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Green-function approach to the radiation-field quantization for homogeneous and inhomogeneous
Kramers-Kronig dielectrics
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A quantization scheme for the radiation field in dispersive and absorptive linear dielectrics is developed,
which applies to both bulk material and multilayer dielectric structures. Starting from the phenomenological
Maxwell equations, where the properties of the dielectric are described by a permittivity consistent with the
Kramers-Kronig relations, an expansion of the field operators is performed that is based on the Green function
of the classical Maxwell equations and preserves the equal-time canonical field commutation relations. In
particular, in frequency intervals with approximately vanishing absorption the concept of quantization through
mode expansion for dispersive dielectrics is recognized. The theory further reveals that weak absorption gives
rise to space-dependent mode operators that spatially evolve according to quantum Langevin equations in the
space domain. To illustrate the applicability of the theory to inhomogeneous structures, the quantization of the
radiation field in a dispersive and absorptive one-interface dielectric is performed.

PACS numbds): 42.50.Ct, 03.70rk

[. INTRODUCTION in terms of the complex frequency-dependent permittivity,
the Huttner-Barnett model can be extended to dielectrics
To describe the quantum features of the propagation ofther than microscopic harmonic-oscillator media in order to
light through dielectric matter, such as optical fibers or di-obtain a general quantization scheme for radiation in disper-
electric multislab devices, quantization of the phenomenosive and absorptive linear dielectrics gfhenomenologi-
logical Maxwell equations that includes both dispersion andally) given permittivities[29]. S
absorption and applies to both homogeneous and inhomoge- 10 generalize this quantization scheme to radiation in
neous matter is desired. The problem of quantum electrodyMultilayer dielectric structures, in the present paper we ana-
namics in the presence of linear dielectrics has widely beefyZ€ it in terms of the Green function of the classical, phe-
studied and various concepts have been developed to allofPMenological Maxwell equations that describe the propaga-

for matter with real permittivity. In this context, both disper- ;[jl?errec(t)rficsr?gI?r:g)gbslgnisopfeéilt\(laerna?ns%urizssorAr)lﬁgI@inllnf?)?ra
sionless mattef1-10] and dispersive dielectrickl1-14 A - 9
frequency-dependent complex permittivity that is consistent

Fg\g ggﬁg;igﬁ'ﬁfgsnags/:fens'ons to nonlinear d|electr|9\§lth the Kramerg-Kronig relationg and introducing(ranj

Y : . dom) operator noise source associated with the absorption of
, A gentral problem rellated to all these.approa.ches' IS ,th?adiation, we regard these equations as quantum-theoretical
inclusion of absorption into the propagation of light in di- oherator equations. Their solution through a Green-function
E_:Iectrlc _matte_r. I_t is well known th_at the permittivity of a expansion of the operator of the vector potential may be
linear dielectric is a complex function of frequency, where egarded as the natural generalization of the familiar mode
the real and imaginary partS describing the effects of disperexpansion app”cab'e to source-free radiation(a"pproxi_
sion and absorption, respectively, are related by the Kramersnately) lossless dielectrics. If in a chosen frequency interval
Kronig relations. Since dispersion is always associated withhe absorption may be disregarded, in this frequency interval
absorption, the losses must necessarily be included into #e Green function expansion reduces to a mode expansion
rigourous quantization scheme. In particular, the quantizatiowith real frequency-dependent permittivity. Clearly, when
should be performed in such a way that it is consistent witithe absorption vanishes for all frequencies the permittivity
the Kramers-Kronig relations and the familiggqual-time  must be unity anywhere, which just corresponds to radiation
canonical commutation relations for the overall electric andn free space. For weak absorption the theory yididshe
magnetic fields. chosen frequency interyaspace-dependent mode operators

The problem has been considered by a number of authomshose spatial evolution is governed by quantum Langevin
[24-27. To our knowledge, a systematic and quantum-equations.
theoretically consistent description of quantized radiation in  The Green-function approach is not restricted to a particu-
dispersive and absorptive linear bulk dielectrics was first delar model of the medium, but applies to any linear Kramers-
veloped by Huttner and Barnd®5]. Using the microscopic Kronig dielectric. Further, it applies not only to bulk material
Hopfield model of a dielectrif28] and representing the mat- but also to multilayer dielectrics, such as multislab devices,
ter by a collection of interacting harmonic-oscillator fields their spatial structures being included in the Green function
polarization field and a continuum of reservoir fieldhey of the classical problem. The latter can advantageously be
diagonalized the coupled radiation-matter Hamiltonian.used in the study of the action of optical instruments, such as
Since the influence of the medium can be entirely describechacroscopic dielectric bodies that respond linearly to the
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53 GREEN-FUNCTION APPROACH TO THE RADIATION-FIELD ... 1819

radiation field under study. In this context, the correct quan- % _

tum optical input-output relations that include the noise con- D(r,t):j do e ''D(r,w)+c.C., 11
tributions associated with the absorption of radiation can be 0
derived in a very systematic way.

