
Internal dynamics of multilevel atoms near a vacuum-dielectric interface

J.-Y. Courtois
Institut d’Optique The´orique et Applique´e, Boı̂te Postale 147, F-91403 Orsay Cedex, France

J.-M. Courty
Laboratoire Kastler-Brossel, Case 74, Universite´ Pierre et Marie Curie, Ecole Normale Supe´rieure, CNRS,

F-75252 Paris Cedex 05, France

J. C. Mertz
School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853

~Received 20 September 1995!

We show how the internal dynamics of a multilevel atom are modified in the vicinity of the interface
between a vacuum and a simple or multilayered lossless dielectric medium. Optical Bloch equations are
derived, which take into account the modifications of spontaneous emission rates and energy levels experi-
enced by the atom. van der Waals level shifts are evaluated using the method of images for dielectrics.
Spontaneous emission rates and radiation patterns are calculated in a simple way using the Lorentz reciprocity
theorem.
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I. INTRODUCTION

The electromagnetic field surrounding an atom becomes
modified when the atom is located close to a surface. It has
been known theoretically for many years that this affects the
radiation properties of the atom. In particular, the presence of
the surface changes the natural lifetime and the energy of the
atomic levels, as well as the spontaneous emission radiation
distribution. Recent experimental investigations in selective
reflection spectroscopy at an interface between a dielectric
and a dilute vapor of alkali atoms@1# have occasioned a
renewed interest in these effects. From a different standpoint,
the development of atomic mirrors in atomic optics@2# has
drawn attention to so-called evanescent wave mirrors@3#
~obtained by total internal reflection of a laser beam at the
interface between a vacuum and a dielectric medium!, par-
ticularly following the recent experimental demonstration of
evanescent field enhancement by means of surface plasmons
@4# or thin dielectric waveguides@5#. Both experimental situ-
ations~reflection spectroscopy and evanescent wave mirrors!
involve the interaction of multilevel atoms with light at dis-
tances from a vacuum-dielectric interface which are smaller
than or comparable to the optical wavelength. Under such
conditions, it is no longer legitimate to neglect the influence
of the interface on the atomic dynamics. An evaluation of
this influence is, therefore, timely.

In the present introductory study of the optical Bloch
equations for a multilevel atom near a vacuum-dielectric in-
terface, we consider a simple model which can be explicitly
dealt with by elementary calculations. The simplest situation
is that of an infinite space which is filled below the plane
z50 with one or several layers of nonmagnetic, transparent,
homogeneous, isotropic media of widthsl i and refractive
indicesni ~dielectric constante i5ni

2), and which is empty
everywhere above this plane~Fig. 1!. In principle, the indi-
cesni must be considered as complex functions of the optical
frequencyv. Indeed, it is well known that the causality re-
quirement imposes constraints on the allowed form of

ni(v), so that the real and imaginary parts ofni(v)21 are
coupled by Hilbert transform dispersion relations@6#. How-
ever, we make the simplifying assumption that the imaginary
parts of the refractive indices vanish over all frequencies up
to and including the optical region which concerns us, and
only become nonzero at much higher frequencies, say in the
far UV. Under these assumptions, the real parts of the refrac-
tive indices are nearly constant over the frequencies of inter-
est, andni can be treated as a real number. An atom is placed
in vacuo a distanceZ above the surface of the dielectric
medium, where it interacts with a laser field of frequency
vL . This laser is quasiresonant with a closed transition of
the atom connecting its ground stateug& of angular momen-
tum Jg to an excited stateue& of angular momentumJe .

The paper is organized as follows. In Sec. II, we derive a
general form of the optical Bloch equations characterizing
the internal dynamics of a multilevel atom near a vacuum-
dielectric interface. We show that the presence of the inter-

FIG. 1. Schematic representation of the model considered in this
paper. An infinite space consists of a vacuum above the plane
z50, and one or more layers of dielectric media of widthsl i and
refractive indicesni below the planez50. An atom is placed a
distanceZ above the vacuum-dielectric interface.
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face modifies the atom-field coupling in two distinct ways.
First, the energy shifts of the atomic levels result in a space-
dependent frequency detuning between the laser field and the
atomic resonance frequencies. Second, the atomic relaxation
associated with spontaneous emission is significantly modi-
fied. On the one hand, the interface breaks the isotropy of
spontaneous emission and leads to different relaxation rates
depending on the polarization of the atomic dipole moment.
On the other hand, because of the loss of translation symme-
try in the direction orthogonal to the dielectric surface, the
spontaneous emission rates become space-dependent. In Sec.
III, we describe more explicitly two situations of experimen-
tal interest in which multilevel alkali atoms are located close
to a simple vacuum-dielectric interface, or to a multilayered
dielectric waveguide. Using the method of images for dielec-
trics, we evaluate the shifts of the atomic levels in the limit
of small distances from the interface, where they arise essen-
tially from the van der Waals interaction between the atom
and the dielectric medium. Finally, we derive in a simple and
rigorous way the spontaneous emission rates as well as the
radiation patterns for an atom at any distance from the inter-
face, using Lorentz’s reciprocity theorem.

II. OPTICAL BLOCH EQUATIONS

The internal dynamics of an atom interacting with a laser
field are conveniently characterized by a master equation for
its density matrix~optical Bloch equations!. This section is
devoted to the derivation of such an equation in the particu-
lar case where a multilevel atom is located close to the in-
terface between a vacuum and a dielectric medium.

A. General

To begin, we identify the general features of the optical
Bloch equations at an interface. In free space, the master
equation describing the interaction of a single multilevel
atom with a monochromatic laser field is well known@7#.
Basically, its derivation proceeds in two steps. In the first
step, one considers the evolution equation for the total den-
sity matrix of the system constituted by the atom and the
electromagnetic field. In the framework of nonrelativistic
quantum electrodynamics and in the electric dipole approxi-
mation, this equation relies upon the atom-field Hamiltonian

H5H01HR1VAL1VAR . ~1!

The first term on the right-hand side of Eq.~1! is the purely
internal Hamiltonian describing the energy level structure of
thebareatom

H05(
i
Ei u i &^ i u, ~2!

the indexi being short for a complete set of internal quantum
numbers~in the following, we will be mainly interested in
the quantum numbersJ andM , denoting, respectively, the
magnitude and thez component of the total angular momen-
tum!; the second term is the free Hamiltonian of the
Coulomb-gauge quantized electromagnetic field;VAL is the
time-dependent, purely atomic Hamiltonian

VAL~ t !52D•EL~ t !, ~3!

which describes the interaction of the atomic dipoleD with
the laser field assumed to be in a coherent state and therefore
described by aclassicalfunctionEL(t); and the last term,

VAR52D•E, ~4!

represents the coupling between the atom and the reservoir
associated with the vacuum quantum fieldE. We note that in
Eq. ~1!, both fieldsEL(t) andE are evaluated at the location
of the atom. In the second step, the master equation for the
atomic density matrixr is obtained by applying second order
perturbation theory to the atom-reservoir interaction, and by
tracing away the degrees of freedom associated with the res-
ervoir. This yields a dynamical evolution equation where the
influence of the reservoir is manifest through two contribu-
tions. The first, associated with an effective Hamiltonian, de-
scribes the energy shifts undergone by the atomic levels as a
result of their coupling to the vacuum field~Lamb shifts!.
These shifts are traditionally assimilated in the definition of
H0 , yielding the actual internal HamiltonianHA,` . The sec-
ond contribution,ṙ relax,` , represents the dissipation of the
atomic system due to its coupling with the reservoir~spon-
taneous emission!. Finally, the free-space time evolution of
the atomic density matrix takes the form

ṙ5L`r, ~5!

L`r5
1

i\
@HA,`1VAL ,r#1 ṙ relax,` , ~6!

where we have introduced the free-space Liouvillian super-
operatorL` .

