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A quantization scheme for the radiation field in dispersive and absorptive linear dielectrics is developed,
which applies to both bulk material and multilayer dielectric structures. Starting from the phenomenological
Maxwell equations, where the properties of the dielectric are described by a permittivity consistent with the
Kramers-Kronig relations, an expansion of the field operators is performed that is based on the Green function
of the classical Maxwell equations and preserves the equal-time canonical field commutation relations. In
particular, in frequency intervals with approximately vanishing absorption the concept of quantization through
mode expansion for dispersive dielectrics is recognized. The theory further reveals that weak absorption gives
rise to space-dependent mode operators that spatially evolve according to quantum Langevin equations in the
space domain. To illustrate the applicability of the theory to inhomogeneous structures, the quantization of the
radiation field in a dispersive and absorptive one-interface dielectric is performed.

PACS number~s!: 42.50.Ct, 03.70.1k

I. INTRODUCTION

To describe the quantum features of the propagation of
light through dielectric matter, such as optical fibers or di-
electric multislab devices, quantization of the phenomeno-
logical Maxwell equations that includes both dispersion and
absorption and applies to both homogeneous and inhomoge-
neous matter is desired. The problem of quantum electrody-
namics in the presence of linear dielectrics has widely been
studied and various concepts have been developed to allow
for matter with real permittivity. In this context, both disper-
sionless matter@1–10# and dispersive dielectrics@11–14#
have been considered and extensions to nonlinear dielectrics
@9,13,15–23# have been given.

A central problem related to all these approaches is the
inclusion of absorption into the propagation of light in di-
electric matter. It is well known that the permittivity of a
linear dielectric is a complex function of frequency, where
the real and imaginary parts describing the effects of disper-
sion and absorption, respectively, are related by the Kramers-
Kronig relations. Since dispersion is always associated with
absorption, the losses must necessarily be included into a
rigourous quantization scheme. In particular, the quantization
should be performed in such a way that it is consistent with
the Kramers-Kronig relations and the familiar~equal-time!
canonical commutation relations for the overall electric and
magnetic fields.

The problem has been considered by a number of authors
@24–27#. To our knowledge, a systematic and quantum-
theoretically consistent description of quantized radiation in
dispersive and absorptive linear bulk dielectrics was first de-
veloped by Huttner and Barnett@25#. Using the microscopic
Hopfield model of a dielectric@28# and representing the mat-
ter by a collection of interacting harmonic-oscillator fields~a
polarization field and a continuum of reservoir fields!, they
diagonalized the coupled radiation-matter Hamiltonian.
Since the influence of the medium can be entirely described

in terms of the complex frequency-dependent permittivity,
the Huttner-Barnett model can be extended to dielectrics
other than microscopic harmonic-oscillator media in order to
obtain a general quantization scheme for radiation in disper-
sive and absorptive linear dielectrics of~phenomenologi-
cally! given permittivities@29#.

To generalize this quantization scheme to radiation in
multilayer dielectric structures, in the present paper we ana-
lyze it in terms of the Green function of the classical, phe-
nomenological Maxwell equations that describe the propaga-
tion of radiation in dispersive and absorptive linear
dielectrics in the absence of external sources. Allowing for a
frequency-dependent complex permittivity that is consistent
with the Kramers-Kronig relations and introducing a~ran-
dom! operator noise source associated with the absorption of
radiation, we regard these equations as quantum-theoretical
operator equations. Their solution through a Green-function
expansion of the operator of the vector potential may be
regarded as the natural generalization of the familiar mode
expansion applicable to source-free radiation in~approxi-
mately! lossless dielectrics. If in a chosen frequency interval
the absorption may be disregarded, in this frequency interval
the Green function expansion reduces to a mode expansion
with real frequency-dependent permittivity. Clearly, when
the absorption vanishes for all frequencies the permittivity
must be unity anywhere, which just corresponds to radiation
in free space. For weak absorption the theory yields~in the
chosen frequency interval! space-dependent mode operators
whose spatial evolution is governed by quantum Langevin
equations.

The Green-function approach is not restricted to a particu-
lar model of the medium, but applies to any linear Kramers-
Kronig dielectric. Further, it applies not only to bulk material
but also to multilayer dielectrics, such as multislab devices,
their spatial structures being included in the Green function
of the classical problem. The latter can advantageously be
used in the study of the action of optical instruments, such as
macroscopic dielectric bodies that respond linearly to the

PHYSICAL REVIEW A MARCH 1996VOLUME 53, NUMBER 3

531050-2947/96/53~3!/1818~12!/$10.00 1818 © 1996 The American Physical Society



radiation field under study. In this context, the correct quan-
tum optical input-output relations that include the noise con-
tributions associated with the absorption of radiation can be
derived in a very systematic way.

The paper is organized as follows. In Sec. II the concept
of quantization for homogeneous dielectrics is outlined and
the main features of the theory are illustrated by considering
linearly polarized radiation propagating in one dimension. In
particular the connection between the Green-function ap-
proach and the concept of mode expansion is discussed. In
Sec. III the theory is extended to multilayer dielectric struc-
tures, and the problem of a one-interface dielectric is consid-
ered in more detail. A summary and conclusions are given in
Sec. IV. Somewhat lengthy calculations are outlined in the
Appendixes.

II. HOMOGENEOUS DIELECTRICS

A. Classical description

In the phenomenological classical Maxwell theory
~ @30,31#! the propagation of radiation in a dispersive and
lossy linear~homogeneous and isotropic! dielectric that is
free of external sources is frequently described by the equa-
tions

curlE52Ḃ, divB50, ~1!

curlH5Ḋ, divD50, ~2!

whereB5m0H and the displacement fieldD(r ,t) is related
to the electric fieldE(r ,t) as

D~r ,t !5e0FE~r ,t !1E
0

`

dt x~t!E~r ,t2t!G . ~3!