The paper is organized as follows. In Sec. Il the concept
of quantization for homogeneous dielectrics is outlined and
the main features of the theory are illustrated by considerinéf’
linearly polarized radiation propagating in one dimension. In "
particular the connection between the Green-function ap- 6(‘”):1+f or €“7y(7) (13
proach and the concept of mode expansion is discussed. In 0
Sec. Il the theory is extended to multilayer dielectric struc-
tures, and the problem of a one-interface dielectric is considis the frequency-dependent complex permittivity introduced
ered in more detail. A summary and conclusions are given ihenomenologically. The wave equati@ is satisfied when
Sec. IV. Somewhat lengthy calculations are outlined in the

) 2
Appendixes. AA(T o)+ %e(w)é(r,w)=0. (14)

D(r,w)= ege(w)E(r,w), (12

here

Il. HOMOGENEOUS DIELECTRICS
: o Regardinge as a function of the complex frequen€y,
A. Classical description €(Q) satisfies the relation

In the phenomenological classical Maxwell theory
( [30,31)) the propagation of radiation in a dispersive and e(—Q*)=€e*(Q) (15
lossy linear(homogeneous and isotropidielectric that is
free of external sources is frequently described by the equand is analytical in the upper complex half plane without

tions zeros. Further, the real and imaginary parts
. er(w) =Rde(w)} and ¢/ (w) =Im{e(w)}, respectively, sat-
curlE=—B, divB=0, (1) isfy the well-known Kramers-Kronig relations
curH=D, divD=0, () P> &l
er(0)=1=—| do'——, (16)
whereB= ugH and the displacement field(r,t) is related o
to the electric fielde(r,t) as ,
Pr=  elo)-1
o e|(w)=——f o' ——, 17)
T) - w w
D(r,t)=¢q E(r,t)-l—f d7 x(7)E(r,t—17)|. 3
0

where P is the principal value.
Expressing the electric and magnetic fields in terms of the
vector potential, B. Quantum description

E=—A B=curlA, 4) Since e(w) is_ necessarily complex, E(q_14) [or Eq.(5)]
cannot be valid as an operator equation #(r,w)[or
the Maxwell equationg1) are automatically satisfied and A(r,t)] in the sense of quantum theory. Otherwidgr, )
Egs.(2) yield would be spatially damped and the equal-time field commu-
tators [ A(r,t),E;(r’,t)] would not be preserved for any
space points andr’. From the quantum theory of damped
systems it is well known that reinterpreting classical evolu-
tion equations for damped systems as quantum-theoretical
where diA=0. We now introduce the Fourier transforms, Operator equations necessarily requires the introduction into
the equations of additional operator noise souf82s With
o0 . regard to radiation in dielectric matter, we may therefore
Alr,t)= fo do €7 'A(r,0) +C.C., (6) include in the theory the effect of quantum noise associated
with propagation-assisted damping as follows. We regard the
" radiation-field quantities as operators and supplement the
E(rl’t):f do e “'E(r,w) +cC.C., (7) Maxwell equations as given in Sec. Il A with an operator
0 o noise current ,. Introducing the Fourier transform of the
(Schralingen operator of the vector potential,

AA(r,t)—Elg A(r,t)+deTX(T)A(r,t—T) =0, (5
0

E(r,0)=i0A(r,0), (®)

. | A(r)=fxdw A(r,o)+H.c. (18)
B(r,t)= Jo do e”'“'B(r,w)+c.C., (9) 0

[cf. Eq. (6)], the conditional equation for the operator
B(r,w)=curlA(r,w), (100 A(r,w) now reads asin place of Eq.(14)]
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2 A. A_T ’ NT—= Sk¢r_—r’ N
AAT 0+ G Ao =fre). (19 ne)firhen]=air=rate=en), @D
[ Fr w)1=rfr T o=
Using the method of Green function, the solution of Ex) [fi(r o) fi(r 0 )I=[Fi(re), [ e7)]=0, (28

can be written as which is in agreement with the microscopic Huttner-Barnett

) ) model[25]. In the Heisenberg picture the operator basic field
é(r,w)zf dB*r'G(r,r',w)ju(r', o), (200  obviously evolves as

where the Green functio®(r,r’,w) satisfies the equation f(r,w,t)=f(r,w,t’)e*“"“’“), (29

2

AG(r,r, o)+ %e(w)G(r,r’,w): sr—r’y  (21) which corresponds to the equation of motion

X 1 ..
and the boundary condition that it vanishes at infinity, which f=—lof==[fH], (30
[for €,(w)>0] corresponds to the well-known Sommerfeld
condition[33] that is usually applied when the permittivity is
real. Clearly, when the presence (@fhomogeneouysdielec-
tric bodies gives rise to surfaces of discontinuity, then .
G(r,r', ) is also required to be continuously differentiable ﬁ:f d3rf o fof(r,0)-f(r,0). (31)
at these surfaces, so that the tangential componertsaofd 0
the normal components d are continuougcf. Sec. Il). _ _ _ _ .
Note that whene (w)>0, adding to Eq(20) a nontrivial It is worth noting that wheriin a certain frequency inter-
solution of the homogeneous wave equatign. (19), with ~ val) €(w)—0 and hencg(r,»)—0, the vector potential
jn(r,)=0] would violate the boundary condition at infinity. A(r) in the form(23) does not vanish. A careful inspection
In particular, for homogeneous dielectrics the Green functior®f ther” integral in Eq.(23) reveals that, on using ER2)
is given by and Egs.(26) — (28), A(r) tends to the familiar representa-

tion of the source-free field through mode decomposition
1 L )
G(r,r ,a)):—mex%lz\/e(wﬂr—r |