We now consider an atom located in the vicinity of a
vacuum-dielectric interface. What are the modifications of
the master equation~5! induced by the lower-lying dielectric
medium? First, because of the new boundary conditions, the
modes of EL(t) and of the quantized electromagnetic
vacuum field are altered and may become evanescent. It is
clear that this does not affect the operatorsH0, HR , and
VAL , which keep the same form as in the free-space case. In
contrast, the structure of the reservoir becomes modified. The
contributions ofVAR to the atom dynamics~energy level
shifts and spontaneous emission rates! are therefore expected
to be different from the free-space situation. Moreover, as a
result of the instantaneous Coulomb interaction between the
atomic and dielectric charges, one expects a supplementary
electrostatic contributionHes to the energy level shifts.Hes
corresponds to the London–van der Waals interaction of the
instantaneous atomic dipole with its image~s! in the dielec-
tric medium. Higher multipoles can be neglected provided
the atomic radius is much less than the distance between the
atom and the dielectric surface~which will always be as-
sumed in this paper!. Finally, denoting by DHA and
ṙ relax,int the modifications of the Hamiltonian and dissipa-
tive parts of the atomic density matrix evolution due to the
interface, one obtains the general form of the optical Bloch
equations in the presence of the dielectric medium

ṙ5L`r1L intr, ~7!
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where

L intr5
1

i\
@DHA ,r#1 ṙ relax,int ~8!

entirely describes the influence of the interface on the atomic
internal dynamics. In particular,L intr tends toward zero
when the atom is far from the dielectric surface. We discuss
the two contributions to Eq.~8! in more detail below.

B. General properties of the interface-induced energy-level
shifts

We first consider the energy shifts undergone by the
atomic levels due to the presence of the lower-lying dielec-
tric medium. Our aim in this section is to describe some
general properties of the level shifts, and to identify their
contributions to the atomic dynamics. We defer the explicit
expressions of these shifts to Sec. III, since they depend on
the particular structure of the atom and of the dielectric me-
dium.

As emphasized above, the interface-induced energy shift
DEi of level u i & results from the interaction Hamiltonian
Hes1VAR . One can thus distinguish two contributions to the
atomic level shifts@8#

DEi5DEes,i1DEAR,i , ~9!

where DEes,i arises fromHes, while DEAR,i arises, in
second-order perturbation theory, fromVAR . In particular,
DEAR,i embodies the effect analogous to the free-space
Lamb shift. BecauseDEes,i andDEAR,i are defined relative
to their corresponding values in free space~the latter being
included in HA,`), both contributions tend towards zero
when the atom is far from the dielectric surface.

Let us now discuss the symmetry properties of the system
under rotations of the internal atomic variables. First, there is
a manifest invariance under rotations about thez axis. The
z component of the total angular momentumM is therefore a
good quantum number. Second, because of invariance under
time reversal, the energy shifts can depend only on the mag-
nitude, but not on the sign, ofM . It then follows from the
preceding considerations that the purely internal effective
HamiltoniansDHes and DHAR associated with the energy
shifts in Eq.~9!, and hence the total HamiltonianDHA asso-
ciated with these shifts, split into a scalar partDHA

(S) and a
quadrupolar partDHA

(Q) @8#:

DHA5DHA
~S!1DHA

~Q! . ~10!

The scalar partDHA
(S) shifts the atomic levels, but does not

lift their Zeeman degeneracy, nor mix energy levels of dif-
ferent angular momentaJ. The quadrupolar partDHA

(Q) ,
which transforms likeY20 under rotations, can in principle
mix atomic levels of the same parity but differentJs ~pro-
vided they differ by at most 2). It turns out that as far as the
fine structure of the atom is concerned, such a mixing is
almost always negligible in experimental situations of inter-
est ~for a more detailed discussion, and for the case of hy-
perfine atomic levels, see Sec. III!. One is therefore mainly
concerned with the effect ofDHA

(Q) inside the Zeeman de-
generacy subspace of a single atomic level, whereDHA

(Q)

does not shift the net average of the Zeeman sublevels, and
produces a splitting pattern which has the same symmetry as
the Stark shifts that would be produced by a fictitious static
electric field parallel to thez axis,

DEi
~Q!}3M22J~J11!. ~11!

The influence of the interface-induced energy level shifts
on the internal atomic dynamics is described by the first term
on the right-hand side of Eq.~8!. The physical implications
of this term become more transparent when distinguishing
between the contributions ofDHA

(S) and DHA
(Q). First, be-

causeDHA
(S) produces a global shift of the energy levels, it

modifies the atomic transition frequency in aZ-dependent
way. As a result, the frequency detuningD between the laser
and the atomic resonance, which plays an important role in
the internal atomic dynamics, becomes space-dependent,

D~Z!5D`1~DEg
~S!2DEe

~S!!/\, ~12!

whereD` denotes the free-space frequency detuning. Sec-
ond,DHA

(Q) lifts the degeneracy between the atomic Zeeman
sublevels, provided, however, that the corresponding energy
state has an angular momentumJ.1/2 @see Eq.~11!#. In
particular,DHA

(Q) does not affect the ground state of alkali-
metal atoms for whichJ51/2 ~this result still holds when
taking into account the hyperfine structure of the atomic en-
ergy states!. Moreover, in situations of practical interest, the
influence ofDHA

(Q) on the frequency detuningD turns out to
be almost always negligible compared to the contribution of
DHA

(S) or to the free-space frequency detuning. Finally, al-
though we do not address the issue of external atomic dy-
namics in this paper, it is interesting to note that the
interface-induced level shifts can manifest themselves in the
atomic motion through a modification in the force experi-
enced by the atomic center of mass~a point which is of great
interest in the field of atom optics!. This is because on the
one hand, the radiative force arising from the laser field is
modified through theZ-dependent frequency detuningD,
and on the other hand, because the spatial variation of the
energy levels leads to additional forces, such as van der
Waals or Casimir forces.

C. Master equation treatment of spontaneous emission
We next consider the relaxation processes undergone by

the atom as a result of its coupling with the vacuum quantum
field. As is well known, these processes are conveniently
described by a master equation for the atomic density matrix.
In this section, we derive such an equation, taking into ac-
count the presence of the lower-lying dielectric medium. In
particular, we show that the knowledge of the damping rates
of two classicaloscillating dipoles polarized parallel and or-
thogonal to thez50 plane is sufficient to completely char-
acterize the atomic relaxation associated with spontaneous
emission.

1. Atom–quantum-field coupling

As stated above, the coupling between the atom and the
quantized electromagnetic field~which is responsible for
spontaneous emission! is described by the Hamiltonian
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VAR52D•E. The atomic dipole operatorD changes sign
under parity, and therefore has only zero matrix elements
inside the Zeeman degeneracy subspaces of both the ground
and excited states. Furthermore, becauseug& and ue& have
well-defined angular momenta, it is possible following the
Wigner-Eckart theorem to writeD in terms of a dimension-
less, reduced dipole operatord,

D5D•d, ~13!

whose matrix elements contain the Clebsch-Gordan coeffi-
cients associated with the addition of the angular momenta
11Jg→Je . In Eq. ~13!, D is a real number characterizing
the electric dipole moment amplitude of the atomic transi-
tion. Denoting byPg andPe the projection operators on the
ground and excited states, respectively, we decompose the
reduced dipole operator as

d5PedPg1PgdPe5d11d2 ~14!

and we expandd1 and d25(d1)† onto the standard basis
$u6157(ex6 iey)/A2,u05ez% ~whereex,y,z are the unitary
vectors associated with the Cartesian coordinate system!,

dq
15d1

•uq5~dq
2!†. ~15!

The matrix elements ofdq
1 are then given by the simple

expression

K JeMe Udq1uJgMg&5^Jg 1MgquJeMeL , ~16!

where ^Jg 1MgquJeMe& is the Clebsch-Gordan coefficient
connecting the Zeeman sublevelsuJgMg& and
uJeMe5Mg1q&. Finally, using the rotating-wave approxi-
mation, the interaction HamiltonianVAR takes the more ex-
plicit form

VAR52D (
q521

1

dq
1Eq

11dq
2Eq

2 , ~17!

where

E15 (
q521

1

Eq
1uq5~E2!† ~18!

is the positive-frequency component of the electric field op-
erator.

2. Relaxation equation for an arbitrary atomic observable
We now consider the effect of the atom-field coupling

~17! on the time evolution of an arbitrary internal atomic
observableS. Since we are not interested in the free evolu-
tion of the system, we turn to the interaction representation
associated with the individual Hamiltonians of the atom and
the field. It is well known that the relaxation processes un-
dergone by the atom are then determined by the correlation
functions of the electric field at the position of the atom

Cqq8
ss8@v#5E dteivt^Eq

s~ t1t!Eq8
s8~ t !&, ~19!

where ^ & denotes the average in the vacuum state of the
electromagnetic field,s,s856, and q,q850,61. In our
case, the correlation functions~19! can be expressed in terms
of a small number of independent parameters. First, the
positive-frequency component of the electric field operator
only involves photon annihilation operators. Second, in the
case we are studying here, the system is invariant under ro-
tations about thez axis, leading to further simplifications. As
a result, one gets

Cqq8
ss8@v#5Cq@v#dq,q8ds,1ds8,2 ~20!

and

C215C1[Ci ,

C0[C' . ~21!

