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We demonstrate the application of electromagnetic-field-induced transparency and quantum interference
effects in the cooperative phenomenon, such as optical bistability. The control field used in tandem with the
usual electromagnetic field of the two-level scheme results in a considerable lowering of the threshold inten-
sity. We discuss the transient response of the system in the mean-field limit and describe the regression to the
steady state when perturbed away from it; the regression exponent is itself dependent on the control field. We
also demonstrate the possibility of control-field-induced multistability in two-level systems.

PACS number~s!: 42.50.Fx, 42.50.Hz, 42.50.Gy

I. INTRODUCTION

In recent years many remarkable applications of
electromagnetic-field-induced transparency and quantum in-
terference have appeared@1–3#. These include the possibility
of enhancing the efficiencies of nonlinear optical processes
@1,3–5#, and the possibility of producing laser action without
population inversion@6#. Three-level schemes are usually the
most popular ones in considerations of field-induced trans-
parency. The transparency arises from the Autler-Townes
splitting of the absorption line as well as from interferences
which make absorption proportional to the decay of the
atomic coherence between two states that are not directly
connected by a dipole transition.

So far all applications have involved either single-atom
situations or those which are equivalent to noninteracting
atoms, for example, in the context of phase matching of
pulses@7#. In the present work we investigate the role of
atomic coherences and interferences in the context of collec-
tive phenomenon inside a resonator. We thus use an external
electromagnetic field which is tuned~or close to resonance!
to an appropriate transition in the atomic system. We exam-
ine the modification of the bistability characteristics such as
the thresholds, switching times, etc. We find that the control
field can even lead to multistability. The outline of the paper
is as follows: In Sec. II we discuss the theory governing the
proposed schemes, and outline the method involved in cal-
culations. In Sec. III we present the numerical results, and
also discuss the effects of field-induced transparency and
quantum interferences that lead to the lowering of the thresh-
old for switching from the off state to the on state. In Sec. IV
we examine the transient response of the system, and in Sec.
V we demonstrate the possibility of multistability and the
fine control one has on its various characteristics due to the
applied electromagnetic field.

II. MODEL CALCULATIONS

In order to keep the analysis as simple as possible, we
consider a unidirectional ring cavity~Fig. 1! with mirrors 3

and 4 with 100% reflectivity and mirrors 1 and 2 with the
reflection and transmission coefficient~R and T, respec-
tively!, such thatR1T51. This is a standard model of opti-
cal bistability given by Bonifacio and Lugiato@8,9#. The
atomic system is a collection ofN homogeneously broad-
ened two-level atoms which have their excited states coupled
to yet another level. The electric field at the atom can be
written as

E5E1exp~2 iv1t !1E2exp~2 iv2t !1c.c., ~1!

where the subscripts 1 and 2 refer to the transitionsu1&↔u2&
andu2&↔u3& respectively. The coherent fieldE2 applied to the
transition u2&↔u3& corresponds to the usual two-level
scheme, andu1&↔u2& is the transition on which the control
field E1 is applied. The control field does not circulate in the
cavity, and thus its dynamical evolution can be ignored. We
consider the system~a! as shown in Fig. 2, where levelu1&
decays through spontaneous emission to levelu2& with the
EinsteinA coefficient 2g1 and levelu2& decays tou3& with the
EinsteinA coefficient 2g2. Similarly, in system~b!, level u2&
decays to levelsu1& and u3& with the EinsteinA coefficients
2g1 and 2g2 respectively, and levelu1& decays tou3& with the
decay rate of 2n ~Fig. 2!. We describe the dynamics@10# of
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FIG. 1. Unidirectional ring cavity with an atomic sample of
lengthL, with N homogeneously broadened atoms with an atomic
configuration as given in Fig. 2.E 2

I andE 2
T are the incident and

transmitted fields, respectively, andE1 is the control field. For mir-
rors 1 and 2,R1T51, and mirrors 3 and 4 haveR51.
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the atom plus the radiation fields by the well-known
Maxwell-Bloch equations. The unperturbed Hamiltonian of
the atom is given as

H05\v13u1&^1u1\v23u2&^2u, ~2!

where energies are measured from levelu3&. In the dipole
approximation the interaction Hamiltonian between the atom
and the external fields is given byH int52d–E, whered is
the atomic dipole moment operator having only the off-
diagonal elements

d5d12u1&^2u1d23u2&^3u1c.c. ~3!