Expressing the electric and magnetic fields in terms of the
vector potential,

E52Ȧ, B5curlA, ~4!

the Maxwell equations~1! are automatically satisfied and
Eqs.~2! yield

DA~r ,t !2
1

c2 F Ä~r ,t !1E
0

`

dtx~t!Ä~r ,t2t!G50, ~5!

where divA50. We now introduce the Fourier transforms,

A~r ,t !5E
0

`

dv e2 ivtA~r ,v!1c.c., ~6!

E~r ,t !5E
0

`

dv e2 ivtE~r ,v!1c.c., ~7!

E~r ,v!5 ivA~r ,v!, ~8!

B~r ,t !5E
0

`

dv e2 ivtB~r ,v!1c.c., ~9!

B~r ,v!5curlA~r ,v!, ~10!

D~r ,t !5E
0

`

dv e2 ivtD~r ,v!1c.c., ~11!

D~r ,v!5e0e~v!E~r ,v!, ~12!

where

e~v!511E
0

`

dt eivtx~t! ~13!

is the frequency-dependent complex permittivity introduced
phenomenologically. The wave equation~5! is satisfied when

DA~r ,v!1
v2

c2
e~v!A~r ,v!50. ~14!

Regardinge as a function of the complex frequencyV,
e(V) satisfies the relation

e~2V* !5e* ~V! ~15!

and is analytical in the upper complex half plane without
zeros. Further, the real and imaginary parts
eR(v)5Re$e(v)% and e I(v)5Im$e(v)%, respectively, sat-
isfy the well-known Kramers-Kronig relations

eR~v!215
P

pE2`

`

dv8
e I~v8!

v82v
, ~16!

e I~v!52
P

pE2`

`

dv8
eR~v8!21

v82v
, ~17!

where P is the principal value.

B. Quantum description

Sincee(v) is necessarily complex, Eq.~14! @or Eq. ~5!#
cannot be valid as an operator equation forÂ(r ,v)@or
Â(r ,t)# in the sense of quantum theory. Otherwise,Â(r ,v)
would be spatially damped and the equal-time field commu-
tators @Âi(r ,t),Êj (r 8,t)# would not be preserved for any
space pointsr and r 8. From the quantum theory of damped
systems it is well known that reinterpreting classical evolu-
tion equations for damped systems as quantum-theoretical
operator equations necessarily requires the introduction into
the equations of additional operator noise sources@32#. With
regard to radiation in dielectric matter, we may therefore
include in the theory the effect of quantum noise associated
with propagation-assisted damping as follows. We regard the
radiation-field quantities as operators and supplement the
Maxwell equations as given in Sec. II A with an operator
noise currentĵ n . Introducing the Fourier transform of the
~Schrödinger! operator of the vector potential,

Â~r !5E
0

`

dv Â~r ,v!1H.c. ~18!

@cf. Eq. ~6!#, the conditional equation for the operator
Â(r ,v) now reads as@in place of Eq.~14!#
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DÂ~r ,v!1
v2

c2
e~v!Â~r ,v!5 ĵn~r ,v!. ~19!

Using the method of Green function, the solution of Eq.~19!
can be written as

Â~r ,v!5E d3r 8G~r ,r 8,v! ĵn~r 8,v!, ~20!

where the Green functionG(r ,r 8,v) satisfies the equation

DG~r ,r 8,v!1
v2

c2
e~v!G~r ,r 8,v!5d~r2r 8! ~21!

and the boundary condition that it vanishes at infinity, which
@for e I(v).0# corresponds to the well-known Sommerfeld
condition@33# that is usually applied when the permittivity is
real. Clearly, when the presence of~inhomogeneous! dielec-
tric bodies gives rise to surfaces of discontinuity, then
G(r ,r 8,v) is also required to be continuously differentiable
at these surfaces, so that the tangential components ofÊ and
the normal components ofD̂ are continuous~cf. Sec. III!.
Note that whene I(v).0, adding to Eq.~20! a nontrivial
solution of the homogeneous wave equation@Eq. ~19!, with
ĵn(r ,v)50# would violate the boundary condition at infinity.
In particular, for homogeneous dielectrics the Green function
is given by

G~r ,r 8,v!52
1

4pur2r 8u
expF i v

c
Ae~v!ur2r 8uG . ~22!

Using Eqs.~18! and ~20!, the ~Schrödinger! operators of
the vector potential and the electric-field strength can be rep-
resented as

Â~r !5E
0

`

dvE d3r 8G~r ,r 8,v! ĵn~r 8,v!1 H.c., ~23!

Ê~r !52 Ȧ̂~r !

5 i E
0

`

dvvE d3r 8G~r ,r 8,v! ĵn~r 8,v!1 H.c.. ~24!

As already mentioned, the source termĵn(r ,v) is required in
order to take into account the dissipation-assisted quantum
noise. It is therefore clear that when the imaginary part of the
permittivity becomes~in certain frequency domains! negligi-
bly small @e I(v)→0#, then~in these domains! ĵn(r ,v) may
be disregarded as well@ ĵn(r ,v)→0#. Mathematically, the in-
troduction of ĵn(r ,v) must ensure the preservation of the
well-known canonical field commutation relations

@Âi~r !,Êj~r 8!#52
i\

e0
d i j

'~r2r 8! ~25!

in the presence of absorption@d i j
'(r2r 8), transverse

d function#. This can be achieved by choosing@29#

ĵn~r ,v!5
v

c2
A \

pe0
e I~v! f̂~r ,v!, ~26!

@ f̂ i~r ,v!, f̂ j
†~r 8,v8!#5d i j

'~r2r 8!d~v2v8!, ~27!

