians of the atom andion for the average value of the dipole operatoidisntical
the field. It is well known that the relaxation processes un+o that of the corresponding classical systgh It is there-
dergone by the atom are then determined by the correlatiofore possible to connect the quantitiég] ] to the damp-

functions of the electric field at the position of the atom

C;’g,'[w]:f dre'(Eg(t+ T)Eg,'(t», (19

ing rates of properly chosenlassical oscillating dipoles,
which can be calculated in the framework of classical elec-
trodynamics. This argument is made more rigorous and
quantitative in Appendix A, where it is shown that



1866 J.-Y. COURTOIS, J.-M. COURTY, AND J. C. MERTZ 53

%2 infinitely far from the interface, the ratd$; reduce to their
Colwal=72Tq- (23 common free-space valle,, and Eqs(27) transform into

their usual free-space expressidiig
In Eq. (23), I' is the damping rate of a classical dipole with

polarizationu,, massm, chargee, and oscillation frequency dpee _ dpee =—T.p (283
wa, these parameters being related to the atomic dipole ma- dt [eax At liejaxs e
trix elementZ by
dpeg dpeg r.
2 = - —
E: ﬁAfZZ. (24) dt relax dt relax,» 2 &
1
Finally, combining Eqs(22) and(23), one finds that the dpgg dpgg T E 4o peds (280
quantum relaxation equation of an arbitrary atomic observ- dt |gax At lgaxe o1 47°°
able S can be expressed rigorously in terms of the classical
damping rated’,, (making use of the relatioﬁ‘.l:_ld;dgz Po).

The physical interpretation of Eq$27) is particularly
simple when working in the eigenbasis M (z basig. The
excited state operato +d; are purely diagonal in this basis
[see Eq.(16)], with matrix elements equal to the square of
It is important to note that this technique for deriving the the Clebsch-Gordan coefficients characterizing the coupling
guantum relaxation equation of an atomic observable fronpf the excited state Zeeman sublevels withuapolarized
the damping rate of classical oscillating dipoles is generalight. Consequently, as shown in E@Q7a, the time evolu-
and holds for other situations than the one considered in thigon of the population of the excited state sublej®&M.)
paper(different geometry of the problem or different state of due to spontaneous emission corresponds to a pure damping
the electromagnetic field process characterized by the relaxation rate

A(S)

Ty, o _
0 :_g - (dgdg S+Sdidy —2dySdy). (25

relax

1

3. Relaxation equation for the atomic density matrix
rJeyMezq;l rq<Jg 1M4q

2
The total contributiorp,ejax= Prelax,=+ Prelax,int Of SPON- JeM E> : (29)

taneous emission to the time evolution of the atomic density

matrix can be readily derived from the preceding resultsA similar result is found for the Zeeman coherences between
Considering two arbitrary Zeeman sublevels of the ground otwo excited state sublevel&q. (273 ] and for optical coher-

the excited state of the ator, and 3, the matrix element ences between an excited state and a ground state Zeeman
(a|prelax/ B) follows straightforwardly from Eq(25) with  sublevel[Eq. (27b], with a damping rate equal to the aver-
the particular choiceSaB=|,8)<a|. Distinguishing between age of the relaxation rates of the corresponding populations.
the four blocksp,,=P.pP, (With a,b=e,g) of the atomic  The presence of three terms in Eg9) reflects the fact that

density matrix the excited state Zeeman sublevels can decay towards the
ground state via three channels. These channels are associ-

B ( Pgg Pge) (26) ated with spontaneous emission aigpolarized photon and

Peg Peel are characterized by a rate equal to the produédt,oéind the

square of the Clebsch-Gordan coefficient of the correspond-
one obtains the master equation associated with spontaneadiug transition(see Fig. 2. It is important to note that contrary
emission to the free-space situation, the lifetime of the different ex-
cited state Zeeman sublevels are different here, as a result of

dpee _ é &{d+d‘ 3 (273 relaxation rated’ . Finally, Eq.(27¢) describes the feeding
dt fgax o212 97 Peel of the ground state Zeeman sublevels by the excited state as
a result of spontaneous emission.
dpeg 1 Ty .. One might conclude from the prepeding discussion that
T =— 2 7(dq dg)Peg: (270 Egs.(27) behave much the same as in free space, except for
relax ~ 4=-1 the differences in the lifetimes of the excited state Zeeman
1 sublevels. Such a conclusionrist correct. In particular, the
% =S T,dopedt 270 fact that Eqs.(27) only couple populations to populations
dt | g o221 49 Pectq - and coherences to coherences holds inzthesis only. For

example, working in the basis, one can readily show that
where {A,B}=AB+BA denotes the anticommutator be- the populationsof the excited state sublevels appear as feed-
tween operatoré\ and B, and where the equation fgr,,  ing terms for some Zeemamwherencesf the ground statéa
follows from Eq. (27b) and the relationoge=(peg)T. It is  property related to the isotropy breaking of the vacuum in-
important to note that the simple form of Eq®7) is asso- duced by the dielectric mediumOne thus finds that the
ciated with the particular choice of as the directionor- presence of the vacuum-dielectric interface modifies the
thogonalto the vacuum-dielectric interface, and with the cor-atomic internal dynamics in both a quantitative and a quali-
responding definition of the standard basis Furthermore, tative way as compared to the case of an atom in free space.
as expected, in the limiting case—-« where the atom is It is important to emphasize that such a result is characteris-
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where

AHb:PbAHAPb (b:e,g) (31)
denote the effective Hamiltonians associated with the
interface-induced energy level shift&,” (%) is the posi-
tive (negative frequency part of the monochromatic laser

lgm-1) |g.m) |gm-1) electric field
L) =& exp —iot)+ & expliot), (32
flf).-- lem and where
Peg=Peg ' =Dje (33

lg.m-1)

|g.m)

|g,m~1)

is the expression of the optical coherences in the so-called
rotating frame. Note that in most experimental situations, it
is a good approximation to replace the second term on the
right-hand side of Eq(30b) with the simpler oneA(Z)pegq