The total Hamiltonian for the system is given by
H5H01H int . Density-matrix formalism is used to study the
evolution of the system. Incoherent processes like spontane-
ous emission from different levels are included in the stan-
dard way.

We take the fields in the slowly varying envelope approxi-
mation, and neglect the rapidly oscillating terms like
exp(62iv1t) and exp(62iv2t), thus transforming the den-
sity matrix equationsrab for system~a! to those for slowly
varying quantitiesr̃ab , where

r̃ i i5r i i , i51,2,3,

r̃125r12exp~ iv1t !,
~4!

r̃235r23exp~ iv2t !,

r̃135r13exp@ i ~v11v2!t#.

The equations of evolution of the density matrix are

r8 11522g1r̃111 iG1r̃212 iG1* r̃12, ~5!

r8 1252~g11g21 iD1!r̃121 iG1~ r̃222 r̃11!2 iG2* r̃13,

r8 1352@g11 i ~D11D2!#r̃131 iG1r̃232 iG2r̃12,

r8 2252g1r̃1122g2r̃222 iG1r̃211 iG1* r̃121 iG2r̃32

2 iG2* r̃23,

r8 2352~g21 iD2!r̃231 iG1* r̃131 iG2~ r̃332 r̃22!,

r8 3352g2r̃222 iG2r̃321 iG2* r̃23.

For system~b!, the following transformations are undertaken
to neglect the rapidly rotating terms:

r̃ i i5r i i , i51,2,3,

r̃125r12exp~ iv1t !,
~6!

r̃235r23exp~ iv2t !,

r̃135r13exp@ i ~v12v2!t#.

The equations of motion for system~b! are given by

r8 1152g1r̃2222nr̃112 iG1r̃121 iG1* r̃21,

r8 1352@n1 i ~D12D2!#r̃131 iG1* r̃232 iG2r̃12,

r8 2152~g11g21n2 iD1!r̃211 iG1~ r̃112 r̃22!1 iG2r̃31,
~7!

r8 22522~g11g2!r̃221 iG1r̃122 iG1* r̃211 iG2r̃32

2 iG2* r̃23,

r8 2352~g11g22 iD2!r̃231 iG1r̃232 iG2~ r̃222 r̃33!,

r8 3352nr̃1112g2r̃222 iG2r̃321 iG2* r̃23.

The parameters 2G152d12•E1/\ and 2G252d23•E2/\ are the
Rabi frequencies associated with the laser fieldsE1 andE2
respectively. The detunings of the field from the atomic tran-
sitions are given byD15v122v1 andD25v232v2. It is the
field at frequencyv2 that circulates through the cavity and
shows bistable behavior, hence we look at the induced polar-
ization on the transitionu2&↔u3& which is given by

P~v2!5nd32r̃23, ~8!

wheren is the density of atoms.
In the ring cavity~Fig. 1! the coherent fieldE 2

I enters into
the cavity from the semisilvered mirror 1, and drives the
atomic sample. The control field further regulates the in-
duced polarizationP~v2! through interference effects, which
alter the absorption and dispersion profiles of the active me-
dium. The boundary conditions for the ring cavity impose the
following conditions between the incident fieldE 2

I , the
transmitted fieldE 2

T, the fields at different positions in the
cavity E2(0,t) andE2(L,t):

E2
T~ t !5ATE2~L,t !,

~9!
E2~0,t !5ATE2I ~ t !1R exp~2 id0!E2~L,t2Dt !,

whereL is the length of the sample andDt5(2l1L)/c is
the time light takes to travel from mirror 2 to mirror 1. The
cavity detuningd05(vc2v0)LT/c, where vc is the fre-