Note that contrary to the free-space situation, where
C215C05C1 , the fluctuation spectrum of the vacuum is
determined here by two different quantitiesCi andC' . This
is a consequence of the vacuum isotropy breaking induced
by the presence of the semi-infinite dielectric medium. As-
suming a white noise fluctuation spectrum for the vacuum
field, or more precisely a spectrum whose variations around
the atomic resonance frequency are negligible, it is then pos-
sible using the Markov approximation to derive the relax-
ation equation for the expectation value^S&5tr@rS# of any
atomic observableS @9#,

d^S&
dt

U
relax

52
D2

2\2(
q

Cq@vA#^dq
1dq

2S1Sdq
1dq

2

22 dq
1Sdq

2&, ~22!

where vA is the free-space atomic resonance frequency.
Equations~16! and~22! indicate that for a given atomic tran-
sition, the relaxation equation of any atomic observable is
completely characterized by the component of the vacuum
fluctuation spectrum at the atomic transition frequency@10#.

As is well known, the derivation of the functions
Cq@vA# can be carried out from the radiation reaction view-
point which only involvesclassical electrodynamics@11#.
The somewhat surprising fact that quantities such as
Cq@vA#, which are quantum in nature, can be rigorously
derived in the framework of classical theory can be under-
stood as follows. First, the relaxation of the atomic dipole
involves the vacuum fluctuation spectrum only at the atomic
resonance frequencyvA , irrespective of any other atomic
energy states. In fact, thesamecoefficientsCq@vA# intervene
in the relaxation of any quantum dipole of oscillation fre-
quencyvA . Specifically, this is the case for the relaxation of
a quantum harmonic oscillator of oscillation frequencyvA .
Second, it is known that in the case of a harmonic oscillator
linearly coupled to a harmonic reservoir, the evolution equa-
tion for the average value of the dipole operator isidentical
to that of the corresponding classical system@9#. It is there-
fore possible to connect the quantitiesCq@vA# to the damp-
ing rates of properly chosenclassical oscillating dipoles,
which can be calculated in the framework of classical elec-
trodynamics. This argument is made more rigorous and
quantitative in Appendix A, where it is shown that
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Cq@vA#5
\2

D 2Gq . ~23!

In Eq. ~23!, Gq is the damping rate of a classical dipole with
polarizationuq , massm, chargee, and oscillation frequency
vA , these parameters being related to the atomic dipole ma-
trix elementD by

e2

m
5
2vA

\
D 2. ~24!

Finally, combining Eqs.~22! and ~23!, one finds that the
quantum relaxation equation of an arbitrary atomic observ-
ableS can be expressed rigorously in terms of the classical
damping ratesGq ,

d^S&
dt

U
relax

52(
q

Gq

2
^dq

1dq
2S1Sdq

1dq
222 dq

1Sdq
2&. ~25!

It is important to note that this technique for deriving the
quantum relaxation equation of an atomic observable from
the damping rate of classical oscillating dipoles is general
and holds for other situations than the one considered in this
paper~different geometry of the problem or different state of
the electromagnetic field!.

3. Relaxation equation for the atomic density matrix

The total contributionṙ relax5 ṙ relax,`1 ṙ relax,int of spon-
taneous emission to the time evolution of the atomic density
matrix can be readily derived from the preceding results.
Considering two arbitrary Zeeman sublevels of the ground or
the excited state of the atom,a andb, the matrix element
^auṙ relaxub& follows straightforwardly from Eq.~25! with
the particular choiceSab5ub&^au. Distinguishing between
the four blocksrab5ParPb ~with a,b5e,g) of the atomic
density matrix

r5S rgg rge

reg ree
D , ~26!

one obtains the master equation associated with spontaneous
emission

dree
dt

U
relax

52 (
q521

1
Gq

2
$dq

1dq
2 ,ree%, ~27a!

dreg
dt

U
relax

52 (
q521

1
Gq

2
~dq

1dq
2!reg , ~27b!

drgg
dt

U
relax

5 (
q521

1

Gqdq
2reedq

1 , ~27c!

where $A,B%5AB1BA denotes the anticommutator be-
tween operatorsA and B, and where the equation forrge
follows from Eq. ~27b! and the relationrge5(reg)

†. It is
important to note that the simple form of Eqs.~27! is asso-
ciated with the particular choice ofz as the directionor-
thogonalto the vacuum-dielectric interface, and with the cor-
responding definition of the standard basisuq . Furthermore,
as expected, in the limiting casez→` where the atom is

infinitely far from the interface, the ratesGq reduce to their
common free-space valueG` , and Eqs.~27! transform into
their usual free-space expressions@7#,

dree
dt

U
relax

→
dree
dt

U
relax,`

52G`ree, ~28a!

dreg
dt

U
relax

→
dreg
dt

U
relax,`

52
G`

2
reg , ~28b!

drgg
dt

U
relax

→
drgg
dt

U
relax,`

5G` (
q521

1

dq
2reedq

1 ~28c!

~making use of the relation(q521
1 dq

1dq
25Pe).

The physical interpretation of Eqs.~27! is particularly
simple when working in the eigenbasis ofM (z basis!. The
excited state operatorsdq

1dq
2 are purely diagonal in this basis

@see Eq.~16!#, with matrix elements equal to the square of
the Clebsch-Gordan coefficients characterizing the coupling
of the excited state Zeeman sublevels with auq-polarized
light. Consequently, as shown in Eq.~27a!, the time evolu-
tion of the population of the excited state subleveluJeMe&
due to spontaneous emission corresponds to a pure damping
process characterized by the relaxation rate

GJe ,Me
5 (

q521

1

GqK Jg 1Mgq UJeMeL 2. ~29!

A similar result is found for the Zeeman coherences between
two excited state sublevels@Eq. ~27a!# and for optical coher-
ences between an excited state and a ground state Zeeman
sublevel@Eq. ~27b!#, with a damping rate equal to the aver-
age of the relaxation rates of the corresponding populations.
The presence of three terms in Eq.~29! reflects the fact that
the excited state Zeeman sublevels can decay towards the
ground state via three channels. These channels are associ-
ated with spontaneous emission of auq-polarized photon and
are characterized by a rate equal to the product ofGq and the
square of the Clebsch-Gordan coefficient of the correspond-
ing transition~see Fig. 2!. It is important to note that contrary
to the free-space situation, the lifetime of the different ex-
cited state Zeeman sublevels are different here, as a result of
relaxation ratesGq . Finally, Eq.~27c! describes the feeding
of the ground state Zeeman sublevels by the excited state as
a result of spontaneous emission.

One might conclude from the preceding discussion that
Eqs.~27! behave much the same as in free space, except for
the differences in the lifetimes of the excited state Zeeman
sublevels. Such a conclusion isnot correct. In particular, the
fact that Eqs.~27! only couple populations to populations
and coherences to coherences holds in thez basis only. For
example, working in they basis, one can readily show that
thepopulationsof the excited state sublevels appear as feed-
ing terms for some Zeemancoherencesof the ground state~a
property related to the isotropy breaking of the vacuum in-
duced by the dielectric medium!. One thus finds that the
presence of the vacuum-dielectric interface modifies the
atomic internal dynamics in both a quantitative and a quali-
tative way as compared to the case of an atom in free space.
It is important to emphasize that such a result is characteris-
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tic of amultilevelatom. In the case of a two-level system, the
interface indeed reduces to a simple quantitative modifica-
tion of the excited state lifetime, so that no qualitatively dif-
ferent physical phenomena are expected.

D. Optical Bloch equations

The optical Bloch equations describing the internal dy-
namics of an atom interacting with laser light in the vicinity
of a vacuum-dielectric interface are readily obtained in the
Markov approximation by adding the above-described con-
tributions of the reservoir to those of the laser field. Return-
ing to the Schro¨dinger picture and using the rotating wave
approximation, this yields

ṙee52 (
q521

1
Gq

2
$dq

1dq
2 ,ree%1

1

i\
@DHe ,ree#

2
1

i\
@D1

•EL
1r̃ge2 r̃egD

2
•EL

2#, ~30a!

.
r̃eg52 (

q521

1
Gq

2
~dq

1dq
2!r̃eg1 i S D`1

DHg2DHe

\ D r̃eg

2
1

i\
@D1

•EL
1rgg2reeD

1
•EL

1#, ~30b!