FIG. 2. Radiative damping of the excited-state populations. Thgsee Sec. Il B

excited-state Zeeman subleVe|/m) can decay towards the ground
state via three channels. These channels are associated with spo
taneous emission of @,_ - ;-polarized photon and are character-
ized by a rate equal to the product Bf and the square, of the
Clebsch-Gordan coefficient corresponding to the transitianin

free spacel’q—o..1=T'., hence all the excited-state sublevels have  As shown in the preceding section, the internal dynamics
the same lifetime(b) In the presence of a vacuum-dielectric inter- 5f 5 multilevel atom interacting with a quasiresonant laser
face,I'q—+1#I'q-0, hence the sublevels have different lifetimes. e in the vicinity of a vacuum-dielectric interface are en-

) , tirely determined, on the one hand, by the atomic level shifts,
tic of amultilevelatom. In the case of a two-level system, theand, on the other hand, by the damping rates of a classical
interface indeed reduces to a simple quantitative modificagggijlating dipole polarized parallel or orthogonal to the in-
tion of the excited state lifetime, so that no qualitatively dif- (o (face. Several techniques for evaluating these parameters

fli. QUANTITATIVE DERIVATION OF ENERGY SHIFTS,
SPONTANEOUS EMISSION RATES,
AND RADIATION DIAGRAMS

ferent physical phenomena are expected.

D. Optical Bloch equations

can be found in existing literature; however, they are occa-
sionally impractical for given experimental geometries, or
inadequate for the case of multilevel atoms. This section pre-

The optical Bloch equations describing the internal dy-S€nts guidelines particularly adapted to the situation of alkali
namics of an atom interacting with laser light in the vicinity atoms located close to a single dielectric meditiy. 3]
of a vacuum-dielectric interface are readily obtained in thedr @ dielectric waveguidgFig. 3(b)], both of which are of
Markov approximation by adding the above-described concurrent experimental intereft,5].
tributions of the reservoir to those of the laser field. Return-

ing to the Schrdinger picture and using the rotating wave

approximation, this yields

1
. r - 1
Pee™ _qz_l f{d;dq Peet+ E[AHe’pee]

1 ~ ~ — —
_E[D+'gfpge_PegD XINt (303
1
. gy . ) AHg—AHg| .
;‘Jeg:_q;l?(dq dq )peg+| AM+T Peg
1 + ot + ot
- E[D &L Pgg—PedD AL ], (30b)
. 1
Pgg™ q;l Todg peedq + 7 [AHg.pggl
1 - ~ Nt ot
- E[D xa Peg— PgeD ™ - a1 (309

A. London-van der Waals energy shifts

The calculation of energy level shifts at a vacuum-
dielectric interface has been considered by several authors
(see, for example[13,14] and references therginin this
section, we restrict ourselves to the energy shifts in the im-
mediate vicinity of the interfaceZ<x,=c/w,), where they
take their largest values. In this region, the level shifts arise
essentially from the London—van der Waals interaction,
hence(see Sec. )

AHa~AHgs. (34

The effective Hamiltonian associated with the level shifts
can thus be derived in the frameworkeléctrostaticsheory
using the method of images for dielectrigks]. In this ap-
proach, the component of the electric field of the atomic
dipole D (D, ) reflected by the dielectric medium back onto
the location of the atom appears to arise from an ensemble of
one or more effective dipoles Dj,=d,Dy
(D, n=—d, ,D,) located at positions, . Combining these,
one obtaing 16]
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location of the atomic dipole resulting from multiple reflec-

(@ tions inside medium 2 is described by the following infinite
ensemble of image dipoles:
dO: *qo, (383)
20= - Z, (38b)
(b)
1- agl N
dn=1= (@na9)", (393
21
Zn>12—2—2n|2, (Sgb)
where
€ — Gj
E . . . o = : (40)
G. 3. Experimental geometries considered for the quantitative €t €

derivation of energy shifts, spontaneous emission rates, and radia-

tion patterns(a) A single interface separates the vacu(medium  These expressions apply to balp, andd, ,. Combining

1) and a semi-infinite dielectric medium 2 of refractive index ~ EQs. (38) and (39) with (35) yields the expression of the

(b) A dielectric waveguide consisting of two dielectric layers 2 and Hamiltonian describing the London—van der Waals interac-

3 of thicknessed, and |5, respectively, is deposited on a semi- tion between the atom and the dielectric waveguide

infinite dielectric medium 4.

Dﬁ’LZDE an @313 (anaz)"
6477'60 23 21 n=1 (Z+n|2)3 )

AHoe=— 41

1 Dﬁd”'n-i—ZDfdiyn

AHes=g e 2 Z—2z,°

(35
The first term inside the parentheses is analogous to expres-
sion (37) and corresponds to the London—van der Waals in-
teraction between the atomic dipole and medium 2 alone.
This is the leading contribution a& approaches zero. The
second term in Eq41) stems from the presence of the in-
terface between media 2 and 3. We note that in practical
situations the generic term of the sum is a rapidly decreasing
In the geometry of Fig. @), there is a single homoge- function ofn, so that in effect the infinite sum reduces to a
neous dielectric medium in the regiar-0, and the reflected small number of terms, and the electrostatic assumption re-
electric field is correspondingly described by a single effecmains legitimate. In the situation of interest in atom optics

We now evaluate the coefficientd, and d, , and the
London—van der Waals HamiltoniakH ¢ for the two ex-
perimental geometries of Fig. 3.

1. Single dielectric medium

tive dipole located at positior-Z, of amplitude[17] [5], wheree,> €5 and €,> €, the second term in Eq41)
represents a nonalternating series summation which can be-
l-e come quite significant. This is because in this event, medium
dj=d, = 1+e,’ (36) 2 confines the dipole field and serves as an effective wave-

guide, resulting in a field enhancement near its interfaces.

the well-known van der Waals interaction Hamiltonian tric waveguide, or more generally/Z— 0. In this case, Eq.
(41) takes the simple form

-1 1 Df+2D?