where the Hamiltonian reads as

[29], cf. Eq.(50) for radiation propagating in thre direction.
In particular, in the absence of dielectric matfes(w)
) —1V w] A(r) in Eg.(23) reduces to the source-free field in
Using Egs.(18) and(20), the (Schradingen operators of  free space. Hence, the Green-function expan$2s) [to-
the vector potential and the electric-field strength can be repgether with Eq(22) and Eqs.(26) — (28)] may be regarded
resented as as a natural extension of the familiar mode expansion of
. radiation in free space to damped radiation in a dispersive
A(r):f d“’f d3r’G(r,r’,w)fn(r’,w)+ H.c., (23 and absorptive linear dielectric. The effect of additional
0 - sources embedded in the dielectric matf@nd resonantly
interacting with the radiationmay then be described by an
E(r): —K(r) overall Hamiltonian that consists of the radiation-dielectric
Hamiltonian (31), a source Hamiltonian, and a standard
(= 5 - radiation-matter interaction energy, such<g-A (p, mo-
=l fo d“""f dr'G(r.r",)jn(r", @)+ H.c.. (24 mentum of a charged partigleHere, the vector potentia
can be expressed, in principle, in terms of the basic-field

As already mentioned, the source teir, ) is required in  variablesf andf’, on using Eqs(23) and (26), and (nonlin-
order to take into account the dissipation-assisted quantui@rly coupledi Heisenberg equations of motion for the source
noise. It is therefore clear that when the imaginary part of thevariables and the field variabldsand ' can be derived.
permittivity becomegin certain frequency domainsegligi- ~ Clearly, the current densify associated with such sources s,
bly small[ ¢,(w)— 0], then(in these domair)sfn(r,w) may  in general, quite different frorj,. It should be noted that the
be disregarded as We{ﬁn(r,w)ﬂo]_ Mathematically, the in- canonical formalism(of Heisenberg equations of motion

troduction of (r,w) must ensure the preservation of the implies preservation of equal-time commutation relations.
well-known canonical field commutation relations For the sake of clarity, let us illustrate the main features of

the concept for linearly polarized radiation propagating in
the xdirection [A(r,w)—A(X,0)=A(X,0), f(r,0)—

f (x,w)=f(x,0)], which effectively reduces the system to
one spatial dimension. In this case the inhomogeneous wave
in the presence of absorptiorﬁﬁﬁj(r—r’), transverse equation(19) [together with Eq(26)] takes the form

é function]. This can be achieved by choosif2g]

.22

- in
A E(r)]== a1 (25

[# O ot el Ak o) [ %
J'An(f,w)=% Eﬂ(w)f(r,w), (26) ax? () ?G(w) (X0)= Weoﬂ/ge'(w) (X,w),
B 0

(32)

ONIS
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where. 7 is the normalization area perpendicular to xhai-
rection, and the basic-field commutation relatiq@3) and
(28) read as

[f(X,0),fT(X,0)]=8x—x)S(w—0w'), (33

[f(x,0),f(x",0)]=[fT(x,0),f (X", 0)]=0. (34

The Green-function expansion Af(x,w) is given by

N h o n
A(x,w)z%x/weOt/ze,(a))J’mdx’G(x,x’,w)f(x’,w),

(35
whereG(x,x’,w) satisfies the equation
52 w?
0—XZG(X,X',w)+ Ez—e(w)G(x,x’ ,w)=38(x—x"). (36)

It can easily be proved that the solution of E§6) that
satisfies the correct boundary conditionstat is

2

e 27 ) we(w)—Cck
— 2 w i 1 w !
= |En(w) ex |En(w)|x—x|,
(37
where
N(w)=e(w) (38
is the complex refractive indeknote thate,(2)>0 for
Re{Q}>0].

To show that the(Schralingen operators of the vector
potential

n (" w f
A(X)—jo o 0 P \/Wﬂ(w)

><f:dx’e(x,x',w)?(x',wwH.c. (39
and the electric-field strength
E00=i [ "o N ()
0 c TEGA
><f:dx’e(x,x',w)f(x',wwH.c. (40)
fi B(w)

AX)= J'o do dmcwepf(w). 7 n(w)
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[eAl@oxiey  (x,w)+e  Pl@eXcy (x w)]+H.c.,
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satisfy the canonical commutation relation

R - if
[AC),E(X)]=———d(x=X"), (41
.//EO
we note that the integral relation
w2 *®
?Q(w)f_ dyG(x,y,w)G*(X",y,w)
1
=§|[G(x,x’,w)—G*(x’,x,w)] (42

is valid (see Appendix B Combining Eqgs.(39) and (40),
recalling the commutation relatiori83) and(34), and using
the relation(42), straightforward calculation yields

[

[A(X),E(x")]= dowG(X,Xx ) (43

7T€0C2‘fz — 0

[note that G*(X,X',w)=G(x,x’,—w) and G(x,x’,w)
=G(X',X,w)]. Substituting in Eq(43) for the Green func-
tions the explicit expressions as given in E§7), we find
that

[A(X)’E(X,)] T 27 €oC. 7

X J‘:dw n‘l(w)exr{i %n(w)|x—x’|
(44)

Performing thew integral, on using the properties efw),
indeed yields the commutation relatigal) (see Appendix
o).