ṙgg5 (
q521

1

Gqdq
2reedq

11
1

i\
@DHg ,rgg#

2
1

i\
@D2

•EL
2r̃eg2 r̃geD

1
•EL

1#, ~30c!

where

DHb5PbDHAPb ~b5e,g! ~31!

denote the effective Hamiltonians associated with the
interface-induced energy level shifts,EL

1 ~EL
2) is the posi-

tive ~negative! frequency part of the monochromatic laser
electric field

EL~ t !5EL
1exp~2 ivLt !1EL

2exp~ ivLt !, ~32!

and where

r̃eg5rege
ivLt5 r̃ge

† ~33!

is the expression of the optical coherences in the so-called
rotating frame. Note that in most experimental situations, it
is a good approximation to replace the second term on the
right-hand side of Eq.~30b! with the simpler oneiD(Z) r̃eg
~see Sec. II B!.

III. QUANTITATIVE DERIVATION OF ENERGY SHIFTS,
SPONTANEOUS EMISSION RATES,

AND RADIATION DIAGRAMS

As shown in the preceding section, the internal dynamics
of a multilevel atom interacting with a quasiresonant laser
field in the vicinity of a vacuum-dielectric interface are en-
tirely determined, on the one hand, by the atomic level shifts,
and, on the other hand, by the damping rates of a classical
oscillating dipole polarized parallel or orthogonal to the in-
terface. Several techniques for evaluating these parameters
can be found in existing literature; however, they are occa-
sionally impractical for given experimental geometries, or
inadequate for the case of multilevel atoms. This section pre-
sents guidelines particularly adapted to the situation of alkali
atoms located close to a single dielectric medium@Fig. 3~a!#
or a dielectric waveguide@Fig. 3~b!#, both of which are of
current experimental interest@1,5#.

A. London–van der Waals energy shifts

The calculation of energy level shifts at a vacuum-
dielectric interface has been considered by several authors
~see, for example,@13,14# and references therein!. In this
section, we restrict ourselves to the energy shifts in the im-
mediate vicinity of the interface (Z,|A5c/vA), where they
take their largest values. In this region, the level shifts arise
essentially from the London–van der Waals interaction,
hence~see Sec. II!

DHA'DHes. ~34!

The effective Hamiltonian associated with the level shifts
can thus be derived in the framework ofelectrostaticstheory
using the method of images for dielectrics@15#. In this ap-
proach, the component of the electric field of the atomic
dipoleD i (D') reflected by the dielectric medium back onto
the location of the atom appears to arise from an ensemble of
one or more effective dipoles D i ,n5di ,nD i
(D',n52d',nD') located at positionszn . Combining these,
one obtains@16#

FIG. 2. Radiative damping of the excited-state populations. The
excited-state Zeeman sublevelue,m& can decay towards the ground
state via three channels. These channels are associated with spon-
taneous emission of auq50,61-polarized photon and are character-
ized by a rate equal to the product ofGq and the squarecq of the
Clebsch-Gordan coefficient corresponding to the transition.~a! In
free space,Gq50,615G` , hence all the excited-state sublevels have
the same lifetime.~b! In the presence of a vacuum-dielectric inter-
face,Gq561ÞGq50 , hence the sublevels have different lifetimes.
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DHes5
1

8pe0
(
n

D i
2di ,n12D'

2d',n

uZ2znu3
. ~35!

We now evaluate the coefficientsdi ,n and d',n and the
London–van der Waals HamiltonianDHes for the two ex-
perimental geometries of Fig. 3.

1. Single dielectric medium

In the geometry of Fig. 3~a!, there is a single homoge-
neous dielectric medium in the regionz,0, and the reflected
electric field is correspondingly described by a single effec-
tive dipole located at position2Z, of amplitude@17#

di5d'5
12e2
11e2

, ~36!

wheree2 is the dielectric constant of medium 2. This yields
the well-known van der Waals interaction Hamiltonian

DHes52
e221

e211

1

64pe0

D i
212D'

2

Z3
. ~37!

2. Dielectric waveguide

The geometry of Fig. 3~b! is more complicated because
the atomic dipole electric field is multiply reflected by the
different interfaces of the multilayered dielectric medium. To
remain consistent with our electrostatic assumption, we ne-
glect the contribution of multiply reflected fields propagating
over distances significantly larger than|A . In the case of the
dielectric waveguides used in atom optics@5#, the thickness
l 2 of the dielectric layer 2 is a small fraction of the optical
wavelengthlA52p|A whereas that of layer 3,l 3 , is of
order lA . We therefore neglect reflections at the interface
between media 3 and 4@see Fig. 3~b!#, or equivalently set
e45e3 . It is then straightforward to show that the field at the

location of the atomic dipole resulting from multiple reflec-
tions inside medium 2 is described by the following infinite
ensemble of image dipoles:

d05a12, ~38a!

z052Z, ~38b!

dn>15
12a21

2

a21
~a21a23!

n, ~39a!

zn>152Z22nl2 , ~39b!

where

a i j5
e i2e j
e i1e j

. ~40!

These expressions apply to bothdi ,n andd',n . Combining
Eqs. ~38! and ~39! with ~35! yields the expression of the
Hamiltonian describing the London–van der Waals interac-
tion between the atom and the dielectric waveguide

DHes52
D i
212D'

2

64pe0
S a21

Z3
1

a21
2 21

a21
(
n51

`
~a21a23!

n

~Z1nl2!
3D . ~41!

The first term inside the parentheses is analogous to expres-
sion ~37! and corresponds to the London–van der Waals in-
teraction between the atomic dipole and medium 2 alone.
This is the leading contribution asZ approaches zero. The
second term in Eq.~41! stems from the presence of the in-
terface between media 2 and 3. We note that in practical
situations the generic term of the sum is a rapidly decreasing
function of n, so that in effect the infinite sum reduces to a
small number of terms, and the electrostatic assumption re-
mains legitimate. In the situation of interest in atom optics
@5#, wheree2.e3 and e2.e1 , the second term in Eq.~41!
represents a nonalternating series summation which can be-
come quite significant. This is because in this event, medium
2 confines the dipole field and serves as an effective wave-
guide, resulting in a field enhancement near its interfaces.
Another limiting case of interest is that of a vanishing dielec-
tric waveguide, or more generallyl 2 /Z→0. In this case, Eq.
~41! takes the simple form

DHes'2
D i
212D'

2

64pe0
S a31

Z3
1
3 l 2
Z4

a23~12a21
2 !

~12a21a23!
2D , ~42!

whose leading term now corresponds to the interaction po-
tential between the atomic dipole and medium 3 alone, as
expected physically.

FIG. 3. Experimental geometries considered for the quantitative
derivation of energy shifts, spontaneous emission rates, and radia-
tion patterns.~a! A single interface separates the vacuum~medium
1) and a semi-infinite dielectric medium 2 of refractive indexn2 .
~b! A dielectric waveguide consisting of two dielectric layers 2 and
3 of thicknessesl 2 and l 3 , respectively, is deposited on a semi-
infinite dielectric medium 4.

TABLE I. Values of the effective principal quantum number
n* for the ground state and first excited states of sodium, rubidium,
and cesium~after Ref.@18#!.

s p

Na 1.627 2.117
Rb 1.805 2.293
Cs 1.869 2.362
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3. Matrix elements of the London–van der Waals interaction
potential

(a) General. As is manifest in Eqs.~37! and~41!, the van
der Waals energy shifts are determined, on the one hand, by
experimental parameters~refractive indices, thickness of the
dielectric layers!, and, on the other hand, by the purely inter-
nal operator

W5D i
212D'

25e2~xe
21ye

212ze
2!, ~43!

wheree is the electron charge andxe , ye , ze are the Carte-
sian coordinates of the electron in the atomic center-of-mass
frame. In order to calculate the matrix elements of the opera-
torW we distinguish, following the symmetry arguments of
Sec. II B, between the scalar partW(S) and the quadrupolar
partW(Q) of W

W5W~S!1W~Q!5e2S 43 r e21 1

3
r e
2QD , ~44!

where

Q5A16p

5
Y20~u,f! ~45!

is independent of the electron-atomic nucleus distance
r e5Axe21ye

21ze
2. The London–van der Waals energy level

shifts are thus entirely determined by the matrix elements of
the operatorsr e

2 andQ.
(b) Fine structure. Let us first consider the fine structure

of alkali atoms. In most cases of experimental interest, the
van der Waals energy shifts are much smaller than the fine
splitting between the atomic energy levelsu i &5un,l ,J,M &,
and can therefore be calculated using first order perturbation
theory. One thus has

DEi}^n,l ,J,M uWn,l ,J,M & ~46!

and the energy level shifts can be readily evaluated by com-
bining Eq.~44! and the relations@8#

^n,l ,J,M ur e
2un,l ,J,M &5^n,l ur e

2un,l &

'a0
2ni*

2 5ni*
2
1123l ~ l11!