FIG. 2. The transitions labeledu2& and u3& are the bistable tran-
sitions. The control fieldE1 couples the excited stateu2& to another
level above@for system~a!# or below @for system~b!# the excited
state. Here theDi ’s are the detunings, and thegi ’s are the decays of
the corresponding levels.
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quency of the cavity nearest to resonance with the incident
field frequencyv0, andLT52(l1L) is the total length of
the cavity.

The field equation

]E2

]t
1c

]E2

]z
52p iv2d32P~v2!, ~10!

with the boundary conditions~9! is solved in the steady-state
limit, i.e., (]E2/]t)5(]r̃i j /]t)50. Unlike the two-level sys-
tem, where the induced polarizationP~v2! reduces to a rela-
tively simple analytical form, we resorted to solving the set
of simultaneous coupled equations numerically. To obtain the
polarization we solve the set of equations~5! or ~7! for sys-
tem ~a! or ~b!, respectively, then using~8! we integrate equa-
tion ~10! in the steady-state limit over the length of the
sample. The boundary conditions used in the steady-state
limit reduce~9! to

E2
T5ATE2~L !,

~11!

E~0!5ATE2I 1R exp~2 id0!E2~L !.

One should note that in the limit that the control fieldG1→0
for system~a!, and the multiple limitG1→0 andg1→0 for
system~b!, both systems reduce to the conventional two-
level scheme, where the absorption coefficienta on the tran-
sition u2&↔u3& of the system is given by

a5
4pv32d32

2 n

\cg2
. ~12!

In order to compare the results with the two-level system, we
define the usual cooperation parameterC asC5(aL/2T),
the same as in the two-level system@9,11#.

III. ELECTROMAGNETIC CONTROL
OF OPTICAL BISTABILITY

In this section we present details of our numerical results.
We do not make use of the mean-field approximation. Figure
3 gives the bistable behavior of the two-level system sub-
jected to a control field on the upper transition. Clearly the
control field leads to a lowering of the bistability threshold,
owing to the Autler-Townes splitting. The absorption at the
line center decreases with an increase in the control fieldG1.
When the control field becomes too large then bistability
disappears, as for largeG1 there is hardly any linear absorp-
tion, and even the linear dispersion at the line center is zero.

For the ladder system of Fig. 2~a!, the linear susceptibility
on the transitionu2&↔u3& is to all orders in the strength of the
control fieldG1, and the first order in the cavity fieldG2 is
given by @12#

x~a!~v2!}F ~D22 ig2!2
G1
2

~D11D22 ig1!
G21

. ~13!

FIG. 3. The decrease in the threshold due to the control field for
system~a! compared to the usual two-level bistable system. The
threshold can be controlled by changing the control fieldG1/g253,
5, 7, 10, and 20;C5400; andD15D250. Note the possibility of
transistor action forG1/g2510.

FIG. 4. The quantum-interference-effect-induced decrease in the
threshold by having a long-lived stateu1&, i.e.,g1/g250.1, 0.25, 0.5,
and 1.0;G1/g251.0;C5400; andD15D250.

FIG. 5. The all-order nonlinear absorption for different values of
the cavity fieldG2/g250.1,5. The atomic coherence decay from the
upper level plays a small role for largeG2.
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In the absence of the control field thex(a)~v2! in ~13! has
only the first term; the second term is due to the interference
between the two possible absorption channels of the field at
the frequencyv2 to the dressed state doublet created byG1
on the transitionu1&↔u2&. Due to this interference effect, the
absorption of population atu3& is now dependent on the de-
cay of the coherencer13, though the transitionu1&↔u3& is not
dipole allowed. WhenD15D250, then

x~a!~v2!5
ig1

G1
21g1g2

. ~14!