2 2 2
AHes=— 3 - (37 Di+2D7 [az 31, axp(l-aj)
+ ~— | T
€y 1 64’7T60 VA AHes 647T60 23 Z4 (1—a21a23)2 ’ (42)
2. Dieleciric waveguide whose leading term now corresponds to the interaction po-

The geometry of Fig. ®) is more complicated because tential between the atomic dipole and medium 3 alone, as
the atomic dipole electric field is multiply reflected by the expected physically.
different interfaces of the multilayered dielectric medium. To
remain consistent with our electrostatic assumption, we ne- TABLE I. Values of the effective principal quantum number
glect the contribution of multiply reflected fields propagating n* for the ground state and first excited states of sodium, rubidium,
over distances significantly larger thap . In the case of the and cesiuntafter Ref.[18]).
dielectric waveguides used in atom opt[&8, the thickness

I, of the dielectric layer 2 is a small fraction of the optical S P

wavelengthh ,=27X, whereas that of layer 33, is of Na 1.627 2.117
order . We therefore neglect reflections at the interfacerp 1.805 2.293
between media 3 and fsee Fig. 80)], or equivalently set (g 1.869 2.362

€,= €3 . Itis then straightforward to show that the field at the
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3. Matrix elements of the Londorvan der Waals interaction (n,l ,J,M|r2|n,l ,J,M)z(n,l |r2|n,l>
potential ¢ €
(a) General. As is manifest in Eq937) and(41), the van 5 *25”i*2+ 1-3I(1+1)
der Waals energy shifts are determined, on the one hand, by ~apn; 2 , 47)
experimental parametefgefractive indices, thickness of the
dielectric layerg and, on the other hand, by the purely inter-
nal operator (n,1,3,M|QIn,1,3,M)y=(—1)M*T¥2 (23+1)
W=Df+2D? =e%(x3+y;+220), (43 X ) )2
1/2 -1/2 0 3

wheree is the electron charge and, y., z. are the Carte-

sian coordinates of the electron in the atomic center-of-mass

frame. In order to calculate the matrix elements of the opera- x
tor W we distinguish, following the symmetry arguments of

Sec. Il B, between the scalar pa® and the quadrupolar
part W@ of W wherea, is the Bohr radiusn; denotes the effective princi-

pal quantum number of the atomic leye), and (- - - )3 is a

J 2
-M M 0/, ° “8)
3

_ o4, 1, 3j Wigner coefficient. The values of* associated with the
W=WE+ W =e? 3let §reQ), (44 ground state and first excited states of alkali atoms are well
known and provide accurate estimategidf2|i) through Eq.
where (47) [18]. They are given in Table | for the ground state
(s) and the first excited statep) of sodium, rubidium, and
Q=1 /16_7TY X (45) cesium.
5 2 ’

(c) Hyperfine structure. Let us now consider the hyper-
. _ . fine structure of the alkali energy spectra. When the atom-
is independent of the electron-atomic nucleus dIStar]C%Iielectric distance is sufficiently large that the London—van
re= X +Ye+7ze. The London—van der Waals energy level gor \aals energy shifts are small compared to the hyperfine

shifts are thuszentirely determined by the matrix elements ofitting of the atomic levels, then the energy shifts can again
the operators, andQ. , _ , be calculated using first order perturbation theory, as above.
(b) Fine structure. Let us first consider the fine structure However, when the atom gets closer to the vacuum-dielectric
of alkali atoms. In most cases of experimental interest, the o tace the London—van der Waals energy shifts eventu-
van der Waals energy shifts are much smaller than the fingyy hecome comparable to or even larger than the hyperfine
splitting between the atomic energy Ie_\/¢I$=|n,I,J,M), _ splitting, so that a coupling between the hyperfine sublevels
and can therefore be calculated using first order perturbatiogs 5 same magnetic quantum number can take place
theory. One thus has through the quadrupolar part of the London—van der Waals
AE;<(n,1,J,M|Wn,l,J,M) (46) couphng: Iq such a case, it becomes necessary to d|agqnallze
the restriction of operato® to the corresponding hyperfine
and the energy level shifts can be readily evaluated by consubspace. Both situations can be treated straightforwardly
bining Eq.(44) and the relation§8] using the relation§8,19]

25Nt +1-31(1+1)

(n,1,3,1,F,M[r2n,1,3,1,F,M)=(n,l[r2|n,I)~aj3n: 5 , (49)
(n,1,3,1,F,M|Q|n,1,3,1,F" ,M)=(—1)2*"M=12 (234 1) (2F+1)(2F ' +1)
J J 2 F F' 2 F F 2
X
12 -2 0/, (3 J I ;\-M M osj’ (50

wherel denotes the nuclear spin of the atom, gng; is a  and discussed for many yed20—22. In addition, the di-
6j Wigner coefficient. pole radiation patterns, which are also experimentally mea-
surable, have been derived in the case of a single dielectric
interface[22]. In this section, we present a simple and pow-
erful method for deriving these quantities in more general
situations. The method is based on Lorentz's reciprocity
The damping rates of classical oscillating dipoles locatedheorem23], and allows one to simultaneously calculate the
in the vicinity of a dielectric medium have been calculatedradiation patterns and the damping rates of classical dipoles.

B. Dipole damping rates and radiation patterns
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It applies in the same straightforward way to the case of g-polarized waves, of amplitude?,, and incoming
single or a multilayered dielectric medium, and to the case of._

loss| bsorbi dia. For th ke of clarity of polarized waves of amplitud& ;. These result irp and
ossless or absorbing media. =or the sake ot clarty ol Prez . arized electric fields at the dipole locatiofif;, and

sentation, we first describe the principle of the metf®dc. ¢ : DS o p.S .

