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Controlling optical bistability using electromagnetic-field-induced transparency
and quantum interferences
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We demonstrate the application of electromagnetic-field-induced transparency and quantum interference
effects in the cooperative phenomenon, such as optical bistability. The control field used in tandem with the
usual electromagnetic field of the two-level scheme results in a considerable lowering of the threshold inten-
sity. We discuss the transient response of the system in the mean-field limit and describe the regression to the
steady state when perturbed away from it; the regression exponent is itself dependent on the control field. We
also demonstrate the possibility of control-field-induced multistability in two-level systems.

PACS numbdis): 42.50.Fx, 42.50.Hz, 42.50.Gy

I. INTRODUCTION and 4 with 100% reflectivity and mirrors 1 and 2 with the
reflection and transmission coefficiefR and T, respec-

In recent years many remarkable applications oftively), such thaR+T=1. This is a standard model of opti-
electromagnetic-field-induced transparency and quantum ireal bistability given by Bonifacio and Lugiat{8,9]. The
terference have appeargl-3]. These include the possibility atomic system is a collection df homogeneously broad-
of enhancing the efficiencies of nonlinear optical processegned two-level atoms which have their excited states coupled
[1,3-95, and the possibility of producing laser action without to yet another level. The electric field at the atom can be
population inversio6]. Three-level schemes are usually the yritten as
most popular ones in considerations of field-induced trans-
parency. The transparency arises from the Autler-Townes
splitting of the absorption line as well as from interferences
which make absorption proportional to the decay of the
atomic coherence between two states that are not directiwhere the subscripts 1 and 2 refer to the transitidhs:|2)
connected by a dipole transition. and|2)«|3) respectively. The coherent fiels, applied to the

So far all applications have involved either single-atomtransition [2)«<+|3) corresponds to the usual two-level
situations or those which are equivalent to noninteractingscheme, andil)«|2) is the transition on which the control
atoms, for example, in the context of phase matching ofield E; is applied. The control field does not circulate in the
pulses[7]. In the present work we investigate the role of cavity, and thus its dynamical evolution can be ignored. We
atomic coherences and interferences in the context of colleconsider the systerta) as shown in Fig. 2, where levél)
tive phenomenon inside a resonator. We thus use an externdgécays through spontaneous emission to l¢2elwith the
electromagnetic field which is tungdr close to resonange EinsteinA coefficient 2y, and level|2) decays td3) with the
to an appropriate transition in the atomic system. We examEinsteinA coefficient 2y,. Similarly, in system(b), level |2)
ine the modification of the bistability characteristics such aglecays to level$l) and|3) with the EinsteinA coefficients
the thresholds, switching times, etc. We find that the controPy, and 2y, respectively, and level) decays td3) with the
field can even lead to multistability. The outline of the paperdecay rate of 2 (Fig. 2). We describe the dynami¢40] of
is as follows: In Sec. Il we discuss the theory governing the
proposed schemes, and outline the method involved in cal- T
culations. In Sec. lll we present the numerical results, and EI L / E,
also discuss the effects of field-induced transparency and 2 [ /7 |

E=E.exp(—iw;t) + Eexp(—iwst)+cC.C., (D)

guantum interferences that lead to the lowering of the thresh- ' ]

old for switching from the off state to the on state. In Sec. IV ! / 2
we examine the transient response of the system, and in Sec. E,

V we demonstrate the possibility of multistability and the { {

fine control one has on its various characteristics due to the
applied electromagnetic field.

IIl. MODEL CALCULATIONS

In order to keep the analysis as simple as possible, we L
consider a unidirectional ring cavityFig. 1) with mirrors 3 FIG. 1. Unidirectional ring cavity with an atomic sample of
lengthL, with N homogeneously broadened atoms with an atomic
configuration as given in Fig. £} andE] are the incident and
“Present address: Physical Research Laboratory, Ahmedabadnsmitted fields, respectively, afd is the control field. For mir-
380 009, India. Electronic address: gsa@prl.ernet.in rors 1 and 2R+ T=1, and mirrors 3 and 4 have=1.
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2> P20= 27111~ 2¥2P20—1G 1921 +1G] p1o+iG2pan
- iG;E’za,

p23=— (Y2 T1A2)pagtiGT p1gt+iGo(pas—p2o),

P33=2Y2P20—1G2p3+1G3 pa3.