The absorption at the line center again decreases with a de-
crease ing1. Thus if level u1& is long lived, then we can
achieve a further lowering of the bistability threshold. This is
demonstrated in Fig. 4. We do not expect any change in the
second bistability threshold~i.e., the threshold for switching

from the on state to the off state!, as here the fieldG2 be-
comes large, thereby offsetting the advantage of a long-lived
state u1&. This is also demonstrated by calculating the all
order response function on theu2&↔u3& transition. The result
of this calculation is shown in Fig. 5. We also compare the
bistability in a two-level system where the input field is de-
tuned by an amount so that the linear absorption is the same
as that at the line center in the presence of the control field.
As Fig. 6 shows, there is a substantial gain in using a control
field.

We next present modifications in bistability characteristics
if the control field is applied on the transition as in Fig. 2~b!.
In the absence of the parametern, coherent population trap-
ping @13# occurs if the two detunings are equal; otherwise, on
resonance, the absorption is again proportional to the decayn

FIG. 6. For the same level of absorption, i.e.,
Im~r23!53.8531023, the appropriately detuned two-level system
~G1/g250, D150, andD255! requires a much larger threshold than
the three-level scheme~a! with the control field for C5400,
G1/g255.0, andD15D250.

FIG. 7. Effect of quantum interferences for system~b! for n50,
C5400,D150, D251, andG1/g251, 3, 5, 7, and 10. The behavior
is similar to that for the ladder system~Fig. 4!.

FIG. 8. ~a! Comparison between the two-level scheme and the
proposed schemes; the rise time is equal to~tk;5.0!. The temporal
evolution is shown for different operating points in the two-level
systemyop5401.01 and 401.1; and for system~a! yop583.8, 83.9,
and 84.0, one observes a critical slowing down phenomenon as one
approaches the switch up intensity. We chooseC5400 and
D15D250. ~b! Switching to the second stable state atyop5140 and
140.5 is oscillatory with a small rise time~&tk55.0!. Switching to
the third stable state atyop5140.7 and 141 takes a longer time
~*tk515.0!. Also, the operating point beyond the multistable re-
gion yop5156 takes a similar time~;tk515.0!.
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of level u1& which is not dipole connected to levelu3&. The
analog of~13! for theL system is

x~b!~v2!}F ~2D22 i @g21g1# !2
G1
2

~D12D22 in!
G21

.

~15!

Figure 7 gives the changes in the bistability characteristics as
the strength of the control field is changed. We have chosen
D150, n50, andD2Þ0. The results are somewhat similar to
those for the situation of Fig. 2~a!.

IV. CONTROL-FIELD-INDUCED CHANGES IN
TRANSIENT RESPONSE

For simplicity we consider the transient response of the
system in the mean-field approximation, i.e., in the multiple
limit aL→0, T→0, andd0→0. It is called the mean-field
limit as the field inside the cavity does not change very much
in each pass due to the weak coupling~aL→0!, but the mean
lifetime (LT/cT,T→0) of the photons in the cavity is large.
Thus the photons even in this weak-coupling limit experi-
ence substantial interaction with the atoms due to the many
passes they make through the sample owing to their long
lifetimes. The limitd0→0 implies that the cavity detuning is
smaller than the free spectral range, thus ensuring that we
operate in a cavity mode resonant with the incident field. It
should be noted that our previous discussion on control of
the switching threshold is extremely general, and no such
approximation is made.