11 B 1) and defer its derivation to Appendix B. The method  dip’ re?Pf,’S“"e'y' we d'enot.e by f° and &' the projec-
is applied to the case of a single dielectric medium, where iHioNS of # gip onto the directions parallel and perpendicular
is shown to yield the same results as[22] (Sec. 1B2, © the !nterface;{ﬁ is, of course, zerWe f_urther deﬂlne.the
and also to the case of a dielectric waveguide for which thecoupling” efficiencies between incoming and incident
dipole radiation patterns and damping rates are obtained fdfelds as

the first time(Sec. 111 B 3.

_|£h@)?
1. Principle of the method Lﬁl(&)— “z P (543
We consider the angular distribution of the radiation emit-
ted by a classical oscillating dipole located in vacuum a disand
tanceZ above a single or multilayered dielectric medium oo
(see Fig. 1, and polarized either parallg|) or perpendicular s o |21(Z)
(1) to the vacuum-dielectric interface. We look for analyti- Lj(8)= <o (54D

cal expressions for the normalizétime-averaged power

P..(0,¢) radiated into the directiond, ¢) in the differential  Then, according to the Lorentz reciprocity theoréerived
solid angledQ) = sinédfdd¢p, wherefd and ¢ are the canonical in Appendix B), the outgoing power of a radiating dipole can
spherical coordinates. The normalization is chosen so thdie directly calculated from the incoming “coupling” effi-

the integration o , (6,¢) over all space gives ciencies through the simple relations
o SP 3 s,p
PH]J_(Q,(,D)dQ:FH’J_(Z)/Fm, (51) 7 ‘:L(G)Iﬁn(e)LH:L(G), (55)

wherel’; | (Z) andI’.. are the damping rates with and with- wheren(6) denotes the index of refraction of the outermost
out an interface, as defined in Sec. Il C and Appendix A. Indielectric layer located in the directiod [in particular,
the geometries considered in this paper, the derivation of the(9) =1 for 0< < =/2].
radiation pattern®| , (6, ¢) involves the calculation of three It is important to note that this way of deriving dipole
guantities that are independent of the azimuthal angle radiation patterns, and consequently dipole damping rates
First, in the case of a -polarized dipole the radiation con- [see Eq.(51)], presents four important advantages. First, it
sists only of plane waves polarized parallel to their propagarelies on only elementary calculations because the derivation
tion planes p or TM waves, and the radiation pattern is of the coefficientd_ﬁ;f(a) involves only Fresnel transmis-
independent ofp because of azimuthal symmetry; hence  sion and reflection coefficients at dielectric interfa¢24.
Second, it applies in exactly the same way for lossless and
P (8,0)=7"(0). (52)  absorbing dielectric mediésee Appendix B Third, it pro-
vides a direct physical insight into th& dependence of the
Second, in the case of[apolarized dipole, we defing=0  dipole radiation patterns and damping rates because it intrin-
as the dipole polarization direction, and the radiation patterically identifies the contributions of the different emission

takes the form angles and of and p waves. Fourth, the relation between
) L, s dipole radiation and field coupling efficiency provides a very
P(6,¢)=coso7 P(6) +sirfe }(6), (53)  intuitive understanding of the radiation pattern characteris-

) tics. In particular, radiation by a dipole will predominantly
where” () denotes the radiation distribution of the wave occur in the output directions associated with strong cou-
components that ang-polarized, and where” () denotes pling efficiencies for the corresponding incoming fields.
the radiation distribution of the wave components that are
polarized perpendicular to their propagation plansso( 2. Case of a single dielectric medium
TE waves. In other words”” ﬁ’(a) is the distribution of the As a first illustration of the method, we consider the
total radiation emitted in the=0 plane, and”’ ﬁ( 0) is the  simple case of a dipole located above a single dielectric me-
distribution of the total radiation emitted in the=x/2  dium of refractive index, [case of Fig. 8)]. As previously
plane. emphasized by Lukosz and Kuf22], it is convenient to

The basic principle of the method for deriving the radia-distinguish between three different regions in the dipole ra-
tion patterns ¢ P, /)ﬁ’ and & ﬁ) is that the outgoing diation patterngFig. 4). The first regior(l), corresponding to
power emitted by the dipole in the directiom,{) can be radiation emission into the vacuum€¥</2), is charac-
calculated by considering an incoming wave propagatingerized for a given direction,¢) by an interference be-
from infinity in the opposite directionft— 6, ¢+ ). Ingen-  tween the plane wave directly emitted in the direction
eral, and depending on its direction of origin, this incoming(8,¢) and the reflected portion of the plane wave initially
wave can undergo multiple reflections and/or transmissiongmitted in the direction{— 6,¢). This interference, appar-
at the various dielectric interfaces it encounters before it i€nt in the expressions afff(6) [see Eqs(C5 g, (C6a), and
incident on the dipole. We separately consider incoming(C73 is responsible for the oscillating behavior of the dipole
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z ! (a)
TN
P | ~
270 s
’ [+ | ~
FIG. 4. Regions |, Il, and Ill of the dipole radiation patterns

corresponding to radiation into the vacuuiy, or into the lower-
lying dielectric medium at angles largg@t) or smaller(lll) than the
critical angleé, .