@ f̂ i~r ,v!, f̂ j~r 8,v8!#5@ f̂ i
†~r ,v!, f̂ j

†~r 8,v8!#50, ~28!

which is in agreement with the microscopic Huttner-Barnett
model@25#. In the Heisenberg picture the operator basic field
obviously evolves as

f̂~r ,v,t !5 f̂~r ,v,t8!e2 iv~ t2t8!, ~29!

which corresponds to the equation of motion

f̂̇52 iv f̂5
1

i\
@ f̂,Ĥ#, ~30!

where the Hamiltonian reads as

Ĥ5E d3rE
0

`

dv \v f̂†~r ,v!• f̂~r ,v!. ~31!

It is worth noting that when~in a certain frequency inter-
val! e I(v)→0 and henceĵn(r ,v)→0, the vector potential
Â(r ) in the form ~23! does not vanish. A careful inspection
of the r 8 integral in Eq.~23! reveals that, on using Eq.~22!
and Eqs.~26! – ~28!, Â(r ) tends to the familiar representa-
tion of the source-free field through mode decomposition
@29#, cf. Eq.~50! for radiation propagating in thex direction.
In particular, in the absence of dielectric matter@e(v)
→1 ; v# Â(r ) in Eq. ~23! reduces to the source-free field in
free space. Hence, the Green-function expansion~23! @to-
gether with Eq.~22! and Eqs.~26! – ~28!# may be regarded
as a natural extension of the familiar mode expansion of
radiation in free space to damped radiation in a dispersive
and absorptive linear dielectric. The effect of additional
sources embedded in the dielectric matter~and resonantly
interacting with the radiation! may then be described by an
overall Hamiltonian that consists of the radiation-dielectric
Hamiltonian ~31!, a source Hamiltonian, and a standard
radiation-matter interaction energy, such as}p̂•Â (p̂, mo-
mentum of a charged particle!. Here, the vector potentialÂ
can be expressed, in principle, in terms of the basic-field
variablesf̂ and f̂†, on using Eqs.~23! and~26!, and~nonlin-
early coupled! Heisenberg equations of motion for the source
variables and the field variablesf̂ and f̂† can be derived.
Clearly, the current densityĵ s associated with such sources is,
in general, quite different fromĵn . It should be noted that the
canonical formalism~of Heisenberg equations of motion!
implies preservation of equal-time commutation relations.

For the sake of clarity, let us illustrate the main features of
the concept for linearly polarized radiation propagating in
the x direction @Â(r ,v)→Ây(x,v)[Â(x,v), f̂(r ,v)→
f̂ y(x,v)[ f̂ (x,v)#, which effectively reduces the system to
one spatial dimension. In this case the inhomogeneous wave
equation~19! @together with Eq.~26!# takes the form

]2

]x2
Â~x,v!1

v2

c2
e~v!Â~x,v!5

v

c2
A \

pe0A
e I~v! f̂ ~x,v!,

~32!
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whereA is the normalization area perpendicular to thex di-
rection, and the basic-field commutation relations~27! and
~28! read as

@ f̂ ~x,v!, f̂ †~x8,v8!#5d~x2x8!d~v2v8!, ~33!

@ f̂ ~x,v!, f̂ ~x8,v8!#5@ f̂ †~x,v!, f̂ †~x8,v8!#50. ~34!

The Green-function expansion ofÂ(x,v) is given by

Â~x,v!5
v

c2
A \

pe0A
e I~v!E

2`

`

dx8G~x,x8,v! f̂ ~x8,v!,

~35!

whereG(x,x8,v) satisfies the equation

]2

]x2
G~x,x8,v!1

v2

c2
e~v!G~x,x8,v!5d~x2x8!. ~36!

It can easily be proved that the solution of Eq.~36! that
satisfies the correct boundary conditions at6` is

G~x,x8,v!5
1

2pE2`

`

dk eik~x2x8!
c2

v2e~v!2c2k2

5F2i v

c
n~v!G21

expF i v

c
n~v!ux2x8uG ,

~37!

where

n~v!5Ae~v! ~38!

is the complex refractive index@note that e I(V).0 for
Re$V%.0#.

To show that the~Schrödinger! operators of the vector
potential

Â~x!5E
0

`

dv
v

c2
A \

pe0A
e I~v!

3E
2`

`

dx8G~x,x8,v! f̂ ~x8,v!1H.c. ~39!

and the electric-field strength

Ê~x!5 i E
0

`

dv
v2

c2
A \

pe0A
e I~v!

3E
2`

`

dx8G~x,x8,v! f̂ ~x8,v!1H.c. ~40!

satisfy the canonical commutation relation

@Â~x!,Ê~x8!#52
i\

Ae0
d~x2x8!, ~41!

we note that the integral relation

v2

c2
e I~v!E

2`

`

dyG~x,y,v!G* ~x8,y,v!

5
1

2
i @G~x,x8,v!2G* ~x8,x,v!# ~42!

is valid ~see Appendix B!. Combining Eqs.~39! and ~40!,
recalling the commutation relations~33! and~34!, and using
the relation~42!, straightforward calculation yields

@Â~x!,Ê~x8!#5
\

pe0c
2A

E
2`

`

dvvG~x,x8,v! ~43!

@note that G* (x,x8,v)5G(x,x8,2v) and G(x,x8,v)
5G(x8,x,v)#. Substituting in Eq.~43! for the Green func-
tions the explicit expressions as given in Eq.~37!, we find
that

@Â~x!,Ê~x8!#5
\

2p i e0cA

3E
2`

`

dv n21~v!expF i v

c
n~v!ux2x8uG .

~44!

Performing thev integral, on using the properties ofe(v),
indeed yields the commutation relation~41! ~see Appendix
C!.