2
, ~47!

^n,l ,J,M uQun,l ,J,M &5~21!M11/22 ~2J11!

3S J J 2

1/2 21/2 0D
3 j

3S J J 2

2M M 0D
3 j

, ~48!

wherea0 is the Bohr radius,ni* denotes the effective princi-
pal quantum number of the atomic levelu i &, and (•••)3 j is a
3 j Wigner coefficient. The values ofni* associated with the
ground state and first excited states of alkali atoms are well
known and provide accurate estimates of^ i ur e

2u i & through Eq.
~47! @18#. They are given in Table I for the ground state
(s) and the first excited state (p) of sodium, rubidium, and
cesium.

(c) Hyperfine structure.Let us now consider the hyper-
fine structure of the alkali energy spectra. When the atom-
dielectric distance is sufficiently large that the London–van
der Waals energy shifts are small compared to the hyperfine
splitting of the atomic levels, then the energy shifts can again
be calculated using first order perturbation theory, as above.
However, when the atom gets closer to the vacuum-dielectric
interface, the London–van der Waals energy shifts eventu-
ally become comparable to or even larger than the hyperfine
splitting, so that a coupling between the hyperfine sublevels
of a same magnetic quantum numberm can take place
through the quadrupolar part of the London–van der Waals
coupling. In such a case, it becomes necessary to diagonalize
the restriction of operatorQ to the corresponding hyperfine
subspace. Both situations can be treated straightforwardly
using the relations@8,19#

^n,l ,J,I ,F,M ur e
2n,l ,J,I ,F,M &5^n,l ur e

2un,l &'a0
2ni*

2 5ni*
2
1123l ~ l11!

2
, ~49!

^n,l ,J,I ,F,M uQun,l ,J,I ,F8,M &5~21!2J1I2M21/22 ~2J11!A~2F11!~2F811!

3S J J 2

1/2 21/2 0D
3 j

H F F8 2

J J I J
6 j

S F F8 2

2M M 0D
3 j

, ~50!

whereI denotes the nuclear spin of the atom, and$ %6 j is a
6 j Wigner coefficient.

B. Dipole damping rates and radiation patterns

The damping rates of classical oscillating dipoles located
in the vicinity of a dielectric medium have been calculated

and discussed for many years@20–22#. In addition, the di-
pole radiation patterns, which are also experimentally mea-
surable, have been derived in the case of a single dielectric
interface@22#. In this section, we present a simple and pow-
erful method for deriving these quantities in more general
situations. The method is based on Lorentz’s reciprocity
theorem@23#, and allows one to simultaneously calculate the
radiation patterns and the damping rates of classical dipoles.
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It applies in the same straightforward way to the case of a
single or a multilayered dielectric medium, and to the case of
lossless or absorbing media. For the sake of clarity of pre-
sentation, we first describe the principle of the method~Sec.
III B 1 ! and defer its derivation to Appendix B. The method
is applied to the case of a single dielectric medium, where it
is shown to yield the same results as in@22# ~Sec. III B 2!,
and also to the case of a dielectric waveguide for which the
dipole radiation patterns and damping rates are obtained for
the first time~Sec. III B 3!.

1. Principle of the method
We consider the angular distribution of the radiation emit-

ted by a classical oscillating dipole located in vacuum a dis-
tanceZ above a single or multilayered dielectric medium
~see Fig. 1!, and polarized either parallel (i) or perpendicular
(') to the vacuum-dielectric interface. We look for analyti-
cal expressions for the normalized~time-averaged! power
Pi ,'(u,w) radiated into the direction (u,w) in the differential
solid angledV5sinududw, whereu andw are the canonical
spherical coordinates. The normalization is chosen so that
the integration ofPi ,'(u,w) over all space gives

E Pi ,'~u,w!dV5G i ,'~Z!/G` , ~51!

whereG i ,'(Z) andG` are the damping rates with and with-
out an interface, as defined in Sec. II C and Appendix A. In
the geometries considered in this paper, the derivation of the
radiation patternsPi ,'(u,w) involves the calculation of three
quantities that are independent of the azimuthal anglew.
First, in the case of a'-polarized dipole the radiation con-
sists only of plane waves polarized parallel to their propaga-
tion planes (p or TM waves!, and the radiation pattern is
independent ofw because of azimuthal symmetry; hence

P'~u,w![P '
p ~u!. ~52!

Second, in the case of ai-polarized dipole, we definew50
as the dipole polarization direction, and the radiation pattern
takes the form

Pi~u,w!5cos2wP i
p~u!1sin2wP i

s~u!, ~53!

whereP i
p(u) denotes the radiation distribution of the wave

components that arep-polarized, and whereP i
s(u) denotes

the radiation distribution of the wave components that are
polarized perpendicular to their propagation planes (s or
TE waves!. In other words,P i

p(u) is the distribution of the
total radiation emitted in thew50 plane, andP i

s(u) is the
distribution of the total radiation emitted in thew5p/2
plane.

The basic principle of the method for deriving the radia-
tion patterns (P '

p , P i
p , and P i

s) is that the outgoing
power emitted by the dipole in the direction (u,w) can be
calculated by considering an incoming wave propagating
from infinity in the opposite direction (p2u,w1p). In gen-
eral, and depending on its direction of origin, this incoming
wave can undergo multiple reflections and/or transmissions
at the various dielectric interfaces it encounters before it is
incident on the dipole. We separately consider incoming

p-polarized waves, of amplitudeE in
p , and incoming

s-polarized waves of amplitudeE in
s . These result inp and

s polarized electric fields at the dipole location,Edip
p and

Edip
s , respectively. We denote byE i

p,s andE '
p,s the projec-

tions ofE dip
p,s onto the directions parallel and perpendicular

to the interface (E'
s is, of course, zero!. We further define the

‘‘coupling’’ efficiencies between incoming and incident
fields as

L i ,'
p ~u!5UE i ,'

p ~Z!

E in
p U2 ~54a!

and

L i
s~u!5UE i

s~Z!

E in
s U2. ~54b!

Then, according to the Lorentz reciprocity theorem~derived
in Appendix B!, the outgoing power of a radiating dipole can
be directly calculated from the incoming ‘‘coupling’’ effi-
ciencies through the simple relations

P i ,'
s,p~u!5

3

8p
n~u!L i ,'

s,p~u!, ~55!

wheren(u) denotes the index of refraction of the outermost
dielectric layer located in the directionu @in particular,
n(u)51 for 0<u<p/2#.

It is important to note that this way of deriving dipole
radiation patterns, and consequently dipole damping rates
@see Eq.~51!#, presents four important advantages. First, it
relies on only elementary calculations because the derivation
of the coefficientsL i ,'

s,p(u) involves only Fresnel transmis-
sion and reflection coefficients at dielectric interfaces@24#.
Second, it applies in exactly the same way for lossless and
absorbing dielectric media~see Appendix B!. Third, it pro-
vides a direct physical insight into theZ dependence of the
dipole radiation patterns and damping rates because it intrin-
sically identifies the contributions of the different emission
angles and ofs and p waves. Fourth, the relation between
dipole radiation and field coupling efficiency provides a very
intuitive understanding of the radiation pattern characteris-
tics. In particular, radiation by a dipole will predominantly
occur in the output directions associated with strong cou-
pling efficiencies for the corresponding incoming fields.

2. Case of a single dielectric medium
As a first illustration of the method, we consider the

simple case of a dipole located above a single dielectric me-
dium of refractive indexn2 @case of Fig. 3~a!#. As previously
emphasized by Lukosz and Kunz@22#, it is convenient to
distinguish between three different regions in the dipole ra-
diation patterns~Fig. 4!. The first region~I!, corresponding to
radiation emission into the vacuum (0<u<p/2), is charac-
terized for a given direction (u,w) by an interference be-
tween the plane wave directly emitted in the direction
(u,w) and the reflected portion of the plane wave initially
emitted in the direction (p2u,w). This interference, appar-
ent in the expressions ofL i ,'

s,p(u) @see Eqs.~C5 a!, ~C6a!, and
~C7a! is responsible for the oscillating behavior of the dipole
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damping rates as a function ofZ ~see Fig. 7!. The second
region~II ! corresponds to radiation emission into the dielec-
tric medium at angles exceeding the critical angleuc ~defined
by sinuc51/n2). Radiation into this region
(p/2<u<p2uc) originates from evanescent waves in the
dipole’s near field that are transformed by the interface into
propagating plane waves in the dielectric medium. We note
the exponential decay of this emission as a function ofZ in
expressions~C5b!, ~C6b!, and ~C7b!. The dipole damping
rates are usually dominated by this emission contribution for
small Z. Finally, the third region~III ! corresponds to radia-
tion emission into the dielectric medium at angles smaller
than the critical angleuc (p2uc<u<p). It consists of
propagating plane waves emitted by the dipole that are par-
tially transmitted into the dielectric medium, and is indepen-
dent ofZ @see Eqs.~C5c!, ~C6c!, and~C7c!#.