For systemb), the following transformations are undertaken
to neglect the rapidly rotating terms:

_|1>
pi=pi, 1=123,

3> p12=prexpiwit),
System (a) System (b) ~ . (6)
p23= p23eXPi wyt),
FIG. 2. The transitions labeld@) and|3) are the bistable tran- ~ o — oot
sitions. The control fieldE, couples the excited sta}2) to another P13= P1EXH I (w1~ wy)t].
level above[for system(a)] or below[for system(b)] the excited
state. Here th@;’s are the detunings, and thgs are the decays of
the corresponding levels.

The equations of motion for systeth) are given by

P11=2Y1P20— 2vp11— G 1p1,+iGT poa,

the atom plus the radiation fields by the well-known
Maxwell-Bloch equations. The unperturbed Hamiltonian of
the atom is given as

p13= —[v+i(A1—Ap)]1p13+iG] p2z—iGopia,

p21=—(y1+t Y2t v—iA)pp+iGi(p11— P22 +iG2pa1,
- _ . ) . .

Ho=fiwid1)(1]+hwd2)(2. @ P22=—2(y1F ¥2)p22t+iG1p1o— iG] po1+iGopa

where energies are measured from lej}&! In the dipole

approximation the interaction Hamiltonian between the atom

and the external fields is given by;,,=—d-E, whered is

the atomic dipole moment operator having only the off-

diagonal elements

—iG3pas,
p23=— (y1+ ¥2—1A2)p23tiG1p23—iGo(pra—p3g),

P33=2vP11+ 272020~ 1G2p3at 1G5 pos.

d=di5|1)(2] +dpg 2)(3| + c.c. @ The parameters@;=2d,,-E,/A and 25,=2d,4-E /A are the

Rabi frequencies associated with the laser fidldsand E,
respectively. The detunings of the field from the atomic tran-
itions are given by\;=w;,—w; and A,=w,3—w,. It is the
ield at frequencyw, that circulates through the cavity and

The total Hamiltonian for the system is given by
H=H,+ H;,;. Density-matrix formalism is used to study the
evolution of the system. Incoherent processes like spontan

ous emission from different levels are included in the Stan-ShOWS bistable behavior, hence we look at the induced polar-

dard way. N . PR
We take the fields in the slowly varying envelope approxi-Izatlorl on the transitiof2)[3) which is given by
mation, and neglect the rapidly oscillating terms like P(w,)=Ndaypos, ®)

exp(= 2iw t) and exp: 2i w,t), thus transforming the den-
sity matrix equationg, for system(a) to those for slowly  wheren is the density of atoms.

varying quantities,;, where In the ring cavity(Fig. 1) the coherent fieldE ), enters into
. i the cavity from the semisilvered mirror 1, and drives the
pii=pii, 1=1,2,3, atomic sample. The control field further regulates the in-
. ] duced polarizatiorP(w,) through interference effects, which
p12= p12&XNi w1t), alter the absorption and dispersion profiles of the active me-
. . (4) dium. The boundary conditions for the ring cavity impose the
p23= p2eXpiwot), following conditions between the incident field}, the
. _ transmitted fieldE ], the fields at different positions in the
p13= p1EXHi (w1 + wa)t]. cavity E,(0,t) andE,(L,t):
The equations of evolution of the density matrix are E;(t)z ﬁEz(L,t),
. e e ©)
p11= —2¥1p11+1G 1021~ iG] p1a, 5 E2(0,t)=\/fE'2(t)+R exp(—idg)E,(L,t—At),
p12= = (v1+ ¥2Ti1A1)p1o+iG1(P2o— p11) —iG3 pas, wherelL is the length of the sample ankit=(2I+L)/c is