(b)

damping rates as a function a&f (see Fig. 7. The second
region(ll) corresponds to radiation emission into the dielec-
tric medium at angles exceeding the critical anglédefined
by  sing.=1/n,). Radiation into  this  region
(7/2< 6= m— 6. originates from evanescent waves in the
dipole’s near field that are transformed by the interface into
propagating plane waves in the dielectric medium. We note
the exponential decay of this emission as a functio drf
expressiongC5h), (C6h), and (C7h). The dipole damping FIG. 6. Same as Fig. 5, but for a-polarized dipole.(a)
rates are usually dominated by this emission contribution for”” [(Z=0). (b) 7”P(Z=N\a).
small Z. Finally, the third region(lll) corresponds to radia-
tion emission into the dielectric medium at angles smalletion pattern are apparent. It is important to note that all our
than the critical angled, (7—6.<6<). It consists of results are obtained directly from the coefficiemq%f(e)
propagating plane waves emitted by the dipole that are paand are strictly identical to those derived previoys19—22
tially transmitted into the dielectric medium, and is indepen-using other techniques. In particular, an analytical expression
dent ofZ [see Eqgs(C50), (C60), and(C70)]. for the dipole damping rates can be readily obtained by in-
The dipole radiation patterns derived from expressionspection of Eqs(51), (C5), (C6), and (C7). Using elemen-
(55) and the coefficientd.{"?(8) of Appendix C are illus- tary algebra, it can be expressed in the compact fci
trated in Figs. 5 and 6 far,=1.5 andZ=0 [Figs. 5a,b and

6(a)] andZ=\ 4 [Figs. c,d) and Gb)]. Note the sharp emis- 3 = u3du
sion peak around the critical angle, and the rapid decay of" (z)=T,| 1+ _ReJ' ——— pP(u)exp(2ikZV1—u?d) |,
region Il of the radiation pattern as the dipole is removed 2 Jo1-u?

from the vacuum-dielectric interface. Tt dependence of (57
the dipole damping rates obtained from Esfl) is illustrated
for the same parameters in Fig. 7, where qualitative differ- 3 = udu
ences in the contributions of the three regions of the radia- T(2)=T.|1+ _Ref

4 7)o (J1-1?

(a) (b)

><[pp(u)+(u2—1)ps(u)]exp(2ikZ\/1—u2)],
Q (0]

@ A (59)

with the appropriate Fresnel reflection coefficientsgaand
(c) (@

s waves
2~ nZy1—u?—JnZ—u?

A4
Y p =
ZoN /\ PO

Vi—u?—nZ-u?

S N m————
_ FIG. 5. Polar radia_tion pattern qfllapola_rized dipole Io_cate_d a p(u) 1—u+ /ng_uz"
distanceZ above a single dielectric medium of refractive index

n=15. (@ #P(Z=0). (b) 7}(Z=0). ©7PZ=\a). @ , - .

Z§(Z=X\4). All four diagrams have the same scale. The dashed line 3. Case_of a multllgyergd dleIeCFrlc medium .
corresponds to the boundary between regions Il and Il of the ra- We now consider the situation of Fig(t§ where the di-
diation diagramsi.e., the critical anglé,). Note the rapid decay of pole is located above a dielectric waveguide. As in the pre-
region Il as the dipole is removed from the vacuum-dielectric inter-ceding case, we distinguish between three regions of the di-
face. pole radiation pattern

(59b)
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FIG. 8. Polar radiation pattern of|apolarized dipole located a
distanceZ above the dielectric waveguide of R¢h], correspond-
ing to the parametens,=2.37,1,=87 nm,n;=1.46, ;=350 nm,
n,=1.894, anch ,=785.8 nm.(a) ” [(Z=0). (b) * }(Z=0). For
the sake of presentation, the sharp emission peak around
0,es~63° has been truncated. The peak sizﬁ(e: T— Ore9) IS
actually about 40 times larger than the limit of the pldét)
PPZ=Np)- (d) 7 [(Z=Np)-

transmission coefficient for these transformations is also
given in Appendix D. In contrast to the case of a single
dielectric medium, this transmission coefficient can contain
poles at specific “resonance” angles which are associated
with waveguide mode§5]. An inspection of Eqs(D2) re-
veals that these poles can only exist in region I, that is, they
necessarily involve the coupling of the dipole radiation into
medium 4 via evanescent waves. The poles correspond to
resonances in the coupling efficientsee Sec. Il B }, and
as such, because of the relation between coupling efficiency
and radiation, may have an important contribution to the di-
FIG. 7. Z dependence of the dipole damping rates in the experipole damping rate when the dipole is near the interface. This
mental geometry of Fig. (&). Total damping ratesl'j, for  contribution decays exponentially as a function of the dipole
|.L -polarized dipolega) and respective contributions of regions I, positionZ, as is characteristic of radiation in region Il.
Il and Il to Iy (b) andI", (c). The features described above are clearly visible in Figs.
8-10, where we illustrate the dipole radiation patterns for
(): O0=b=ml2, (608 7—0 [Figs. §a,b and 9a)] and Z=\, [Figs. &c,d) and
9(b)], and theZ dependence of the dipole damping rates,
respectively. All three figures have been obtained using the
method described in Sec. Il B 1 by considering the wave-
() 7= fe=<b=<m, (600 guide parameters of Ref5] chosen to yield a higl) wave-
guide factor fors-polarized waves having an incidence angle
0,es~63°. As a consequence, the contribution of region Il in
the radiation pattern and damping rate of {heolarized di-
sing,=1/n,. (61) pole becor_nes_ comparable to that of thepol_arized dipole,
as shown in Figs. @) (note the sharp emission peak around
Again, region | involves the far-field interference betweenthe resonance angt.s), 9(a), and 1@b,c). We have verified
plane waves directly emitted into the direction that this feature, which is never observed in the case of a
(0=<6=<m/2,¢) and indirectly emitted into this direction af- Single dielectric mediuntsee, for example, Fig.)7actually
ter reflection off the waveguide structure. The reflection co-2rises from the contribution of waveguide modes.
efficient in the latter case is given in Appendix D. Similarly,
regiqn Il in\_/olves the transformation of evanescent waves in IV. CONCLUSION
medium 1 into propagating waves in medium 4, and region
Il involves the transformation of propagating waves in me- In conclusion, we have addressed the timely issue of the
dium 1 into propagating waves in medium 4. The pertinentmodification of internal atomic dynamics in the vicinity of

(n: w2<sfo<m—6,, (60b)

where 6. is the critical angle for total internal reflection at
the vacuum-waveguide interface, now defined by
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(@

r/rT

(b)

/T,

FIG. 9. Same as Fig. 8, but for a-polarized dipole.(a)
7f(Z2=0). (b) 7 [(Z=N\a). Note the absence of sharp emission 8
peak due to the dielectric waveguide design and to the polarization
of the dipole radiation.