C. Limiting case of mode decomposition

It should be pointed out that the quantization scheme also
applies to cases when the losses in the dielectric may be
disregarded, that is,e I→0. These systems are usually treated
by applying the method of mode decomposition. Clearly, as-
suminge I50 and allowing foreRÞ1 in the whole frequency
domain, one strongly violates the Kramers-Kronig relations.
Therefore, quantization through mode decomposition is,
apart from the vacuum, an approximation that can only be
applied to radiation whose relevant frequencies are in inter-
vals where absorption may be disregarded.

To show that quantization through mode decomposition is
involved in the quantization scheme developed as a limiting
case, we use the Green function~37! and rewrite Eq.~39! as

Â~x!5E
0

`

dvA \

4pcve0b~v!A

b~v!

n~v!
@eib~v!vx/câ1~x,v!1e2 ib~v!vx/câ2~x,v!#1H.c., ~45!
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where

â6~x,v!5
1

i
A2g~v!

v

c
expF7g~v!

v

c
xG

3E
2`

6x

dx8expF2 i
v

c
n~v!x8G f̂ ~6x8,v!.

~46!

In Eqs.~45! and ~46! the notation

n~v!5Ae~v!5b~v!1 ig~v! ~47!

has been used. The subscripts1 and2 denote propagation
to the right and left, respectively. From Eq.~46! we derive,
on recalling Eq.~33!,

@ â6~x,v!,â6
† ~x8,v8!#5e2g~v!vux2x8u/cd~v2v8!.

~48!

So far, Eqs.~45! – ~48! are exact. Let us now assume that
in a chosen frequency intervalDv the absorption is suffi-
ciently small, so that the condition

g~v!!b~v! ~49!

is satisfied. Equations~46! and ~48! imply that when
u2g(v)vux2x8u/cu→0 the operatorsâ6(x,v) become in-
dependent ofx. In this case Eq.~45! reduces, in the chosen
frequency intervalDv, to the familiar mode-expansion re-
sult

ÂDv~x!5E
~Dv!

dvA \

4pcve0b~v!A
@eib~v!vx/câ1~v!1e2 ib~v!vx/câ2~v!#1 H.c., ~50!

where the associated photon operatorsâ6(v) and â6
† (v)

satisfy the commutation relations

@ â6~v!,â6
† ~v8!#5d~v2v8!. ~51!

Moreover, let us assume that the widthDv of the chosen
frequency interval is small compared with its midfrequency
vm, so thatb(v)'b(vm), and confine ourselves to resolv-
ing distancesDx that are large compared with the character-
istic lengthc/(b(vm)Dv),

vm@Dv@
c

b~vm!Dx
. ~52!

Using Eqs.~50! and ~51! and calculating the commutator
@ÂDv(x),ÊDv(x8)# in the approximation given by the in-
equalities~52!, we easily recognize the well-known result
that

@ÂDv~x!,ÊDv~x8!#52
i\

AeR~vm!e0
d~x2x8! ~53!

@eR(vm)5b2(vm), note that thed function is defined on a
length scale of the order of magnitude ofc/(b(vm)Dv),
because of the coarse-graining condition
Dx@c/(b(vm)Dv)#. Equation~53! reveals that with respect
to the chosen frequency interval,ÂDv(x) and
D̂Dv(x)5eR(vm)ÊDv(x) may be regarded as canonically
conjugate field variables. This commutation rule is com-
monly used in the standard theory of quantization of the
radiation field in dielectric matter characterized by real and
constante ~see, e.g.,@13#!.

D. Quantum Langevin equations

To make contact with the standard quantum theory of
damping ~see, e.g., @32#!, we note that the operators

â6(x,v) defined in Eq.~46! may be regarded as system
operators that describe the space-dependent amplitudes of
monochromatic radiation-field excitations in dispersive and
absorptive dielectric matter. Classically, these amplitudes are
exponentially damped out in space, the characteristic length
being given by@g(v)v/c#21. In quantum theory, the spatial
evolution of the operatorsâ6(x,v) is therefore expected to
be governed by quantum Langevin equations, where the
quantum noise associated with the damping is taken into
account by operator Langevin noise sources. Indeed, from
Eq. ~46! we easily derive

]

]x
â6~x,v!57g~v!

v

c
â6~x,v!1F̂6~x,v!, ~54!

where the

F̂6~x,v!56
1

i
A2g~v!

v

c
expF7 ib~v!

v

c
xG f̂ ~x,v!

~55!

have all the properties of operator Langevin noise sources.
We first calculate the commutators@ F̂6(x,v),F̂6

† (x8,v8)#.
Recalling Eq.~33!, straightforward calculation yields

@ F̂6~x,v!,F̂6
† ~x8,v8!#52g~v!

v

c
d~x2x8!d~v2v8!.

~56!

Next, from Eqs.~55! and~46! together with Eq.~33! we find
that

@ â6~x,v!,F̂6
† ~x8,v8!#50 if 6x7x8,0. ~57!

Equations~56! and ~57! reveal that~54! indeed represents
quantum Langevin equations in the space domain, which is
in agreement with@25#. Their solutions may be written as
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â6~x,v!5â6~x8,v!expF7g~v!
v

c
~x2x8!G

1E
x8

x

dyF̂6~y,v!expF7g~v!
v

c
~x2y!G ,

~58!

where6x7x8>0, which fully agrees with Eq.~46!. Substi-
tuting in the commutators@ â6(x,v),â6

† (x8,v8)# for the op-
eratorsâ6(x,v) the solutions~58! of the Langevin equations
and using the relations~56! and ~57!, we easily see that the
correct commutation relations~48! are satisfied.

It should be pointed out that both the operators
â6(x,v), â6

† (x,v) and the operatorsF̂6(x,v), F̂6
† (x,v)

are related to the basic-field operatorsf̂ (x,v), f̂ †(x,v) origi-
nally introduced@cf. Eqs.~46! and ~55!#. Clearly, using the
Langevin equation scheme, knowledge of the explicit rela-
tions is no longer necessary, because all relevant information
is now contained in Eqs.~54!, ~56!, and~57!. The Langevin-
equation formalism enables one to easily derive quantum
optical input-output relations of the type~58!. In particular,
we may let@cf. Eq. ~58!#

^ f̂ ~x,v!&50, ~59!