C. Limiting case of mode decomposition

It should be pointed out that the quantization scheme also
applies to cases when the losses in the dielectric may be
disregarded, that ig;— 0. These systems are usually treated
by applying the method of mode decomposition. Clearly, as-
suminge;=0 and allowing foreg# 1 in the whole frequency
domain, one strongly violates the Kramers-Kronig relations.
Therefore, quantization through mode decomposition is,
apart from the vacuum, an approximation that can only be
applied to radiation whose relevant frequencies are in inter-
vals where absorption may be disregarded.

To show that quantization through mode decomposition is
involved in the quantization scheme developed as a limiting
case, we use the Green functi(8Y) and rewrite Eq(39) as

(49)
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where [a.(X,0),aL (X, 0")]=e" r@ekXlesh— '),

~ 1 w w
a.(X,w)= i—\/Zy(w)E exp{i 'y(w)EX

*+X w
X f dx’ex;{ —i En(w)x’

(48)

So far, Eqs(45) — (48) are exact. Let us now assume that
in a chosen frequency intervélw the absorption is suffi-

f(=x",0). ciently small, so that the condition

46
(49 Y(w)<p(w) (49
In Egs.(45) and(46) the notation

N(w)=Ve(w)=B(0)+iy(w) (47) is satisfied. Equationg46) and (48) imply that when
| — v(w) w|x—x'|/c|—0 the operators. (X,0) become in-
has been used. The subscriptsand — denote propagation dependent ok. In this case Eq(45) reduces, in the chosen
to the right and left, respectively. From E@6) we derive, frequency intervall w, to the familiar mode-expansion re-
on recalling Eq(33), sult

A (x)=f dw\/*[eim‘“)‘”x’cé (w)+e Bl@exicy (¢)]+ H.c (50)
Aw (Aw) AdrcwegB(w). 2 * - o

where the associated photon operatatgw) and al(w)  a.(x,w) defined in Eq.(46) may be regarded as system

satisfy the commutation relations operators that describe the space-dependent amplitudes of
. At monochromatic radiation-field excitations in dispersive and
[a:(w),ai(0")]=d(w—w'). (51)  absorptive dielectric matter. Classically, these amplitudes are

_ exponentially damped out in space, the characteristic length
Moreover, let us assume that the widtlm of the chosen being given by y(w)w/c]~L. In quantum theory, the spatial
frequency interval is small compared with its midfrequencyeyolution of the operatord. (x,w) is therefore expected to
@, SO thatB(w)~ B(wp), and confine ourselves to resolv- pe governed by quantum Langevin equations, where the
ing distances\x that are large compared with the character-quantum noise associated with the damping is taken into
istic lengthc/(B(om)Aw), account by operator Langevin noise sources. Indeed, from
Eq. (46) we easily derive

WS> Aw> (52

c
Blom)AX
Using Egs.(50) and (51) and calculating the commutator

[Aro(X),Erl(X')] in the approximation given by the in- where the
equalities(52), we easily recognize the well-known result

that - 1 1) ) 1)
. Ft(X,w)Zii— Zy(w)g ex;{IIB(w)EX

[Aso(X),Eru(Xx')]= S(x—x") (53 (55)

have all the properties of operator Langevin noise sources.
[er(@wm) = B*(wy), note that thes function is defined on a We first calculate the commutatof§ . (X, ),F L (X', @')].
length scale of the order of magnitude of(8(wm)Aw),  Recalling Eq.(33), straightforward calculation yields
because of the coarse-graining condition
Ax>c/(B(wm)Aw)]. Equation(53) reveals that with respect A St 1) , ,
to the chosen frequency interval,A,,(x) and [Fe(X0),Fi(X,07)]=2y(w) ¢ dx=X")dw—w’).
Dao(X)=€er(wm)Er,(X) may be regarded as canonically (56)
conjugate field variables. This commutation rule is com- ) )
monly used in the standard theory of quantization of theNext, from Eqs(55) and(46) together with Eq(33) we find
radiation field in dielectric matter characterized by real andhat
constante (see, e.g.[13]).

—AL(X,0) = F y(0) Th.(X0) +FL(X0), (54

%(X,w)

I
- Aer(wm) €9

[Aa.(X,0),FL(x',0')]=0 if £x¥x'<0. (57

D. Quantum Langevin equations Equations(56) and (57) reveal that(54) indeed represents
To make contact with the standard quantum theory ofjuantum Langevin equations in the space domain, which is

damping (see, e.g.,[32]), we note that the operators in agreement witf25]. Their solutions may be written as
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(f(x,0))=0, (59)

é+(x,w)=é+(x’,w)exp{ F y(w)%(x—x’)

. (60)

X ~ w ~ ~ , w ,
+JxrdyR(y,w)ex;{Iy(m)g(x—y)} (a:(x,0))=(a-(x",w))ex _V(X)E|X_X |

58
, _ _ ( ) where +x¥x’=0, with arbitrary(a.(x’',w)). Taking the

Wh_ere_tx+x =0, which fylly agregi with Eq46). Substi- average of A(xt), from Eq. (45 [&.(X,w)
tuting in the commutatorga.. (x,w),a. (X', ") ] for the op- — 4, (x,w)e”*!] together with Eqs(59) and (60) we just
eratorsa. (X, ) the solutiong58) of the Langevin equations obtain the general solutions of the classical homogeneous
and using the relation&6) and (57), we easily see that the wave equations for forward- and backward-propagating ra-
correct commutation relatior(@8) are satisfied. diation. As we will show in a forthcoming presentation, the