The dipole radiation patterns derived from expression
~55! and the coefficientsL i ,'

s,p(u) of Appendix C are illus-
trated in Figs. 5 and 6 forn251.5 andZ50 @Figs. 5~a,b! and
6~a!# andZ5lA @Figs. 5~c,d! and 6~b!#. Note the sharp emis-
sion peak around the critical angle, and the rapid decay of
region II of the radiation pattern as the dipole is removed
from the vacuum-dielectric interface. TheZ dependence of
the dipole damping rates obtained from Eq.~51! is illustrated
for the same parameters in Fig. 7, where qualitative differ-
ences in the contributions of the three regions of the radia-

tion pattern are apparent. It is important to note that all our
results are obtained directly from the coefficientsL i ,'

s,p(u)
and are strictly identical to those derived previously@20–22#
using other techniques. In particular, an analytical expression
for the dipole damping rates can be readily obtained by in-
spection of Eqs.~51!, ~C5!, ~C6!, and ~C7!. Using elemen-
tary algebra, it can be expressed in the compact form@21#

G'~Z!5G`F11
3

2
ReE

0

` u3du

A12u2
rp~u!exp~2ikZA12u2!G ,

~57!

G i~Z!5G`F11
3

4
ReE

0

` udu

A12u2

3@rp~u!1~u221!rs~u!#exp~2ikZA12u2!G ,
~58!

with the appropriate Fresnel reflection coefficients forp and
s waves

rp~u!5
n2
2A12u22An222u2

n2
2A12u21An222u2

, ~59a!

rs~u!5
A12u22An222u2

A12u21An222u2
. ~59b!

3. Case of a multilayered dielectric medium
We now consider the situation of Fig. 3~b! where the di-

pole is located above a dielectric waveguide. As in the pre-
ceding case, we distinguish between three regions of the di-
pole radiation pattern

FIG. 4. Regions I, II, and III of the dipole radiation patterns
corresponding to radiation into the vacuum~I!, or into the lower-
lying dielectric medium at angles larger~II ! or smaller~III ! than the
critical angleuc .

FIG. 5. Polar radiation pattern of ai-polarized dipole located a
distanceZ above a single dielectric medium of refractive index
n251.5. ~a! P i

p(Z50). ~b! P i
s(Z50). ~c!P i

p(Z5lA). ~d!
P i

s(Z5lA). All four diagrams have the same scale. The dashed line
corresponds to the boundary between regions II and III of the ra-
diation diagrams~i.e., the critical angleuc). Note the rapid decay of
region II as the dipole is removed from the vacuum-dielectric inter-
face.

FIG. 6. Same as Fig. 5, but for a'-polarized dipole.~a!
P i

p(Z50). ~b! P i
p(Z5lA).
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~ I!: 0<u<p/2, ~60a!

~ II !: p/2<u<p2uc , ~60b!

~ III !: p2uc<u<p, ~60c!

whereuc is the critical angle for total internal reflection at
the vacuum-waveguide interface, now defined by

sinuc51/n4 . ~61!

Again, region I involves the far-field interference between
plane waves directly emitted into the direction
(0<u<p/2,w) and indirectly emitted into this direction af-
ter reflection off the waveguide structure. The reflection co-
efficient in the latter case is given in Appendix D. Similarly,
region II involves the transformation of evanescent waves in
medium 1 into propagating waves in medium 4, and region
III involves the transformation of propagating waves in me-
dium 1 into propagating waves in medium 4. The pertinent

transmission coefficient for these transformations is also
given in Appendix D. In contrast to the case of a single
dielectric medium, this transmission coefficient can contain
poles at specific ‘‘resonance’’ angles which are associated
with waveguide modes@5#. An inspection of Eqs.~D2! re-
veals that these poles can only exist in region II, that is, they
necessarily involve the coupling of the dipole radiation into
medium 4 via evanescent waves. The poles correspond to
resonances in the coupling efficiency~see Sec. III B 1!, and
as such, because of the relation between coupling efficiency
and radiation, may have an important contribution to the di-
pole damping rate when the dipole is near the interface. This
contribution decays exponentially as a function of the dipole
positionZ, as is characteristic of radiation in region II.

The features described above are clearly visible in Figs.
8–10, where we illustrate the dipole radiation patterns for
Z50 @Figs. 8~a,b! and 9~a!# and Z5lA @Figs. 8~c,d! and
9~b!#, and theZ dependence of the dipole damping rates,
respectively. All three figures have been obtained using the
method described in Sec. III B 1 by considering the wave-
guide parameters of Ref.@5# chosen to yield a high-Q wave-
guide factor fors-polarized waves having an incidence angle
u res'63°. As a consequence, the contribution of region II in
the radiation pattern and damping rate of thei-polarized di-
pole becomes comparable to that of the'-polarized dipole,
as shown in Figs. 8~a! ~note the sharp emission peak around
the resonance angleu res), 9~a!, and 10~b,c!. We have verified
that this feature, which is never observed in the case of a
single dielectric medium~see, for example, Fig. 7!, actually
arises from the contribution of waveguide modes.

IV. CONCLUSION

In conclusion, we have addressed the timely issue of the
modification of internal atomic dynamics in the vicinity of

FIG. 7. Z dependence of the dipole damping rates in the experi-
mental geometry of Fig. 3~a!. Total damping ratesG i ,' for
i ,'-polarized dipoles~a! and respective contributions of regions I,
II, and III to G i ~b! andG' ~c!.

FIG. 8. Polar radiation pattern of ai-polarized dipole located a
distanceZ above the dielectric waveguide of Ref.@5#, correspond-
ing to the parametersn252.37, l 2587 nm,n351.46, l 35350 nm,
n451.894, andlA5785.8 nm.~a! P i

p(Z50). ~b! P i
s(Z50). For

the sake of presentation, the sharp emission peak around
u res'63° has been truncated. The peak sizeP i

s(u5p2u res) is
actually about 40 times larger than the limit of the plot.~c!
P i

p(Z5lA). ~d! P i
s(Z5lA).
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the interface between a vacuum and a simple or multilayered
dielectric medium. Optical Bloch equations have been de-
rived, taking into account the modifications of spontaneous
emission rates and energy levels experienced by the atom. In
particular, these equations should occasion a more accurate
description of van der Waals energy shifts as measured by
reflection spectroscopy@1#. They should also prove useful in
the emerging field of laser cooling and trapping inside cavi-
ties designed to modify spontaneous emission. Simple ex-
pressions for the van der Waals energy shifts of alkali atoms
have been obtained, which should be of interest in atomic
optics. Finally, a simple and powerful method for deriving
spontaneous emission rates and radiation patterns~also of
interest in atom optics! has been presented, which applies to
both lossless and absorbing media. This method based on the
Lorentz reciprocity theorem should prove useful generally.
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APPENDIX A: DERIVATION OF THE FORMULA „23…

Consider a quantum harmonic oscillator of massm and
chargee oscillating at the frequencyvA . The dipole opera-
tor of such a system in the interaction representation reads

DHO5DHO (
q521

1

aquq1aq
†uq* , ~A1!

whereaq andaq
† are the annihilation and creation operators

associated with the excitation modes of the oscillator along
the uq direction, and whereDHO5eA\/2mvA. As in the
case of an atomic dipole~Sec. II C 2!, the relaxation equation
for any observableSHO of the harmonic oscillator reads

d^SHO&
dt

U
relax

52
D HO

2

2\2 (
q

Cq@vA#^aq
†aqSHO1SHOaq

†aq

22 aq
†SHOaq&. ~A2!

In the particular caseSHO5aq , and using the commutation
relations between the creation and annihilation operators, Eq.
~A2! yields the relaxation equation of the dipole amplitude

d^aq&
dt

U
relax

52
DHO

2

2\2 Cq@vA#^aq&. ~A3!

FIG. 9. Same as Fig. 8, but for a'-polarized dipole.~a!
P i

p(Z50). ~b! P i
p(Z5lA). Note the absence of sharp emission

peak due to the dielectric waveguide design and to the polarization
of the dipole radiation.