^â6~x,v!&5^â6~x8,v!&expF2g~x!
v

c
ux2x8uG , ~60!

where6x7x8>0, with arbitrary ^â6(x8,v)&. Taking the
average of Â(x,t), from Eq. ~45! @ â6(x,v)
→â6(x,v)e

2 ivt# together with Eqs.~59! and ~60! we just
obtain the general solutions of the classical homogeneous
wave equations for forward- and backward-propagating ra-
diation. As we will show in a forthcoming presentation, the
method also applies to the determination of the~nontrivial!
input-output relations observed when quantized radiation
falls on spatially structured dielectric bodies of finite exten-
sion. In particular, the introduction of system and noise op-
erators by means of the Green function then ensures that the
boundary conditions at the surfaces of discontinuity are au-
tomatically satisfied.

As long as the condition~49! is satisfied, the operator of
the vector potential~in the chosen frequency intervalDv)
reads as@see Eq.~45!#

ÂDv~x!5E
Dv
dvA \

4pcve0b~v!A
@eib~v!vx/câ1~x,v!1e2 ib~v!vx/câ2~x,v!#1H.c. ~61!

Equations~61! and~54! @together with~56! and~57!# may be
regarded as the basic equations describing the propagation of
quantum light pulses in dispersive and absorptive dielectrics,
provided that the absorption is not too strong. When the con-
dition ~49! is not satisfied the exact expansion~45! must be
used in place of the quasimode expansion~61!. The condi-
tion ~49! may therefore be regarded as being the analogy to
the Markov condition in the standard theory of temporally
damped~quasi!modes. We finally mention that in many cases
when light pulses propagate through dielectric matter, such
as optical fibers, the absorption may only be expected to be
significant in the direction of pulse propagation. Disregard-
ing the absorption perpendicular to the direction of propaga-
tion, the field structure in this direction may be obtained
from standard mode expansion.

III. MULTILAYER DIELECTRICS

A. Basic equations

In the ~approximative! quantization scheme through mode
expansion the classical problem consists of solving the ho-
mogeneous wave equation~Helmholtz equation! to deter-
mine the~orthonormal! set of radiation-field modes and ex-
press the field operators in terms of the bosonic creation and
destruction operators associated with the modes. Allowing
for complex permittivities, the analogous problem now con-
sists of the determination of the classical Green function. The
resulting expansion~39! may be regarded as the natural gen-
eralization of the mode expansion~50! to the case of radia-

tion in dispersive and lossy dielectrics. It is well known that
the method of quantization through mode expansion can be
extended to inhomogeneous dielectrics in a straightforward
way @8,11#. Similarly, the method of Green function may be
expected to also apply to inhomogeneous dielectrics. Let us
restrict our attention to multilayer dielectric structures, which
are typically used in practice. Since the space can be subdi-
vided into elements where the permittivity is spatially con-
stant, Eqs.~26! – ~28! can directly be used to introduce
operator noise sources in each element, which implies that
the commutation relations~25! are preserved~see Appendix
A!.

For example, when linearly polarized radiation propagates
along thex axis through a multislab dielectric device, Eq.
~32! becomes

]2

]x2
Â~x,v!1

v2

c2
e~x,v!Â~x,v!

5
v

c2
A \

pe0A
e I~x,v! f̂ ~x!, ~62!

where f̂ (x) and f̂ †(x) satisfy the commutation relations~33!
and~34!. Introducing the Green function satisfying the equa-
tion

]2

]x2
G~x,x8,v!1

v2

c2
e~x,v!G~x,x8,v!5d~x2x8!,

~63!
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in place of Eq.~35! we now have

Â~x,v!5
v

c2
A \

pe0A

3E
2`

`

dx8Ae I~x8,v!G~x,x8,v! f̂ ~x8,v!.

~64!

The ~Schrödinger! operators of the vector potentialÂ(x) and
the electric-field strengthÊ(x) then read as

Â~x!5E
0

`

dv
v

c2
A \

pe0A

3E
2`

`

dx8Ae I~x8,v!G~x,x8,v! f̂ ~x8,v!1H.c.,

~65!

Ê~x!5 i E
0

`

dv
v2

c2
A \

pe0A

3E
2`

`

dx8Ae I~x8,v!G~x,x8,v! f̂ ~x8,v!1H.c.

~66!

Since the generalized version of Eq.~42! reads as

v2

c2 E2`

`

dye I~y,v!G~x,y,v!G* ~x8,y,v!

5
1

2
i @G~x,x8,v!2G* ~x8,x,v!# ~67!

~see Appendix B!, Eq.~43! may easily be proved correct also
in the case when the permittivity varies with space,

@Â~x!,Ê~x8!#5
\

pe0c
2A

E
2`

`

dvvG~x,x8,v!. ~68!

The evaluation of the integral in Eq.~68! requires knowl-
edge of the Green function. Considering an arbitrary multi-
slab dielectric device, the calculation of the Green function is
expected to be very lengthy. Nevertheless, in any case the
commutation relation

@Â~x!,Ê~x8!#52
i\

Ae0
d~x2x8! ~69!

is suggested to come out, because of causality reasons@cf.
Appendix A#.

B. One-interface dielectric

To explicitly show this let us consider an inhomogeneous
dielectric consisting of two bulk dielectrics with a common
interface in more detail. Since such a one-interface dielectric
may be regarded as the basic element of an arbitrary multi-
slab configuration, all the calculations and results given be-
low may be extended to multislab dielectrics in a very
straightforward way.