The time evolution of the transmitted field in a good cav-
ity with d050 is given by

k21
]x

]t
52~x2y!22CP0 , ~16!

where k215cT/LT is the cavity lifetime,x and y are the
normalized amplitudes of the transmitted and incident fields,
respectively, g15g25g, x5d32E

T/(2\2g2T)1/2,
y5d32E

I /(2\2g2T)1/2, and P0 is the normalized nonlinear
response of the medium defined asP05[P(v2)/ i ](N/&)21

@9#. The transmitted amplitudex is complex, whereas the
input fieldy is assumed to be real. We initially begin with no
input field, i.e.,y50 andx50, and then set the input fieldy
to an operating pointyop and observe the dynamical evolu-
tion of the transmitted field by integrating~16! until the out-
put field reaches its steady-state value corresponding to the
input field yop. P0 in ~16! is derived by inverting the equa-
tions ~5! or ~7! for scheme~a! or ~b! respectively. The tran-
sient response with and without the control field has a very
similar behavior, as shown in Fig. 8~a!. As is shown in Sec.
V, multistability @14# is observed for an appropriate choice of
the control field strength and detunings. The transient study
shows that if we choose the operating point in the multistable
region, the output switches to the second stable state in an
oscillatory fashion but with a fast response time, Fig. 8~b!.
The switching times are relatively longer for switching from
the second to the third stable state, similar to that of an
operating point chosen beyond the multistable region.

When the system is slightly displaced from its stationary
state, the regression to the steady state is governed by the
eigenvalues of the relaxation matrix obtained from lineariz-
ing ~16! around the steady state. In~16! we consider
x→x01dx, where x0 is the steady-state value anddx is
small perturbation such thatdx!x0. We expandP0(x,x* ) in

FIG. 9. The regression to the steady state is governed by the
eigenvaluel}~yth2y!b, whereb depends on the control field. With
an increase in control field the system takes a longer time to return
to its steady state.

FIG. 10. ~a! Control-field-induced multistability forC5400,
D150, D2510, andG1/g255, 7, 10, and 20.~b! The region of
multistability could be relocated by varyingD255 and 10. The re-
gion of input intensities over which there is multistability is broad-
ened by increasingD150, 5, and 10. HereC5400 andG1/g2510.
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the Taylor series, and take only the linear terms indx, i.e.,

P0~x01dx,x0*1dx* !5P0~x0 ,x0* !1dxS ]P0~x0!

]x0
D

1dx* S ]P0~x0!

]x0
D * . ~17!

On linearizing ~16!, we obtain the following eigenvalue
equation:

k21
]

]t F dx
dx* G52F 112CS ]P0

]x0
D

2CS ]P0

]x0
D

2CS ]P0

]x0
D *

112CS ]P0

]x0
D * G

3F dx
dx* G . ~18!

The lowest eigenvalue of~18! governs the rate of decay to
the steady state. Asy→yth, l→0, since the regression to the
steady state goes as exp(lt) we observe the phenomenon of
critical slowing down as we approach the threshold point,
Fig. 9. The control field changes the slope of the curves in
Fig. 9, and the general behavior of the eigenvaluel near the
threshold for the two-level system has the usuall}~yth2y!b

dependence; however,b now depends on the control field,
and with the increase inG, the system takes longer time to
revert back to its steady-state value.

V. CONTROL-FIELD-INDUCED MULTISTABILITY

In the presence of the control field, polarization of the
medium is found to be the ratio of two polynomials of order
5 and 6 inG2,

P0~G2!5
G2@c11c2uG2u21c3uG2u4#

@c41c5uG2u21c6uG2u41c7uG2u6#
, ~19!

where c1–c7 are complex parameters that depend on the
detunings, lifetimes, control field strength, etc. For the usual
two-level system we have only the first-order term in the
numerator, and the term up to the second order inG2 in the
denominator, giving rise only to bistability. Hence in general
in the appropriate domain of the control field, detunings, etc.
~i.e.,ci ’s!, one has the possibility of multistability. In Fig. 10
we show some representative situations for different
strengths and detunings. By changing the external field pa-
rameters we can change the region in which this multistate
switch can operate.

In conclusion, we have demonstrated schemes with which
one can decrease substantially the threshold required for a
bistable device using field-induced transparency and quan-
tum interference effects. Such schemes would be very much
realizable, and would lead to more efficient devices. Multiple
hysteresis for an appropriate choice of control field param-
eters provides for a possibility of versatile use of the same
device configuration in more than one application.
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