FIG. 10. Z dependence of the dipole damping rates in the case
of Fig. 8. Total damping ratesG i ,' for i ,'-polarized dipoles~a! and
contributions of regions I, II, and III toG i ~b! andG' ~c!.
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Because of the property of the harmonic oscillator mentioned
in Sec. II C 2 and demonstrated in@9#, this evolution equa-
tion can be cast in the same form as the damping equation of
the corresponding classical harmonic oscillator. Thus, one
also has

d^aq&
dt

U
relax

52
Gq

2
^aq&, ~A4!

whereGq is the damping rate of aclassicaloscillating dipole
of polarizationuq . By comparing Eqs.~A3! and ~A4!, it is
thus possible to express the correlation functions of the quan-
tum electric field in terms of two damping rates,
G i5G215G1 and G'5G0 , corresponding respectively to
classical dipoles polarized parallel and orthogonal to the
z50 plane@12#

Ci ,'@vA#5
\2

DHO
2 G i ,' ; ~A5!

hence Eq.~23!.

APPENDIX B: DERIVATION OF THE FORMULA „55…

The method presented in Sec. III B 1 for calculating di-
pole radiation patterns and damping rates relies on Eq.~55!.
We demonstrate how this formula can be derived from
Lorentz’s reciprocity theorem@23#. We start by establishing
some general results concerning the scattering of scalar wave
fields by any linear scatterer embedded between two lossless
dielectric media of refractive indicesn1 andn2. Following
Ref. @23#, generalized reflection and transmission coeffi-
cients for backward- and forward-scattered fields are intro-
duced~Sec. II B 1!, and are shown to satisfy a reciprocity
relation, which generalizes the one introduced in@23# for the
particular casen15n251 ~Sec. II B 2!. Finally, this reci-
procity relation is used for deriving Eq.~55! ~Sec. II B 3!.

1. Generalized transmission and reflection coefficients
We consider a monochromatic scalar field

Ein(r ,t)5Uin(r )exp(2ivt) incident upon a linear scatterer
situated within the stripzmin<z<zmax. The strip is sur-
rounded by two lossless dielectric media of refractive indices
n1 ~half-space z.zmax[R

1) and n2 ~half-space
z,zmin[R

2) ~see Fig. 11!. This situation includes, for ex-
ample, the one considered in this paper where the scatterer
consists of the multilayered dielectric mediumand the clas-
sical dipole,n151, and wheren2 is the refractive index of

the lower-lying dielectric layer. We denote byUs(r ) the spa-
tial part of the scattered field, the time dependence of which
is also exp(2ivt). The total fieldU is, of course, the sum of
the incident and the scattered fields.

It is well known that under very general conditions the
total field in each of the two half-spaces may be represented
in the form of an angular spectrum of plane waves, both
homogeneous and evanescent@25#. However, since we are
interested only in the fields far from the scatterer, we can
omit the contribution of evanescent waves, and the total field
can be written as, inR2:

U~r !52
ik2

2p E
s~1 !

C~2 !~n!exp~ ik2n•r !dV

1
ik2

2p E
s~2 !

D ~2 !~n!exp~ ik2n•r !dV, ~B1a!

and inR1:

U~r !52
ik1

2p E
s~2 !

C~1 !~n!exp~ ik1n•r !dV

1
ik1

2p E
s~1 !

D ~1 !~n!exp~ ik1n•r !dV. ~B1b!

In Eqs. ~B1!, n[(nx ,ny ,nz) are unit vectors,k65n6v/c
are the wave vectors associated with the frequencyv in half-
space R6 (c being the speed of lightin vacuo!,
dV5sinududw is the element of solid angle generated by the
unit vectorn, ands (1) ands (2) are unit hemispheres inn
space defined as

s~1 !: nz>0, ~B2a!

s~2 !: nz,0. ~B2b!

The factorsC(6)(n) andD (6)(n) have the physical signifi-
cance of amplitudes of homogeneous plane waves that
propagate in different directions either toward the scatterer
@waves with amplitudesC(1)(n) andC(2)(n)#, or away from
it @waves with amplitudesD (1)(n) andD (2)(n)#. However,
they also have another physical significance, which becomes
evident when one examines the behavior of the total field far
from the scatterer. One then finds that as the distancer of the
field point from the origin~taken within the scatterer! in-
creases along any direction specified by the unit vectoru
@23#

U~ru!;C~6 !~2u!
exp~2 ik6r !

r
1D ~6 !~u!

exp~ ik6r !

r
,

~B3!

where the plus or minus signs are taken on the right-hand
side according to whether the field pointr5ru is located in
the half-spaceR1 or R2, respectively. Equation~B3! ex-
presses the far field in each of the two half-spaces as the sum
of a convergent and a divergent spherical wave with complex
amplitudesC(6) andD (6). This result implies that the inte-
grals in Eqs.~B1! that contain the spectral amplitudesC(6)

represent a field that isincomingat infinity, whereas the in-

FIG. 11. Notations used.
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tegrals containing the spectral amplitudesD (6) represent a
field that isoutgoingat infinity.

Finally, following @23# we define generalized transmission
(t, t) and reflection (r , r) coefficients through the relations
~see Fig. 12!

D ~1 !~n!52n2/n1E
s~1 !

t~n,n8!C~2 !~n8!dV8

2E
s~2 !

r~n,n8!C~1 !~n8!dV8, ~B4a!

D ~2 !~n!52E
s~1 !

r ~n,n8!C~2 !~n8!dV8

2n1/n2E
s~2 !

t~n,n8!C~1 !~n8!dV8, ~B4b!

where the minus signs and the refractive index ratios in front
of the integrals are included so thatt, t, r , andr are directly
related to the usual transmission and reflection Fresnel coef-
ficients at the interface between the half-spacesR1 and
R2 in the absence of scatterer, as expected physically. These
generalized coefficients are defined only for the following
ranges of thez components of the unit vectorsn andn8

t~n,n8!: nz.0, nz8.0, ~B5a!

r ~n,n8!: nz,0, nz8.0, ~B5b!

t~n,n8!: nz,0, nz8,0, ~B5c!

r~n,n8!: nz.0, nz8,0. ~B5d!

2. Reciprocity relations
Consider Lorentz’s reciprocity theorem for scalar fields

@23#

E
s
J~rn!•ndS50, ~B6!

wheredS5r 2dV and the integration is extended to a sphere
s of infinite radius,n being the local outward normal to this
surface. The vectorial quantityJ in Eq. ~B6! is given by

J5U2¹U12U1¹U2 ~B7!

with U1 and U2 two arbitrary solutions of the Helmoltz
equation

¹2U1k2U5F~r !U, ~B8!

F(r ) being the scattering potential of the scatterer@for ex-
ample, for a multilayered dielectric mediumalonecharacter-
ized by the spatial refractive index variationn(z),
F(r )52k2(n2(z)21)#. It is important to note that this theo-
rem holds irrespective of whetherF(r ) is absorbing or not
@23#. In particular, all the results obtained in this paper would
apply identically in situations where some dielectric layers
~except the outermost ones! havecomplexrefractive indices.
The integral in Eq.~B6! can be transformed by distinguish-
ing between the contributions of the hemispheress (1) and
s (2). This yields

E
s~1 !

J~1 !~rn!•ndV1E
s~2 !

J~2 !~rn!•ndV50 ~B9!

with J(6) defined inR6 as

J~6 !5U2
~6 !¹U1

~6 !2U1
~6 !¹U2

~6 ! . ~B10!

By substituting into Eq.~B9! the asymptotic form of the
field U given by Eq.~B3!, then replacing the amplitudesD
by means of the relations~B4!, and making use of the arbi-
trariness ofU1 andU2 , it is straightforward to show that the
Lorentz theorem~B9! yields the following reciprocity rela-
tions between the generalized transmission and reflection co-
efficients:

n2t~2n8,2n!5n1t~n,n8!, ~B11a!

n1t~2n8,2n!5n2t~n,n8!, ~B11b!

r~2n8,2n!5r~n,n8!, ~B11c!

r ~2n8,2n!5r ~n,n8!. ~B11d!