Assuming the interface atx50, the complex permittivity
as a function ofx may be written as

e~x,v!5Q~2x!e1~v!1Q~x!e2~v!, ~70!

whereQ(x) is the unit step function ande1(v) ande2(v),
respectively, are the complex permittivities of the left-hand
and right-hand bulk dielectrics, so that Eq.~63! reads as

]2

]x2
G~x,x8,v!1

v2

c2
@Q~2x!e1~v!

1Q~x!e2~v!]G~x,x8,v!5d~x2x8!.
~71!

Using standard methods, the solution of Eq.~71! may be
written as follows:

G~x,x8,v!5Q~2x8!@Q~2x!G1
~0!~x,x8,v!1Q~2x!r 12~v!R1~ uxu,ux8u,v!1Q~x!t12~v!T12~ uxu,ux8u,v!#

1Q~x8!@Q~x!G2
~0!~x,x8,v!1Q~x!r 21~v!R2~ uxu,ux8u,v!1Q~2x!t21~v!T21~ uxu,ux8u,v!#. ~72!

Here, theGj
(0)(x,x8,v), j51,2, are the Green functions of

the bulk dielectrics; that is,

Gj
~0!~x,x8,v!5F2i v

c
nj~v!G21

expF i v

c
nj~v!ux2x8uG

~73!

@see Eq.~37!#. The effects of reflection at and transmission
through the interface is described by the functions

Rj~x,x8,v!5F2i v

c
nj~v!G21

expF i v

c
nj~v!~x1x8!G

~74!

and

Tj j 8~x,x8,v!5F2i v

c
nj~v!G21

3expH i v

c
@nj~v!x81nj 8~v!x#J , ~75!

respectively, together with the well-known complex reflec-
tion and transmission coefficients

r j j 8~v!5
nj~v!2nj 8~v!

nj~v!1nj 8~v!
, ~76!
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t j j 8~v!5
2nj~v!

nj~v!1nj 8~v!
. ~77!

Note that the functionsRj (x,x8,v) andTj j 8(x,x8,v) satisfy
the homogeneous wave equation.

Since the Green functionG(x,x8,v) given in Eq.~72! is
continuous and~except for x5x8) continuously differen-
tiable, the vector potentialÂ(x), Eq. ~65!, is continuously
differentiable at the interfacex50. Hence, the radiation field
satisfies the proper boundary conditions at the interface. Sub-
stituting in Eqs.~65! and ~66! for the Green function the
expression~72!, explicit expressions for the operators of the
vector potential and the electric-field strength may easily be
obtained. In particular, quantum Langevin equations for
forward- and backward-propagating fields on the left-hand
and right-hand sides of the interface can be obtained in a
similar way as in Sec. II D. We renounce this procedure here
because of the somewhat voluminous formulas.

Using the Green function as given in Eq.~72! enables one
to explicitly show thatÂ(x) and Ê(x) satisfy the correct
commutation relation. Substituting in Eq.~68! for the Green
function the expression~72!, by straightforward calculation
we find that the reflection and transmission terms do not
contribute to thev integral:

E
2`

`

dv vr j j 8~v!Rj~ uxu,ux8u,v!50 ~78!

~see Appendix D!,

E
2`

`

dv vt j j 8~v!Tj j 8~ uxu,ux8u,v!50 ~79!

~see Appendix E!. Hence we obtain

@Â~x!,Ê~x8!#5
\

2p i e0cA
H Q~2x!Q~2x8!E

2`

`

dv n1
21~v!expF i v

c
n1~v!ux2x8uG

1Q~x!Q~x8!E
2`

`

dv n2
21~v!expF i v

c
n2~v!ux2x8uG J , ~80!

which reveals that~see Appendix C!

@Â~x!,Ê~x8!#52
i\

Ae0
d~x2x8!. ~81!

We would like to mention that whene1(v)51 the field rep-
resentations given above correspond to the results recently
obtained for a dielectric-vacuum interface@34#, by combin-
ing the microscopic Huttner-Barnett model@25# for a bulk
dielectric and the mode-expansion scheme for the free space
with the boundary conditions on the electric and magnetic
fields at the surface of discontinuity.

IV. SUMMARY AND CONCLUSIONS

On the basis of a Green-function expansion we have pre-
sented a concept of quantization of the phenomenological
Maxwell theory for radiation in linear dielectrics, which is
consistent with the Kramers-Kronig relations and the proper
canonical~equal-time! commutation relation for the vector
potential and the electric-field strength. It may be regarded as
an extension of the microscopic Huttner-Barnett model@25#
to more general linear dielectrics described in terms of a
phenomenological complex permittivity that satisfies the
Kramers-Kronig relations. These relations ensure that disper-
sion and absorption are correctly associated with each other.
It is worth noting that the quantization scheme also applies to
radiation in multilayer dielectric structures. The advantage of
the Green-function approach is that all the information on the
dielectric, such as its dispersive and absorptive properties
and its spatial structure, is included in the classical Green

function of light propagation through the dielectric. Clearly,
for a given dielectric matter the determination of the Green
function can be extensive. Nevertheless, it is a purely classi-
cal problem.

It is well known that when the concept of mode expansion
applies the classical problem consists of the determination of
the mode structure of the radiation field. Apart from the
vacuum, a proper mode decomposition is only feasible when
the absorption can be disregarded, that is, for real permittiv-
ity. From the Kramers-Kronig relations it is clear that such
an assumption can only be justified for certain intervals of
the frequency spectrum. Exactly for these frequency domains
the Green-function expansion takes the familiar form of a
mode expansion~with frequency-dependent real refractive
index!, which shows that the standard formalism that rests on
a real permittivity is included in the quantization scheme
developed as a limiting case.