-
o

the interface between a vacuum and a simple or multilayered
dielectric medium. Optical Bloch equations have been de-
rived, taking into account the modifications of spontaneous
emission rates and energy levels experienced by the atom. In
particular, these equations should occasion a more accurate
description of van der Waals energy shifts as measured by
reflection spectroscopyl]. They should also prove useful in  FIG. 10. Z dependence of the dipole damping rates in the case
the emerging field of laser cooling and trapping inside cavi-of Fig. 8. Total damping ratel , for ||, L -polarized dipolega) and

ties designed to modify spontaneous emission. Simple excontributions of regions I, Il, and Il td") (b) andI'; (c).

pressions for the van der Waals energy shifts of alkali atoms

have been obtained, which should be of interest in atomic L

optics. Finally, a simple and powerful method for deriving Dro=Zho X agUq+ a;“; ) (A1)
spontaneous emission rates and radiation pattéise® of a=-1

interest in atom optigshas been presented, which applies to ' o .

both lossless and absorbing media. This method based on tMéereaq anda, are the annihilation and creation operators
Lorentz reciprocity theorem should prove useful genera"y_ associated with the excitation modes of the oscillator along
the u, direction, and wherez,o=evVh/2mw,. As in the
case of an atomic dipol&ec. Il C 3, the relaxation equation
for any observabl&,, 5 of the harmonic oscillator reads
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APPENDIX A: DERIVATION OF THE FORMULA (23 (A2) yields the relaxation equation of the dipole amplitude
Consider a quantum harmonic oscillator of massand d(ay) P
b4

chargee oscillating at the frequency, . The dipole opera-

“ho
. . ; . =T on7 Cylwal(ay)- (A3)
tor of such a system in the interaction representation reads

dt

relax
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the lower-lying dielectric layer. We denote bi,(r) the spa-

tial part of the scattered field, the time dependence of which
is also expf-iwt). The total fieldU is, of course, the sum of
the incident and the scattered fields.

It is well known that under very general conditions the
total field in each of the two half-spaces may be represented
in the form of an angular spectrum of plane waves, both
homogeneous and evanescg?®]. However, since we are
interested only in the fields far from the scatterer, we can
omit the contribution of evanescent waves, and the total field
can be written as, 2™

FIG. 11. Notations used.

ik~ )
Because of the property of the harmonic oscillator mentioned u(r)=- ﬂf H)C(‘)(n)exp(lk‘n- rydQ
in Sec. 1l C 2 and demonstrated [i8], this evolution equa- 7
tion can be cast in the same form as the damping equation of ik~ ) o
the corresponding classical harmonic oscillator. Thus, one +zf D' (mexpik™n-r)dQ, (B1a
also has 7
and in.72":
d(ag) Iy
dt | ejax 2\ ik ]
U(r)=— Ef (7)C<+)(n)exp(|k+n~ rdQ

wherel’,, is the damping rate of elassicaloscillating dipole et

of polarizationu,. By comparing Eqs(A3) and (A4), it is I .

thus possible toqexpress the correlation functions of the quan- + ELMD“)(n)exp(lkm- rde. (B1b

tum electric field in terms of two damping rates,

I=T_,;=I; andI', =Ty, corresponding respectively to In Egs.(B1), n=(ny,n,,n,) are unit vectorsk*=n*w/c

classical dipoles polarized parallel and orthogonal to theare the wave vectors associated with the frequenay half-

z=0 plane[12] space .2~ (c being the speed of lightin vacuog,
dQ)=sinédadg is the element of solid angle generated by the

h? unit vectorn, ando{™) and¢(™) are unit hemispheres in

Cluloal= gﬁHOF‘“ : (A5) space defined as
hence Eq(23). ot n,=0, (B2a)
APPENDIX B: DERIVATION OF THE FORMULA  (55) o7 n,<0. (B2b)

The method presented in Sec. Il B 1 for calculating di- The factorsC(™)(n) andD(*)(n) have the physical signifi-
pole radiation patterns and damping rates relies on(&8).  cance of amplitudes of homogeneous plane waves that
We demonstrate how this formula can be derived frompropagate in different directions either toward the scatterer
Lorentz's reciprocity theorerf3]. We start by establishing [waves with amplitude€(*)(n) andC(~)(n)], or away from
some general results concerning the scattering of scalar waye[waves with amplitude®(*)(n) andD(~)(n)]. However,
fields by any linear scatterer embedded between two lossleggey also have another physical significance, which becomes
dielectric media of refractive indices™ andn™. Following evident when one examines the behavior of the total field far
Ref. [23], generalized reflection and transmission coeffi-from the scatterer. One then finds that as the distardethe
cients for backward- and forward-scattered fields are introfie|d point from the origin(taken within the scattergiin-
duced(Sec. 11B D, and are shown to satisfy a reciprocity creases along any direction specified by the unit veator
relation, which generalizes the one introduced28] for the [23]
particular casen*=n"=1 (Sec. Il B 2. Finally, this reci-
procity relation is used for deriving E¢55) (Sec. 11 B 3. exp(—ik™r) exp(ik*r)

U(ru)~C(—u) ————+D(u) ———
1. Generalized transmission and reflection coefficients (B3)

We consider a monochromatic scalar field
Ei (r,t)=U;,(r)exp(—iwt) incident upon a linear scatterer where the plus or minus signs are taken on the right-hand
situated within the stripz,,<z<z,... The strip is sur- side according to whether the field pointru is located in
rounded by two lossless dielectric media of refractive indiceghe half-spacez” or .72, respectively. EquatiofB3) ex-

n" (half-space z>z,,=7") and n~ (half-space presses the far field in each of the two half-spaces as the sum
z<zmn=2") (see Fig. 11 This situation includes, for ex- of a convergent and a divergent spherical wave with complex
ample, the one considered in this paper where the scatteramplitudesC*) andD(*). This result implies that the inte-
consists of the multilayered dielectric mediand the clas- grals in Eqs.(B1) that contain the spectral amplitudes™)

sical dipole,n™ =1, and wheren™ is the refractive index of represent a field that imcomingat infinity, whereas the in-