It should be pointed out that both the operatorsmethod also applies to the determination of thentrivial)
a.(x,), a\(x,») and the operator§ . (X, w), Fl(x,w) input-output relations observed when quantized radiation
are related to the basic-field operatd(s, ), f'(x,w) origi-  falls on spatially structured dielectric bodies of finite exten-
nally introduced[cf. Egs.(46) and (55)]. Clearly, using the sion. In particular, the introduction of system and noise op-
Langevin equation scheme, knowledge of the explicit relaerators by means of the Green function then ensures that the
tions is no longer necessary, because all relevant informatiohoundary conditions at the surfaces of discontinuity are au-
is now contained in Eqg54), (56), and(57). The Langevin- tomatically satisfied.
equation formalism enables one to easily derive quantum As long as the conditio49) is satisfied, the operator of
optical input-output relations of the tyd®&8). In particular, the vector potentia(in the chosen frequency intervalw)
we may let[cf. Eq. (58)] reads agsee Eq.(45)]

A h iB(w)wx/ch —iB(w)wx/ch
Apr,(X)= A dw m[e a,(X,w)+e a_(X,w)]+H.c. (61

Equationg61) and(54) [together with(56) and(57)] may be  tion in dispersive and lossy dielectrics. It is well known that
regarded as the basic equations describing the propagation thfe method of quantization through mode expansion can be
quantum light pulses in dispersive and absorptive dielectricsextended to inhomogeneous dielectrics in a straightforward
provided that the absorption is not too strong. When the conway [8,11]. Similarly, the method of Green function may be
dition (49) is not satisfied the exact expansi@s) must be  expected to also apply to inhomogeneous dielectrics. Let us
used in place of the quasimode expansi6fh). The condi- restrict our attention to multilayer dielectric structures, which
tion (49) may therefore be regarded as being the analogy tare typically used in practice. Since the space can be subdi-
the Markov condition in the standard theory of temporallyvided into elements where the permittivity is spatially con-
dampedquasjmodes. We finally mention that in many casesstant, Egs.(26) — (28) can directly be used to introduce
when light pulses propagate through dielectric matter, suclperator noise sources in each element, which implies that
as optical fibers, the absorption may only be expected to bthe commutation relation®5) are preservedsee Appendix
significant in the direction of pulse propagation. Disregard-A).

ing the absorption perpendicular to the direction of propaga- For example, when linearly polarized radiation propagates
tion, the field structure in this direction may be obtainedalong thex axis through a multislab dielectric device, Eq.

from standard mode expansion. (32) becomes
9 . w? N
IIl. MULTILAYER DIELECTRICS 2 AX @)+ 7 e(X 0)AX 0)

A. Basic equations

In the (approximativé quantization scheme through mode :%\ /W;;% q(x,w)f(x), (62

expansion the classical problem consists of solving the ho- c

mogeneous wave equatidielmholtz equation to deter- - -

mine the(orthonormal set of radiation-field modes and ex- Wheref(x) andf*(x) satisfy the commutation relatiori83)
press the field operators in terms of the bosonic creation an@nd(34). Introducing the Green function satisfying the equa-
destruction operators associated with the modes. Allowing!on
for complex permittivities, the analogous problem now con-
sists of the determination of the classical Green function. The
resulting expansiof39) may be regarded as the natural gen-
eralization of the mode expansi@dh0) to the case of radia- (63

92 w?
WG(X,X )+ ?e(x,w)G(x,x ,w)=56(Xx—x"),
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in place of Eq.(35) we now have - - f o
[A(X),E(X,)]: mf ‘dwwG(X,X’,w). (68)

A o | h
Alxw)= c? wey A The evaluation of the integral in E¢68) requires knowl-
edge of the Green function. Considering an arbitrary multi-
i 7 1Ny slab dielectric device, the calculation of the Green function is
X N} . ' .
Jfocdx (X", @) GO, @) (X', w) expected to be very lengthy. Nevertheless, in any case the
commutation relation
(64)
R - - if
The (Schralinge) operators of the vector potentia{x) and [AX),E(X")]=— ey A(X=x") (69

the electric-field strengtk(x) then read as
is suggested to come out, because of causality redsbns

A © @ h Appendix A].
A=, G0N 7e, 7
0 o B. One-interface dielectric

R o e RPN To explicitly show this let us consider an inhomogeneous
X J,xdx (X, 0)GXX",w)f(X",w) +H.c. dielectric consisting of two bulk dielectrics with a common

interface in more detail. Since such a one-interface dielectric
(65 may be regarded as the basic element of an arbitrary multi-
slab configuration, all the calculations and results given be-