the time light takes to travel from mirror 2 to mirror 1. The
p13=—[y1+i(A1+A5)]p13+i1G1paz—iGop1s, cavity detuning &=(w.— wg)L1/c, where w, is the fre-
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FIG. 3. The decrease in the threshold due to the control field for
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FIG. 4. The quantum-interference-effect-induced decrease in the

system(a) compared to the usual two-level bistable system. Thethreshold by having a long-lived stdt®, i.e., y,/y,=0.1, 0.25, 0.5,

threshold can be controlled by changing the control f@ldy,=3,
5, 7, 10, and 20C=400; andA;=A,=0. Note the possibility of
transistor action foG4/y,=10.

guency of the cavity nearest to resonance with the incident

field frequencywy, andL=2(1+L) is the total length of
the cavity.
The field equation

JE, JE,
+C—=2m7i w2d32P(w2),

ot ¢ (10

with the boundary condition®) is solved in the steady-state
limit, i.e., (JE,/ dt) = (dp;j/ 9t) =0. Unlike the two-level sys-
tem, where the induced polarizati®{w,) reduces to a rela-

tively simple analytical form, we resorted to solving the set
of simultaneous coupled equations numerically. To obtain thé

polarization we solve the set of equatids or (7) for sys-
tem (a) or (b), respectively, then usin@) we integrate equa-

tion (10) in the steady-state limit over the length of the
sample. The boundary conditions used in the steady-state

limit reduce(9) to

E;=TE,(L),
(12)

E(0)=TE,+R exp(—idg)E,(L).

One should note that in the limit that the control fi€d—0
for system(a), and the multiple limitG;—0 andy,—0 for

system(b), both systems reduce to the conventional two-

level scheme, where the absorption coefficiemn the tran-
sition |[2)«|3) of the system is given by

477w32d§2n

fLC’yZ (12)

and 1.0;G4/y,=1.0; C=400; andA;=A,=0.

IIl. ELECTROMAGNETIC CONTROL
OF OPTICAL BISTABILITY

In this section we present details of our numerical results.
We do not make use of the mean-field approximation. Figure
3 gives the bistable behavior of the two-level system sub-
jected to a control field on the upper transition. Clearly the
control field leads to a lowering of the bistability threshold,
owing to the Autler-Townes splitting. The absorption at the
line center decreases with an increase in the control @egld
When the control field becomes too large then bistability
disappears, as for larg®, there is hardly any linear absorp-
tion, and even the linear dispersion at the line center is zero.
For the ladder system of Fig(&, the linear susceptibility
on the transition2)«|3) is to all orders in the strength of the
ontrol fieldG,, and the first order in the cavity field, is
given by[12]

2 -1
1

X(a)(@02) | (Ay—iy,)— (A A,—1yD) (13

0.08

0.06

Im (p,3)

0.04

0.02

0.00 1 . 1 . I N i . 1

In order to compare the results with the two-level system, we FIG. 5. The all-order nonlinear absorption for different values of

define the usual cooperation parameteias C=(alL/2T),
the same as in the two-level systéf11].

the cavity fieldG,/y,=0.1,5. The atomic coherence decay from the
upper level plays a small role for large,.
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from the on state to the off stateas here the fields, be-
comes large, thereby offsetting the advantage of a long-lived
state|1). This is also demonstrated by calculating the all
order response function on tf@«|3) transition. The result

of this calculation is shown in Fig. 5. We also compare the
bistability in a two-level system where the input field is de-

ed by an amount so that the linear absorption is the same
that at the line center in the presence of the control field.
Fig. 6 shows, there is a substantial gain in using a control

field.