When in a given frequency interval the absorption is
small compared with the dispersion the theory shows that the
effect of absorption can be taken into account by a~quasi!-
mode expansion in the sense that ordinary modes are associ-
ated with space-dependent ‘‘photon’’ destruction and cre-
ation operators that spatially evolve according to quantum
Langevin equations. It is worth noting that the Langevin-
equation formalism also applies to radiation in strongly ab-
sorbing linear dielectrics, when an interpretation as photon
destruction and creation operators of the space-dependent
amplitude operators that can be associated with monochro-
matic radiation-field excitations fails.

Let us briefly comment on the operator source field
f̂(r ,v) that was introduced. Formally, this field is required to
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ensure that the proper~equal-time! commutation relations
@Âi(r ),Êj (r 8)# are preserved for anyr and r 8. Physically,
the sources that build up the dielectric matter are also respon-
sible for the quantum noise associated with the absorption of
light. Hence, in the frame of quantum theory the effect of the
dielectric matter on the radiation cannot be described only in
terms of a~complex! permittivity but is necessarily associ-
ated with the inclusion into the Maxwell equations of a
matter-assisted quantum source. Clearly,f̂(r ,v) cannot be a
proper noise operator whose average vanishes at all space
pointsr , otherwise the average of the vector potential would
identically vanish. Dependent upon the direction of propaga-
tion, only for certain space domains the average off̂(r ,v)
can reasonably vanish. In this connection, the basic field
f̂(r ,v) originally introduced into the theory can be used to
define both system and proper noise fields that are associated
with each other by quantum Langevin equations. In this way,
the averages of the system fields can be related to the solu-
tions of the classical homogeneous wave equation, provided
that the averages of the noise fields vanish.

In the paper we have considered quantized radiation in
inhomogeneous dielectric matter whose complex permittivity
e(r ,v) can be regarded as being a multistep function ofr ,
which is typically the case in a number of applications, such
as propagation of light through multislab dielectric devices.
The space can be subdivided into elements, so that in each
element the permittivity is spatially constant and the vector
potential can be assumed to be transverse. It should be
pointed out that the use of ane(r ,v) that continuously de-
pends onr needs additional considerations, because the or-
dinary condition of transversality does not apply.
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APPENDIX A: THREE-DIMENSIONAL MULTILAYER
SYSTEMS

When the permittivity is spatially varying, from Max-
well’s equations we obtain, in place of Eq.~19!,

2
]2

]xi]xk
Âk~r ,v!1

]2

]xk]xk
Âi~r ,v!

1
v2

c2
e~r ,v!Âi~r ,v!5 ĵ ni~r ,v!, ~A1!

where the generalized Coulomb gauge

]

]xi
@e~r ,v!Âi~r ,v!#50 ~A2!

has been used@note thatĵn(r ,v) is transverse#. Here and in
the following we adopt the convention of summation over
repeated vector-component indices. We now introduce the
~tensorial! Green function that satisfies the generalized con-
dition of transversality of the type~A2!, and solves the equa-
tion

2
]2

]xi]xk
Gki8~r ,r 8,v!1

]2

]xk]xk
Gii 8~r ,r 8,v!

1
v2

c2
e~r ,v!Gii 8~r ,r 8,v!5 d̃ i i 8

'
~r ,r 8,v!, ~A3!

where thed function d̃ i i 8
' (r ,r 8,v) also satisfies the general-

ized condition of transversality. When the Green function is
known, then the solution of Eq.~A1! can be given by

Âi~r ,v!5E d3r 8Gii 8~r ,r 8,v! ĵ ni 8~r 8,v!, ~A4!

so that

Âi~r !5E dvE d3r 8Gii 8~r ,r 8,v! ĵ ni 8~r 8,v!1H.c..

~A5!

In particular, for bulk dielectrics when the permittivity does
not vary with space,d̃ i i 8

' (r ,r 8,v) reduces to the ordinary
transversed function d i i 8

' (r2r 8) and the now transverse
Green functionGii 8(r ,r 8,v) satisfies the equation

]2

]xk]xk
Gii 8~r ,r 8,v!1

v2

c2
e~v!Gii 8~r ,r 8,v!

5d i i 8
'

~r2r 8!, ~A6!

whose solution reads as

Gii 8~r ,r 8,v!5E dr 9G~r ,r 9,v!d i i 8
'

~r 92r 8!, ~A7!

whereG(r ,r 9,v) is given by Eq.~22!.
When the permittivity varies with space the determination

of the Green function is, in general, very difficult. Consider-
ing multilayer dielectric structures, we may assume that the
space can be subdivided into elements where the permittivity
is ~spatially! constant. Since in each space element Eq.~A6!
applies, the Green function can be obtained by adding to a
bulk-material solution of the type~A7! a solution of the ho-
mogeneous equation associated with Eq.~A6! in such a way
that the boundary conditions at the surfaces of discontinuity
are satisfied. Physically, the two contributions to the Green
function describe the emission in homogeneous space of ra-
diation from pointlike sources and its reflection at and trans-
mission through the surfaces of discontinuity. The equations
given above are of course valid in both the classical and
quantum descriptions. Note that in each space element the
vector potential~A5! is transverse.

Now, the relations~26! – ~28! are used to specify the
current in each space element in the integral in Eq.~A5! as
an operator noise source associated with dissipation. Calcu-
lating the equal-time commutator@Âi(r ),Êj (r 8)#, we see
that the fields~at the positionsr and r 8) that can contribute
to the commutator at chosen time arise~directly and/or
through reflections and transmissions! from pointlike sources
excited at the same time at distancesr 92r andr 92r 8. From
causality arguments, we therefore may conclude that a non-
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vanishing commutator can only be expected whenr and r 8
belong to equal space elements, withr 9→r 8→r . The rel-
evant sources must be in the same element as the points of
observation and~time-delayed! contributions associated with
reflections and/or transmissions can be excluded from con-
sideration, because of the equal-time condition. That is, the
only relevant part of the Green function is the bulk-material
solution~A7!, which just yields~within each space element!
the commutation relation~25!, as has been shown in@29#.