E(x) =i ”d w_2 [ low may be extended to multislab dielectrics in a very
(x)=1 0 2N 7e, 7 straightforward way.
Assuming the interface at=0, the complex permittivity
Xf X Ve X @) G(x, X" ,) F(X' @)+ H.c. as a function ok may be written as
o e(X,0)=0(—x)e1(w)+O(X) ex(w), (70
66
(66) where® (x) is the unit step function ane,(w) and e;(w),
Since the generalized version of E42) reads as respectively, are the complex permittivities of the left-hand
) and right-hand bulk dielectrics, so that E§3) reads as
w o0
?ﬁwdyel(y,w)G(x,y,w)G*(X’,y,w) & , W
72 COx0)+ 7 [0(=X)€ey(w)
1 ! !
=5i[G(XxX",w) = G* (X' X,)] (67) +O(X)€2(w)] G(X, X", 0) = (X—X"). a1
71
(see Appendix B Eq.(43) may easily be proved correct also Using standard methods, the solution of E@l) may be
in the case when the permittivity varies with space, written as follows:

G(x,x",0)=0(=x)[O(—x)GL(X,x",0)+O(—X)r 1 @)Ry(|X],|X'], @) + O (X)ty @) Ty |X],[X'], )]
+O(X)[O(X)GY (XX, )+ O (X 33(@)Ry(|X],|X],0) + O (= X)tor(@) Tos(IX|,[X'],@)]. (72

Here, theG{*(x,x",w), j=1,2, are the Green functions of and
the bulk dielectrics; that is,

-1
T” r(X,X/,w):

0
ex;{l Enj(w)|x—x’|}

(73 Xexp{i%[nj(a})x"Fnjr(w)X] , (79

GOXX  0)=| 2i =ni(w)
XX chi

[see Eq.(37)]. The effects of reflection at and transmission
through the interface is described by the functions respectively, together with the well-known complex reflec-
tion and transmission coefficients

1 w
exp{ignj(w)(XJrX') _Nj(@)—nj(w)
ri(lw)=——">"—"—",
(74) N nj(w)-f—nj,(w)

! 1 w
Rj(X,x",w)=| 2i Enj(w)

(76)
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2n;(w) Using the Green function as given in E@2) enables one
tj(w)= n(w)+n. (o) 77 1o explicitly show thatA(x) and E(x) satisfy the correct
) ) commutation relation. Substituting in E8) for the Green
Note that the function®;(x,x’,w) andT;,(x,x’,w) satisfy ~ function the expressiofi72), by straightforward calculation
the homogeneous wave equation. we find that the reflection and transmission terms do not
Since the Green functioG(x,x’,w) given in Eq.(72) is  contribute to thew integral:
continuous and(except forx=x") continuously differen-
tiable, the vector potentiah(x), Eq. (65), is continuously %
differentiable at the interface= 0. Hence, the radiation field f o wrjj (0)Rj([x],|x'],0)=0 (78)
satisfies the proper boundary conditions at the interface. Sub- o
stituting in Eqgs.(65) and (66) for the Green function the
expression72), explicit expressions for the operators of the (see Appendix D}
vector potential and the electric-field strength may easily be
obtained. In particular, quantum Langevin equations for oo
forward- and backward-propagating fields on the left-hand f do wtjj (o) Tji/(x],[x'],0)=0 (79
and right-hand sides of the interface can be obtained in a -
similar way as in Sec. Il D. We renounce this procedure here
because of the somewhat voluminous formulas. (see Appendix E Hence we obtain

A - ’ h ’ * -1 L@ ’
[A(x),E(x )]:W O(—x)0(—x )f_wdw N, “(w)ex |En1(w)|x—x |

+®(x)®(x’)Jldu nz_l(w)exr{i%nz(w)|x—x’| ] (80)

which reveals thatsee Appendix € function of light propagation through the dielectric. Clearly,
for a given dielectric matter the determination of the Green
function can be extensive. Nevertheless, it is a purely classi-
cal problem.

It is well known that when the concept of mode expansion
We would like to mention that wheey(w)=1 the field rep- applies the classical problem consists of the determination of
resentations given above correspond to the results recentije mode structure of the radiation field. Apart from the
obtained for a dielectric-vacuum interfaf®4], by combin-  vacuum, a proper mode decomposition is only feasible when
ing the microscopic Huttner-Barnett modél5] for a bulk the absorption can be disregarded, that is, for real permittiv-
dielectric and the mode-expansion scheme for the free spad®. From the Kramers-Kronig relations it is clear that such
with the boundary conditions on the electric and magneti@n assumption can only be justified for certain intervals of
fields at the surface of discontinuity. the frequency spectrum. Exactly for these frequency domains
the Green-function expansion takes the familiar form of a
mode expansioriwith frequency-dependent real refractive
index), which shows that the standard formalism that rests on

On the basis of a Green-function expansion we have prea real permittivity is included in the quantization scheme
sented a concept of quantization of the phenomenologicaleveloped as a limiting case.