(+
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fJ(rn)~ndS=0, (B6)

wheredS=r2d() and the integration is extended to a sphere
o of infinite radius,n being the local outward normal to this
surface. The vectorial quantityin Eq. (B6) is given by

J:UZVU]_—U:LVUZ (B?)

with U; and U, two arbitrary solutions of the Helmoltz
equation

V2U+Kk?U=F(r)uU, (B8)

F(r) being the scattering potential of the scattefer ex-
, ample, for a multilayered dielectric mediuatone character-
ized by the spatial refractive index variatiom(z),
V F(r)=—k?n?(z)—1)]. It is important to note that this theo-
rem holds irrespective of whethé&i(r) is absorbing or not
[23]. In particular, all the results obtained in this paper would
FIG. 12. Significance of, p, 7, andr as generalized transmis- apply identically in situations where some dielectric layers
sion and reflection coefficients. (except the outermost onesavecomplexrefractive indices.
The integral in Eq(B6) can be transformed by distinguish-
tegrals containing the spectral amplitud®§™) represent a ing between the contributions of the hemisphesés) and
field that isoutgoingat infinity. (7). This yields
Finally, following [23] we define generalized transmission

/.

)
n

(t, 7) a}nd reflection K, p) coefficients through the relations f J(+)(rn)-ndﬂ+j I5)(rn)-ndQ=0 (BY)
(see Fig. 12 o) o)
with J&) defined in.%2" as
D(*)(n)z—n’/n+f t(n,n")C)(n")dQ’
ot IH=UHVUE -uFvus. (B10)
—f Hp(n,n’)c(“(n’)dﬂ’, (B4a By substituting into Eq(B9) the asymptotic form of the

field U given by Eq.(B3), then replacing the amplitudd>
by means of the relationd®4), and making use of the arbi-
() — _ N n / trariness olU,; andU,, it is straightforward to show that the
D™ (n) L(Hr(n,n )C(n)d Lorentz theoren(B9) yields the following reciprocity rela-
tions between the generalized transmission and reflection co-

—n*/n*f (7)T(n,n’)C(+)(n’)dQ’, (B4b) efficients:

nt(—n’,—n)=n*r(n,n"), (B11a
where the minus signs and the refractive index ratios in front
of the integrals are included so thatr, r, andp are directly n"r(—n’,—n)=n"t(n,n"), (B11lb
related to the usual transmission and reflection Fresnel coef-
ficients at the interface between the half-spacé$ and p(—=n",—n)=p(n,n"), (Bl1lg
72~ in the absence of scatterer, as expected physically. These
generalized coefficients are defined only for the following r(=n’,—n)=r(n,n’). (B11d

ranges of the components of the unit vectorsandn’
3. Calculation of dipole radiation patterns

t(n,n"): n,>0, n;>0, (B5a) We now return to the problem of radiation by a classical
dipole in the vicinity of a dielectric medium. We first note

r(n,n’): n,<0, n.>0, (B5b) that this problem is equivalent to scattering of an incident
wave by the system consisting of the dielectric medium and

#(nn’): n,<0, ni<o, (B50) an anisotropically polarizable syste(the polarized dipole

Second, we remark that as far as the radiation patterns
2 10(0)=PjP (6,4 7 are concernefthe value of the azi-
muthal angley [P can be readily infered from the definition
of 77 P(6) given in Sec. IlI B 1, this process clearly be-
2. Reciprocity relations longs to scalar scattering theory, provided the incoming
Consider Lorentz’s reciprocity theorem for scalar fieldsfields used in calculating” () are chosen with the ap-
[23] propriate polarizations and azimuthal angles of propagation

p(n,n’): n,>0, n,<O0. (B5d)
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where\ =27 w/c is the optical wavelength ar{dee Fig. 13

dQ,,
a(Nout=+ +Nin=-) = t(Noyt, Nin), (B179
a(Noyt=— »Nin=-) =F(Noyt,Nin), (B17bH
a(Noyt=— Nin=+) = 7(Nout, Nin), (B179
a(Noyt=+ ,Min=+) = p(Noyt,Nin) - (B179

It is well known that the damping of an oscillating dipole
can be interpreted as arising from the work of the dipole on
the field exactly at its location. In other words, the total
power radiated by the dipole is proportional to the imaginary
part of its effective polarizabilitya.:{(Z) (which includes
the influence of the dielectric medium, i.e., the back action

FIG. 13. Notations used.

(this is assumed throughguThis makes it legitimate, on the tting § field reflectionmultiplied by the field int
; ; resulting from field reflectionmultiplied by the field inten-
one hand, to dro_p the subscr_lml;sL and the_superscnpts ity | Z4ip(Z)|? at the dipole location. We can therefore ex-
p in the expressions for the fields and radiated powers, anc dip , . )
on the other hand, to make use of the results obtained in tH¥'€SS the power radiated by the scatterer into the solid angle
preceding sections B 1, B 2, and of the reciprocity relationgﬂoq! in terms of the normalized dipole radiation distribu-
(B11) in particular. tion 7(0) as
Following the preceding remarks, we consider a plan _ e (125

wave of amplitude”;, incident from the half-space?"=* TouNow) = B 1Ml ateq) (= Min)| Zinl /(o). (B18)
and propagating in the direction of the unit vectof—.  wherep is a constant and where tZedependent coefficient
belonging to the hemisphere!~™ scattered into the solid | is defined as in Eqg54). By combining Eqs(B16) and
angled(),; generated by the unit vectox,,.— - belonging  (B18), one then obtains
to the hemisphere(o‘“) (see Fig. 13 In order to connect the )
incident and scattered fields by means of the generalized: 5 p
transmission and reflection coefficierftsee Sec. B) we nTut|a(nout!”in)| =B Im(ag)L(—Nin) ANgyy), (B19
first express the incident field in the form

/ o which is validfor any choice oi;, and ng,. In particular,

Uin(r) = Zinexp(ik " nj, - 1) one can choose
=7 A(n—n;,)expik™n-r)dQ A’ 2
-in g(=in) n ' ﬁiﬁla(_nin a_nout)| =B Im(aetr) L(Noy) 2 —Njp).