3. Calculation of dipole radiation patterns
We now return to the problem of radiation by a classical

dipole in the vicinity of a dielectric medium. We first note
that this problem is equivalent to scattering of an incident
wave by the system consisting of the dielectric medium and
an anisotropically polarizable system~the polarized dipole!.
Second, we remark that as far as the radiation patterns
P i ,'

s,p(u)5Pi ,'
s,p(u,c i ,'

s,p) are concerned@the value of the azi-
muthal anglec i ,'

s,p can be readily infered from the definition
of P i ,'

s,p(u) given in Sec. III B 1#, this process clearly be-
longs to scalar scattering theory, provided the incoming
fields used in calculatingP i ,'

s,p(u) are chosen with the ap-
propriate polarizations and azimuthal angles of propagation

FIG. 12. Significance oft, r, t, andr as generalized transmis-
sion and reflection coefficients.
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~this is assumed throughout!. This makes it legitimate, on the
one hand, to drop the subscriptsi ,' and the superscriptss,
p in the expressions for the fields and radiated powers, and,
on the other hand, to make use of the results obtained in the
preceding sections B 1, B 2, and of the reciprocity relations
~B11! in particular.

Following the preceding remarks, we consider a plane
wave of amplitudeE in incident from the half-spaceRin56

and propagating in the direction of the unit vectornin56

belonging to the hemispheres (2 in) scattered into the solid
angledVout generated by the unit vectornout56 belonging
to the hemispheres (out) ~see Fig. 13!. In order to connect the
incident and scattered fields by means of the generalized
transmission and reflection coefficients~see Sec. B 1!, we
first express the incident field in the form

Uin~r !5E inexp~ ik
innin•r !

5E inE
s~2 in !

D~n2nin!exp~ ik inn•r !dV,

~B12!

whereD(n2nin) is the spherical Dirac delta function de-
fined by the formula@23#

D~n2nin!5
d~u2u in!d~w2w in!

usinuu
~B13!

andd is the usual one-dimensional Dirac delta function. Sec-
ond, we make use of the asymptotic form (koutr→`) of the
outgoing part of the field scattered into the directionnout @see
Eq. ~B3!#,

Us~rnout!;D ~out!~nout!
exp~ ikoutr !

r
, ~B14!

to express the powerPout(nout)dVout radiated by the scat-
terer in the solid angledVout

Pout~nout!5noutuD ~out!~nout!u2. ~B15!

Finally, by combining Eqs.~B12!, ~B1!, ~B4!, and~B15!, we
obtain

Pout~nout!5
l2

nout
ua~nout ,nin!E inu2, ~B16!

wherel52pv/c is the optical wavelength and~see Fig. 13!

a~nout51 ,nin52!5t~nout ,nin!, ~B17a!

a~nout52 ,nin52!5r ~nout ,nin!, ~B17b!

a~nout52 ,nin51!5t~nout ,nin!, ~B17c!

a~nout51 ,nin51!5r~nout ,nin!. ~B17d!

It is well known that the damping of an oscillating dipole
can be interpreted as arising from the work of the dipole on
the field exactly at its location. In other words, the total
power radiated by the dipole is proportional to the imaginary
part of its effective polarizabilityae f f(Z) ~which includes
the influence of the dielectric medium, i.e., the back action
resulting from field reflection! multiplied by the field inten-
sity uEdip(Z)u2 at the dipole location. We can therefore ex-
press the power radiated by the scatterer into the solid angle
dVout in terms of the normalized dipole radiation distribu-
tion P (u) as

Pout~nout!5b Im~ae f f!L~2nin!uE inu2P ~nout!, ~B18!

whereb is a constant and where theZ-dependent coefficient
L is defined as in Eqs.~54!. By combining Eqs.~B16! and
~B18!, one then obtains

l2

nout
ua~nout ,nin!u25b Im~ae f f!L~2nin!P ~nout!, ~B19!

which is valid for any choice ofnin and nout . In particular,
one can choose

l2

nin
ua~2nin ,2nout!u25b Im~ae f f!L~nout!P ~2nin!.

~B20!

We now divide Eq.~B19! by Eq. ~B20!, and use the rela-
tion

ua~nout ,nin!u
ua~2nin ,2nout!u

5
nout

nin
~B21!

derived from Eqs.~B17! and the reciprocity relations~B11!.
This yields

P ~nout!

noutL~nout!
5

P ~2nin!

ninL~2nin!
~B22!

or equivalently

P ~uout!

n~uout!L~uout!
5

P ~u in!

n~u in!L~u in!
, ~B23!

wheren(u) is defined as in Sec. III B 1. Because the equality
in Eq. ~B23! holds whatever the anglesu in anduout , we find
that the radiation patternP (u) is necessarily of the form

P ~u!5kn~u!L~u!, ~B24!

wherek is a real parameter independent ofu but possibly
dependent onZ. As can be readily checked by considering
values ofu close top, for whichP (u) simply represents the

FIG. 13. Notations used.
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transmission of free-space dipole radiation through the di-
electric medium@22#, the parameterk is found to be inde-
pendent ofZ and equal to the constant 3/8p, hence formula
~55!.

APPENDIX C: L i ,'
s,p
„u… COEFFICIENTS

FOR A SINGLE DIELECTRIC MEDIUM

We derive theL i ,'
s,p(u) coefficients for a classical dipole in

vacuum located a distanceZ above a single dielectric me-
dium of refractive indexn2 . Referring to Eqs.~54!, E in is
incident from above when 0<u,p/2, and from below when
p/2,u<p. In the former case,E in is both directly incident
on the dipole and indirectly incident after a reflection off the
vacuum-dielectric interface. In the latter case,E in is incident
on the dipole only after a transmission through the interface.
Considering the more general case of an interface between
two dielectric media of indicesn1 and n2 , the pertinent
Fresnel reflection and transmission coefficients fors and p
modes are, respectively,

r12
s 5

n1cosu12n2cosu2
n1cosu11n2cosu2

, ~C1a!

r12
p 5

n2cosu12n1cosu2
n2cosu11n1cosu2

, ~C1b!

t21
s 5

2n2cosu2
n1cosu11n2cosu2

, ~C1c!

t21
p 5

2n2cosu2
n2cosu11n1cosu2

, ~C1d!

whereu1 andu2 are related by

n1sinu15n2sinu2 . ~C2!

In our casen151, and we identify the regions

~ I!: 0<u<p/2, ~C3a!

~ II !: p/2<u<p2uc , ~C3b!

~ III !: p2uc<u<p, ~C3c!

where

sinuc51/n2 ~C4!

defines the so-called critical angle. A straightforward calcu-
lation then obtains:

~ I!: L i
s~u!5u11r12

s exp~2ikZcosu!u2, ~C5a!

~ II !: L i
s~u!5ut21

s u2exp~22kZAn2sin2u21!, ~C5b!

~ III !: L i
s~u!5ut21

s u2, ~C5c!

~ I!: L i
p~u!5u11r12

p exp~2ikZcosu!u2cos2u, ~C6a!

~ II !: L i
p~u!5ut21

p u2exp~22kZAn2sin2u21!cos2u,
~C6b!

~ III !: L i
p~u!5ut21

p u2cos2u, ~C6c!

~ I!: L'
p ~u!5u11r12

p exp~2ikZcosu!u2sin2u, ~C7a!

~ II !: L'
p ~u!5ut21

p u2exp~22kZAn2sin2u21!sin2u,
~C7b!

~ III !: L'
p ~u!5ut21

p u2sin2u, ~C7c!

whereu15u in region I andu25p2u in regions II and III.

APPENDIX D: CALCULATION OF L i ,'
s,p
„u…

COEFFICIENTS FOR A DIELECTRIC WAVEGUIDE

The calculation ofL i ,'
s,p(u) for a single interface~Appen-

dix C! can readily be extended to the case of multiple inter-
faces@5#. For example, in going from one interface to two
interfaces~medium 2 bounded!, the pertinent Fresnel reflec-
tion and transmission coefficients become

r1235
r121r23exp~2ib2!

11r12r23exp~2ib2!
, ~D1a!

t3215
t32t21exp~ ib2!

11r32r21exp~2ib2!
, ~D1b!

whereb i5v/cni l icosui , and l i is the thickness of medium
i . By iteration, this can be extended to three interfaces, ap-
propriate for a waveguide geometry~media 2 and 3
bounded!. Taking care in the iteration sequence, one finds

r12345
r121r234exp~2ib2!

11r12r234exp~2ib2!
, ~D2a!

t43215
t43t321exp~ ib3!

11r43r321exp~2ib3!
. ~D2b!

We note that Eqs.~D1! and ~D2! are valid for bothTE and
TM modes provided they are traced back to the appropriate
single interface coefficients@Eqs. ~C1!#. Proceeding then
along the same lines as in Appendix C, the calculation of
L i ,'
s,p(u) for a waveguide geometry is straightforward.
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