APPENDIX B: PROOF OF EQUATIONS „42… AND „67…

The symmetry of the Green function

G~x,y,v!5G~y,x,v! ~B1!

implies that

]2

]y2
G~x,y,v!1

v2

c2
e~y,v!G~x,y,v!5d~x2y!. ~B2!

Multiplication of Eq. ~B2! by G* (x8,y,v) andy integration
yields

v2

c2 E2`

`

dye~y,v!G~x,y,v!G* ~x8,y,v!52E
2`

`

dyF ]2

]y2
G~x,y,v!GG* ~x8,y,v!1G* ~x8,x,v!, ~B3!

which after integration by parts reads as

v2

c2 E2`

`

dye~y,v!G~x,y,v!G* ~x8,y,v!5E
2`

`

dyF ]

]y
G~x,y,v!GF ]

]y
G* ~x8,y,v!G1G* ~x8,x,v! ~B4!

@note that limuyu→`G(x,y,v)50#. Taking the complex con-
jugate of Eq.~B4!, interchangingx andx8, and subtracting
the resulting equation from Eq.~B4!, we obtain the integral
relation

v2

c2 E2`

`

dye I~y,v!G~x,y,v!G* ~x8,y,v!

5
1

2
i @G~x,x8,v!2G* ~x8,x,v!#, ~B5!

which in the case when the permittivity does not vary with
space reduces to

v2

c2
e I~v!E

2`

`

dy G~x,y,v!G* ~x8,y,v!

5
1

2
i @G~x,x8,v!2G* ~x8,x,v!#. ~B6!

APPENDIX C: PROOF OF EQ. „41…

To calculate

C~x,x8!5
\

2p i e0cA

3E
2`

`

dv n21~v!expF i v

c
n~v!ux2x8uG ,

~C1!

we substitute in Eq.~C1! for the exponential the Fourier
decomposition@cf. Eq. ~37!#

expF i v

c
n~v!ux2x8uG

5
1

2pE2`

`

dk eik~x2x8!
2icvn~v!

v2e~v!2c2k2
~C2!

and change the order of integrations. We then find that

C~x,x8!5
\

2p2e0A
E

2`

`

dk eik~x2x8!

3E
2`

`

dv
v

v2e~v!2c2k2
. ~C3!

Sincee(V) is an analytical function in the upper complex
half plane without zeros, and

lim
V→`

e~V!51, ~C4!

thev integral can be evaluated as follows (V5Reiu):

E
2`

`

dv
v

v2e~v!2c2k2

52 lim
R→`

E
0

p

idu
R2e2iu

R2e2iue~Reiu!2k2c2
52 ip. ~C5!

Hence, from Eqs.~C3! and ~C5! we finally obtain

C~x,x8!52
i\

2pe0A
E

2`

`

dk eik~x2x8!

52
i\

e0A
d~x2x8!. ~C6!
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APPENDIX D: PROOF OF EQUATION „78…

Using Eq.~74!, Eq. ~78! reads as

E
2`

`

dv vr j j 8~v!Rj~ uxu,ux8u,v!

5E
2`

`

dv
cr j j 8~v!

2in j~v!
expF i v

c
nj~v!~ uxu1ux8u!G , ~D1!

wherer j j 8(v) is given in Eq.~76!. Introducing in Eq.~D1!
the Fourier decomposition

expF i v

c
nj~v!~ uxu1ux8u!G

5
1

2pE2`

`

dk eik~x1x8!
2icvnj~v!

v2nj~v!2c2k2
, ~D2!

using Eq.~76!, and changing the order of integrations leads
to thev integral

I j j 8~k!5E
2`

`

dv
nj~v!2nj 8~v!

nj~v!1nj 8~v!

v

v2nj~v!2c2k2
.

~D3!

Recalling the properties ofe j (V), from similar arguments as
in Appendix C we find that (V5Reiu)

I j j 8~k!52 lim
R→`

E
0

p

idu
nj~Re

iu!2nj 8~Re
iu!

nj~Re
iu!1nj 8~Re

iu!

R2e2iu

R2e2iue j~Re
iu!2k2c2

50. ~D4!

Note that

lim
V→`

@nj~V!2nj 8~V!#50. ~D5!

APPENDIX E: PROOF OF EQUATION „79…

Combining Eqs.~79! and ~75!, we may write

E
2`

`

dv vt j j 8~v!Tj j 8~ uxu,ux8u,v!

5E
2`

`

dv
ctj j 8~v!

2in j~v!
expH i v

c
@nj~v!ux8u1nj 8~v!uxu#J ,

~E1!

where t j j 8(v) is given in Eq.~77!. Using in Eq. ~E1! the
Fourier decompositions

expH i v

c
@nj~v!ux8u1nj 8~v!uxu#J

5
1

~2p!2
E

2`

`

dkeikxE
2`

`

dk8eik8x8

3
2icvnj~v!

v2nj~v!2c2k82
2icvnj 8~v!

v2nj 8~v!2c2k2
, ~E2!

using Eq.~77!, and changing the order of integrations, we
leave with thev integral

I j j 8~k,k8!5E
2`

`

dv
2nj~v!

nj~v!1nj 8~v!

3
v2

@v2nj~v!2c2k82#@v2nj 8~v!2c2k2#
. ~E3!

Following the lines outlined in Appendixes C and D we ob-
tain

I j j 8~k,k8!52 lim
R→`

E
0

p

idu
2nj~Re

iu!

nj~Re
iu!1nj 8~Re

iu!

R3e3iu

@R2e2iunj~Re
iu!2c2k82#@R2e2iunj 8~Re

iu!2c2k2#

52 lim
R→`

E
0

p

idu
1

Reiu
50. ~E4!
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