Maxwell theory for radiation in linear dielectrics, which is ~ When in a given frequency interval the absorption is
consistent with the Kramers-Kronig relations and the propesmall compared with the dispersion the theory shows that the
canonical(equal-tim¢ commutation relation for the vector effect of absorption can be taken into account bigaas)-
potential and the electric-field strength. It may be regarded agode expansion in the sense that ordinary modes are associ-
an extension of the microscopic Huttner-Barnett md@s]  ated with space-dependent “photon” destruction and cre-
to more general linear dielectrics described in terms of ation operators that spatially evolve according to quantum
phenomenological complex permittivity that satisfies theLangevin equations. It is worth noting that the Langevin-
Kramers-Kronig relations. These relations ensure that dispeequation formalism also applies to radiation in strongly ab-
sion and absorption are correctly associated with each othegorbing linear dielectrics, when an interpretation as photon
It is worth noting that the quantization scheme also applies tglestruction and creation operators of the space-dependent
radiation in multilayer dielectric structures. The advantage ofmplitude operators that can be associated with monochro-
the Green-function approach is that all the information on thenatic radiation-field excitations fails.

dielectric, such as its dispersive and absorptive properties Let us briefly comment on the operator source field
and its spatial structure, is included in the classical Greef(r,w) that was introduced. Formally, this field is required to

[A(X),E(X')]=~ ih 5(X x'). (81)

IV. SUMMARY AND CONCLUSIONS
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ensure that the propeequal-tim¢ commutation relations 92 5

[Ai(r),E;j(r")] are preserved for any andr’. Physically, - —axiakak"(r’r @)+ —axkanGii/(r,r @)

the sources that build up the dielectric matter are also respon-

sible for the quantum noise associated with the absorption of w2 .

light. Hence, in the frame of quantum theory the effect of the + Ez—e(r,w)G” H(r,r' )= é‘ﬁ,(r,r’,w), (A3)

dielectric matter on the radiation cannot be described only in
terms of a(complex permittivity but is necessarily associ-
ated with the inclusion into the Maxwell equations of a
matter-assisted quantum source. Cledily,w) cannot be a
proper noise operator whose average vanishes at all spaE
pointsr, otherwise the average of the vector potential would
identically vanish. Dependent upon the direction of propaga- Ai(r,w):J d3r’G”,(r,r’,w)]m,(r’,w), (A4)
tion, only for certain space domains the averagd(ofw) B B

can reasonably vanish. In this connection, the basic fiel(g0 that

f(r,w) originally introduced into the theory can be used to

define both system and proper noise fields that are associated "

with each other by quantum Langevin equations. In this way, ﬁi(f)=f dwf d*'Gii (1,1, @)jni(r', @) +H.c..

where theé function Bﬁ,(r,r’,w) also satisfies the general-
ized condition of transversality. When the Green function is
gown, then the solution of E¢A1) can be given by

the averages of the system fields can be related to the solu- (A5)
tions of the classical homogeneous wave equation, provided
that the averages of the noise fields vanish. In particular, for bulk dielectrics when the permittivity does

In the paper we have considered quantized radiation ifot vary with spaceﬁﬁ,(r,r’,w) reduces to the ordinary

inhomogeneous dielectric mattgr whose cpmplex pe.rm'tt'v't%ransverseé function 8-,(r—r') and the now transverse
e(r,w) can be regarded as being a multistep functiom,of f

which is typically the case in a number of applications, suchGreen functionG;;(r,r',w) satisfies the equation

as propagation of light through multislab dielectric devices. .» w2

The space can be subdivided into elements, so that in each—— G;;/(r,r’,w)+ — ()G (1,1, o)
element the permittivity is spatially constant and the vector/*kXk c

potential can be assumed to be transverse. It should be

pointed out that the use of a(r,w) that continuously de- =8, (r=1"), (A6
pends omr needs additional considerations, because the or- _
dinary condition of transversality does not apply. whose solution reads as

ACKNOWLEDGMENTS Gii,(r,r’,w)zf dr'G(r,r",w) 8 (r"=r"), (A7)
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meinschaft(74021 40 223 When the permittivity varies with space the determination
of the Green function is, in general, very difficult. Consider-
APPENDIX A: THREE-DIMENSIONAL MULTILAYER ing multilayer dielectric structures, we may assume that the
SYSTEMS space can be subdivided into elements where the permittivity

o . ) is (spatially) constant. Since in each space element(B&)
When the permittivity is spatially varying, from Max- applies, the Green function can be obtained by adding to a

well's equations we obtain, in place of EQ9), bulk-material solution of the typéA7) a solution of the ho-
) ) mogeneous equation associated with &®$) in such a way

_ Ak(r,w)+ Ai(r,w) that thg b_oundary (;ondltlons at the sur_facgs of discontinuity

X IX— IXKIX— are satisfied. Physically, the two contributions to the Green

function describe the emission in homogeneous space of ra-
diation from pointlike sources and its reflection at and trans-
mission through the surfaces of discontinuity. The equations
given above are of course valid in both the classical and
where the generalized Coulomb gauge guantum descriptions. Note that in each space element the
vector potentialA5) is transverse.

Now, the relations(26) — (28) are used to specify the
current in each space element in the integral in @) as
A an operator noise source associated with dissipation. Calcu-
has been usefhote thatj,(r,) is transversg Here and in lating the equal-time commutatgrA;(r),E;(r’)], we see
the following we adopt the convention of summation overthat the fieldgat the positions andr’) that can contribute
repeated vector-component indices. We now introduce th&éo the commutator at chosen time arigdirectly and/or
(tensorial Green function that satisfies the generalized conthrough reflections and transmissipfrom pointlike sources
dition of transversality of the typeA2), and solves the equa- excited at the same time at distancés r andr”—r'. From
tion causality arguments, we therefore may conclude that a non-

(,l)2 ~ ~
+Z (M)A 0)=([ o), (A1)

J A
a—xi[f(f,w)ﬁi(r,w)ko (A2)
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vanishing commutator can only be expected wheandr’
belong to equal space elements, with-r’—r. The rel-

1827

APPENDIX B: PROOF OF EQUATIONS (42) AND (67)
The symmetry of the Green function

evant sources must be in the same element as the points of

observation andtime-delayedl contributions associated with

G(x,Y,0)=G(Y,X,w) (B1)

reflections and/or transmissions can be excluded from corimplies that
sideration, because of the equal-time condition. That is, the 5 2

only relevant part of the Green function is the bulk-material
solution (A7), which just yields(within each space element

the commutation relatiof25), as has been shown j29].