We next present modifications in bistability characteristics
if the control field is applied on the transition as in FigbR
In the absence of the parametgrcoherent population trap-

g[13] occurs if the two detunings are equal; otherwise, on

Input Field ( G, ) resonance, the absorption is again proportional to the decay

FIG. 6. For the same level of absorption, i.e.,
Im(p,3)=3.85x10"3, the appropriately detuned two-level system
(G4/¥,=0, A;=0, andA,=5) requires a much larger threshold than
the three-level scheméa) with the control field for C=400,
G4/y,=5.0, andA;=A,=0.

In the absence of the control field th@a)(wz) in (13) has
only the first term; the second term is due to the interference
between the two possible absorption channels of the field at
the frequencyw, to the dressed state doublet createdQy

on the transitior)1)«|2). Due to this interference effect, the
absorption of population d8) is now dependent on the de-
cay of the coherence, 5, though the transitiof)«|3) is not
dipole allowed. Whem\;=A,=0, then

Output Field x

Xa(@2) = g7m (19

ity
The absorption at the line center again decreases with a de-
crease iny;. Thus if level|1) is long lived, then we can
achieve a further lowering of the bistability threshold. This is
demonstrated in Fig. 4. We do not expect any change in the
second bistability threshol@.e., the threshold for switching

30
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FIG. 8. (a) Comparison between the two-level scheme and the

proposed schemes; the rise time is equdtto-5.0). The temporal
evolution is shown for different operating points in the two-level
systemy,,=401.01 and 401.1; and for syste(@ y,,=83.8, 83.9,

i - ; — ) and 84.0, one observes a critical slowing down phenomenon as one
0 20 40 60 80 100 120 140 160 approaches the switch up intensity. We chodSe=400 and

Input Field ( G, ) A;=A,=0. (b) Switching to the second stable stateygi=140 and
140.5 is oscillatory with a small rise times 7«=5.0). Switching to

FIG. 7. Effect of quantum interferences for systémfor »=0, the

third stable state at,,=140.7 and 141 takes a longer time

C=400,A,=0, A,=1, andG,/v,=1, 3, 5, 7, and 10. The behavior (=7«=15.0. Also, the operating point beyond the multistable re-

is similar to that for the ladder syste(rig. 4). gio

N Yyo,=156 takes a similar timé~r«=15.0.
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FIG. 9. The regression to the steady state is governed by the 1gq_
eigenvaluen=(y,,—y)?, whereg depends on the control field. With
an increase in control field the system takes a longer time to return 1
to its steady state. 80—

of level |1) which is not dipole connected to levid). The .

analog of(13) for the A system is @ ]
s 50
2 -1 £ ]
Ko 02| (~ B ilypt ;D= o g
(A—Ay—iv) S 30l
(19 20
Figure 7 gives the changes in the bistability characteristics as  10.]
the strength of the control field is changed. We have chosen ;] _ I
A,;=0, »=0, andA,#0. The results are somewhat similar to 0 40 80 120 160 200 240 280
those for the situation of Fig.(3). Input Field (G, )

FIG. 10. (a) Control-field-induced multistability forC=400,
A;=0, A,=10, andG4/y,=5, 7, 10, and 20(b) The region of
multistability could be relocated by varyin,=5 and 10. The re-

For simplicity we consider the transient response of thegion of input intensities over which there is multistability is broad-
system in the mean-field approximation, i.e., in the multipleened by increasing;=0, 5, and 10. Her€=400 andG,/y,=10.
limit «L—0, T—0, and &—0. It is called the mean-field

limit as the field inside the cavity does not change very muc nput fieldy is assumed to be real. We initially begin with no
in each pass due to the weak coupling —0), but the mean 5t field_ i.e.,y=0 andx=0, and then set the input fieid
lifetime (L{/cT,T—0) of Fhe p_hotons in the .cavit_y i_s Iarge.. to an operating poiny,, and observe the dynamical evolu-
Thus the photons even in this weak-coupling limit experi-tion of the transmitted field by integratir@6) until the out-
ence substantial interaction with the atoms due to the manyyt field reaches its steady-state value corresponding to the
passes they make through the sample owing to their longhput fieldy,,. P, in (16) is derived by inverting the equa-
lifetimes. The I|m|t50—>0 implies that the cavity detuning is tions (5) or (7) for scheme(a) or (b) respective|y_ The tran-
smaller than the free spectral range, thus ensuring that wéent response with and without the control field has a very
operate ina Cavity mode resonant with the incident field. Itsimilar behavior, as shown in F|g(@ As is shown in Sec.
should be noted that our previous discussion on control of/ multistability [14] is observed for an appropriate choice of
the switching threshold is extremely general, and no suclhe control field strength and detunings. The transient study