(B12) (B20)
where A(n—n;,) is the spherical Dirac delta function de- e now divide Eq(B19) by Eq.(B20), and use the rela-
fined by the formuld23] t
|a(nout’nin)| nOUt

80— 6in) (@0 — @in [a(— i, —noud|
(6= 0in) 30— @in) (B13) (=i, Moy A"

|sing)|

An=nip)= (621

) ] ] ) ] derived from Eqs(B17) and the reciprocity relationd311).
andé is the usual one-dimensional Dirac delta function. Sec-pjs yields

ond, we make use of the asymptotic fork?{r — ) of the

outgoing part of the field scattered into the directigp; [see ANgur) A= Nip) B22
Eq. (B3] L (Nog) ML~y (822
exp(ikou' or equivalentl
Us(rnout)~ D(Om)(nout)¥’ (B14) a Y
A bOour) A Oin)
. = : (B23
to express the powdd ,,(Nyy) dQ, radiated by the scat- N(Oou)L(Gou)  N(6in)L(6in)

in th li e} . i . .
terer in the solid anglel{loy, wheren(6) is defined as in Sec. Il B 1. Because the equality

n — pout| p(out) 2 B15 in Eq. (B23 .ho-lds whatever the anglek, apd Oout, We find
out(Mou) =" (Nouy)| B9 ihat the radiation patters( 0) is necessarily of the form
Finally, by combining Eqs(B12), (B1), (B4), and(B15), we A0)=kn(OL(6 B24
bt 0)=kn(O)L(6), (B24)
\2 where « is a real parameter independent ®but possibly
_N N |2 dependent orZ. As can be readily checked by considering
MoulMouy) nOUtI a(Mout,Min) Zinl (B16) values ofé close tomr, for which/(8) simply represents the
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transmission of free-space dipole radiation through the di- (: L 6) =|t5,]%exp( — 2kZ\n?sir9—1), (C5b)
electric medium 22], the parametek is found to be inde-

pendent oZ and equal to the constant 3/8 hence formula (ny:  Lio)= 1t542, (C50
(55).

(1): LP(&)=|1+ p}exp(2ikZcoss)|*cos’s, (C63
APPENDIX C: Li;f(a) COEFFICIENTS

FOR A SINGLE DIELECTRIC MEDIUM (): LP(6)=t3)%exp(— 2kZ\nsir?6— 1)cog 6,

We derive theL P (6) coefficients for a classical dipole in (Ceb
vacuum located a distancé above a single dielectric me- . _1|4P |2
dium of refractive indexn,. Referring to Eqs(54), &, is (Ih): - LP(6)=[t5°cos’6, (Cé9
incident from above when 6< /2, and from below when
m/2< 0<. In the former case?;, is both directly incident
on the dipole and indirectly incident after a reflection off the PN 4P Zar A o
vacuum-dielectric interface. In the latter cagg, is incident (1D: LE(0)=]t5)%exp(—2kZ\nsin’g 1)S|n20(,c7b)
on the dipole only after a transmission through the interface.
Considering the more general case of an interface between ) Py — 4P [2ci
two dielectric media of indices; and n,, the pertinent (: - LE(6)=[t3sirce, (€79
Fresnel reflection and transmission coefficientsf@ndp  \yhere, = ¢ in region | andéd,= =— @ in regions Il and III.
modes are, respectively,

N,COS, — N,COS, APPENDIX D: CALCULATION OF L§P(6)
(Cla COEFFICIENTS FOR A DIELECTRIC WAVEGUIDE

(D: LP(0)=]1+ pPexp2ikZcow)|?sirts, (C73

S __
P12™ 1 cos, + ncosd,

The calculation oLj'f(6) for a single interfacéAppen-
p _ N2C080; — N1 COY, (C1b dix C) can readily be extended to the case of multiple inter-
P12 1 cosd; + nycosh,’ faces[5]. For example, in going from one interface to two
interfaces(medium 2 boundéd the pertinent Fresnel reflec-

2n,c09, tion and transmission coefficients become
(Clo

t5,= ,
21" n,cosd; + N,cod,

P12t paeXP(2i B7)

- re D1
L 2o, c10 P14 prpaXD(2i Bo) (013
21" n,co99; +n,cosd,’ ,
o tast21eXpli B) D1b
where ¢, and 6, are related by 3217 1+ paopoiexp(2i By) (D1b)
N;Sinf;=n,sing,. (€2 where 8;= w/cn;jl;coss, andl; is the thickness of medium
. . . . i. By iteration, this can be extended to three interfaces, ap-
In our casen; =1, and we identify the regions propriate for a waveguide geometrgmedia 2 and 3
(: 0s6=m/2, (C3g  bounded. Taking care in the iteration sequence, one finds
(): wl2<6<m—6,, (C3b . P12t pa3eXP 2 _Bz) (023
1+ p12p23€XP(21 B2)
(ny:  w—0.<6<m, (C30
t4atz21€XQi B3)
where t4z01= ——. D2b
2 TT XA 21 ) (b2
sing.=1/n, (C9

We note that Eqs(D1) and (D2) are valid for bothTE and
defines the so-called critical angle. A straightforward calcu-TM modes provided they are traced back to the appropriate
lation then obtains: single interface coefficient§Egs. (C1)]. Proceeding then

along the same lines as in Appendix C, the calculation of

(1): Lj(0)=|1+piLxp2ikZcos)|?,  (C53 LiP(6) for a waveguide geometry is straightforward.
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