(,U2 * *®
| avetr.o160y.0)67 (¢ y.0)= - j_de[WzG(X,y,w)

which after integration by parts reads as

(1)2 hd 0 J
7| dvey w6y (K y.0)- fmdy[EG(x,y,w)

[note that limy,_...G(x,y,w)=0]. Taking the complex con-
jugate of Eq.(B4), interchangingx andx’, and subtracting
the resulting equation from E¢gB4), we obtain the integral
relation

(l)2 *
?J‘iwdyel(ylw)G(vaiw)G* (X, =y:w)

=%i[e(x,x',w)—G*(x',x,w)], (BS)

which in the case when the permittivity does not vary with

space reduces to

(.Uz *
? E|((l)) inocdy G(vaaw)G* (X, !yiw)

1
=§i[G(x,x’,w)—G*(x’,x,w)]. (B6)
APPENDIX C: PROOF OF EQ. (41
To calculate
Coux)= 2mieqC. 2
* w
xf o n‘l(w)exp{i En(w)|x—x’ )
(Cy

2 C00Y.0)+ zely,0)B00Y,0)= 8x-y). (B2)

Multiplication of Eq.(B2) by G*(x’,y,w) andy integration
yields

(92

G*(x'y,0)+G* (X' ,X,w), (B3)

+G*(x' X, w) (B4)

Jd
* !
_ayG (x"y,w)

we substitute in Eq(C1) for the exponential the Fourier
decompositiorjcf. Eq. (37)]

LW
exp{lgn(w)|x—x’|

2icon(w)

* jk(x—x")
dk € w’e(w)—c’k?

— o0

:277'

(C2
and change the order of integrations. We then find that

" dk k)

—0o0

C(X’XI): ZWZEOL/?Z

xfw oy
e wle(w)—Cc%k®

Since €({)) is an analytical function in the upper complex
half plane without zeros, and

(C3

lim e(Q)=1, (C9
Qo
the w integral can be evaluated as follow@ £ Re?):
| o
e Y 0%e(w)— C2K2
- R2g2i0
:—Iqlinwfo IdHRZGZIHG(RéQ)—kZCZ:_IW. (C5)
Hence, from Eqgs(C3) and (C5) we finally obtain
i o .
"N— _ k(x—x")
C(X,X ) 27760;764"—wdk é
i%
=— S(x—x"). (C6)

€p. V4
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APPENDIX D: PROOF OF EQUATION (78)
Using Eq.(74), Eq. (78) reads as

fﬁwdw or jj (0)Ry(|X], X[, @)

_ *® erj/(w) L w
B f_ocdw 2in;(w) exple

wherer;; (o) is given in Eq.(76). Introducing in Eq.(D1)
the Fourier decomposition

ni(w)(IX[+[x"])|, (D1)

nj(Re’—n; (R’

T. GRUNER AND D.-G. WELSCH 53

Lo
ex;{l Enj(w)(|x|+|x’|)

i dk e x) 2icon;(w)

27 wznj(w)—czkz’ (©2)

using Eq.(76), and changing the order of integrations leads
to the w integral

. n](w)—n]r(w) w
'”'(k)_f,wd“’ ni(w)+n;(w) w’nj(w)—c?*k?*’
(D3)

Recalling the properties (1), from similar arguments as
in Appendix C we find that!(l Ré?)

RZeZi 4

i (k)= “mf dan (R%)+n; (R’ R%%%;(Re’) —k3c?

R—ox

Note that

lim [n;(Q)—n;/(Q)]=0.
O—w

(D5)

APPENDIX E: PROOF OF EQUATION (79

Combining Eqgs(79) and(75), we may write

j_wdv wtjjr(w)Tjj,(|X|,|X’|,w)

ctjj (o) W
J dw2|n( p[c[

wheret;;, (o) is given in Eq.(77). Using in Eq.(E1) the
Fourier decompositions

nj(a))|X'|+nj'(w)|X|] '
(ED)

2n;(Re’)

=0. (D4)

expri%[nj(w)lx’|+njf(w)|x|]]

:_1 jw dkékxfw dk/eik’x'
(2m)*) = e
2icon;(w) 2iconj ()
><wznj(w)—czk’2 w’nj (w)—c’k?’

(E2

using Eq.(77), and changing the order of integrations, we
leave with thew integral
nj(a))+nj/(w)

I]J'(k’k,): J,mdw

w2

" [wn;(0)— K Z[w?n; (o) — K2

(E3)

Following the lines outlined in Appendixes C and D we ob-
tain

R3e3i 4

|”r(k,k'):— lim f ido J(Ré0)+n (Rée) [R282I0n (Réo)

R— o

R—o

—li Jd ! 0
im | idd=—=5=0.
o Ré’

k/Z][RZGZIOnj ,(Réf)) _ C2k2]

(E4)
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