IV. CONTROL-FIELD-INDUCED CHANGES IN
TRANSIENT RESPONSE

9]. The transmitted amplitud® is complex, whereas the

approximation is made. o shows that if we choose the operating point in the multistable
_ The time evolution of the transmitted field in a good cav-region, the output switches to the second stable state in an
ity with &=0 is given by oscillatory fashion but with a fast response time, Fith)8
5 The switching times are relatively longer for switching from
1 X the second to the third stable state, similar to that of an
1 —_— — —_— f— 1
AT (x=y)=2CPy, (16) operating point chosen beyond the multistable region.

When the system is slightly displaced from its stationary
where k" '=cT/L+ is the cavity lifetime,x andy are the state, the regression to the steady state is governed by the
normalized amplitudes of the transmitted and incident fieldseigenvalues of the relaxation matrix obtained from lineariz-
respectively, Y=Y=7) x=dz,E"/(282y?T)¥2,  ing (16) around the steady state. I(16) we consider
y=d3,E'/(2:%y*T)2 and P, is the normalized nonlinear x—x,+ 8, wherex, is the steady-state value anik is
response of the medium definedRg=[P(w,)/i](N/v2) "'  small perturbation such thak<x,. We expand®y(x,x*) in
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the Taylor series, and take only the linear terms¥ i.e.,

ﬂPo(Xo))

Po(X0+ 5)(,X3+5X*):P0(X0,X6)+5X ﬁx
0

IPo(Xo) | *
*
X (—3Xo . 17
On linearizing (16), we obtain the following eigenvalue
equation:
1+2¢| o c|Po|”
9] x| IXg IXg
oatoxx|T Py aPg\*
2C| — 1+2C|—
X X
SX
X Sx* |- (18

The lowest eigenvalue dfL8) governs the rate of decay to
the steady state. As—Vyy,, A—0, since the regression to the
steady state goes as exp) we observe the phenomenon of

CONTROLLING OPTICAL BISTABILITY USING . ..

1817

V. CONTROL-FIELD-INDUCED MULTISTABILITY

In the presence of the control field, polarization of the
medium is found to be the ratio of two polynomials of order
5 and 6 inG,,

Gl cy+Co|Gyl?+ 3Gyl ]

Po(G2)= [C4+Cs|Go|?+C6| Gy *+¢7|G,[°]

(19

where c;—c; are complex parameters that depend on the
detunings, lifetimes, control field strength, etc. For the usual
two-level system we have only the first-order term in the
numerator, and the term up to the second ordegjrin the
denominator, giving rise only to bistability. Hence in general
in the appropriate domain of the control field, detunings, etc.
(i.e.,¢;'s), one has the possibility of multistability. In Fig. 10
we show some representative situations for different
strengths and detunings. By changing the external field pa-
rameters we can change the region in which this multistate
switch can operate.

In conclusion, we have demonstrated schemes with which

critical slowing down as we approach the threshold pointone can decrease substantially the threshold required for a
Fig. 9. The control field changes the slope of the curves irbistable device using field-induced transparency and quan-

Fig. 9, and the general behavior of the eigenvalueear the
threshold for the two-level system has the usualy,,—y)?
dependence; howeve now depends on the control field
and with the increase i, the system takes longer time to
revert back to its steady-state value.

tum interference effects. Such schemes would be very much
realizable, and would lead to more efficient devices. Multiple

hysteresis for an appropriate choice of control field param-
eters provides for a possibility of versatile use of the same
device configuration in more than one application.
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