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We compute the spectrum of emitted radiation for a particle in a triangular potential well and driven by an
electromagnetic field. For intense fields, the spectrum exhibits a plateau structure, a series of harmonic peaks
of comparable strength up to some high-harmonic order, similar to that found in experiments and similar
theoretical models. By comparing the quantum and classical dynamics, we see that the onset of high-harmonic
generation in the quantum system appears to be correlated to the onset of chaos in the classical system. We also
consider the effect of a slow turn on of the field and show why the acceleration should be used instead of the
induced dipole moment to compute the spectrum.

PACS number~s!: 42.50.Hz, 32.90.1a, 03.65.Ge, 32.60.1i

I. INTRODUCTION

Recent experiments by Ferrayet al. @1# have demon-
strated the production of very high harmonics in laser irra-
diation of rare gases using intense 1064 nm 30 ps pulses.
More recently, harmonics of order 135 have been reported
@2#. The harmonics exhibit a plateau structure: a series of odd
harmonics of comparable strengths up to some high har-
monic order, after which they fall off rapidly. The harmonic
peaks do not fall off as some simple power law of the inten-
sity equal to the order of the process, so perturbation theory
fails to explain high-harmonic generation~HHG!. Simple
theoretical single-atom models have been shown to exhibit
HHG very similar to that found in experiments@3,4#. The
success of these models leads us to study further the HHG of
simple quantum wells subject to a strong external time-
periodic field. In this paper we compute the radiation spec-
trum for a particle in a driven triangular potential well. The
triangular potential well is convenient in that many calcula-
tions of both the quantum and classical dynamics can be
done analytically or with a minimum of numerical computa-
tion. We briefly explain why we use the acceleration spec-
trum rather than the more commonly used induced dipole
moment as the spectrum of emitted radiation. We include the
effect of apulse rise timeon the spectrum. An extremely
rapid or sudden turn on of the external field can produce
many intermediate peaks, orshifted harmonics, of compa-
rable strength to the harmonic peaks. These peaks are of the
same type predicted by Bavli and Metiu@5# and Cocke@6# in
similar models. The triangular potential well has been shown
@7# to exhibit both dynamic localization and delocalization as
parameters are varied. We compare the spectra generated in
both cases. The dynamic localization of the particle wave
packet appears to have a dramatic effect on the emitted spec-
trum, as we shall see. Finally, we compare the dynamics of
the quantum and corresponding classical system and find that
HHG in the quantum system appears to be associated with
the onset of chaos in the classical system. We believe these
results to be fairly general, even though this model does not
represent all aspects of a real atom: it has no continuous
spectrum,~i.e., ionization is not possible!, and it is asym-
metrical and thus even harmonics are not forbidden. Never-
theless, the model may be relevant to atomic systems in

which the bound states play a dominant role in the dynamics.
In particular, the model may have relevance to systems in
which the field intensities are strong enough to lead to strong
HHG generation, but too weak to rapidly ionize the system.

II. MODEL

Let us consider a classical system consisting of a time-
periodically driven particle in a triangular-shaped well
formed by linear potential~constant force! with an infinite
barrier~wall! at one end. The Hamiltonian for this system is

H5
p2

2m
2e0x2ex cos~vt1f0!1VL~x!, ~1!

where e, v, andf0 are the field strength, frequency, and
phase of the electromagnetic driving field, respectively,e0 is
the strength of linear potential, andL is the location of the
wall. The potentialVL(x)50 for x,L and VL(x)5` for
x.L. The presence of the electromagnetic field will create
an infinite array of nonlinear resonances. A nonlinear reso-
nance occurs when a multiple of the field frequency is equal
to a multiple of the orbit frequency of the particle in the
triangular well. This can be seen by writing the Hamiltonian,
Eq. ~1!, in terms of action-angle variables,@J,u# ~with
f050) @8#,

H5E0~J!2e (
l52`

`

xl~J!cos~ lu2vt !, ~2!

whereJ51/2p rpdx5@(2A2m)/3pe0# (E01e0L)
3/2 , E0

is the unperturbed Hamiltonian, andxl}J
2/3. The external

field can now be seen to induce an infinite series of traveling
waves into the phase space of the system. Each traveling
wave may trap a phase space trajectory and gives rise to a
nonlinear resonance. The condition for resonance is
l u̇5sv, s integer. If we increase the field intensity, the reso-
nances, which appear as localized pendulumlike topological
changes in the phase space, will ‘‘grow’’ larger and overlap,
leading to chaos. We shall show an example in Sec. V.
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Let us now write the quantum version of the model. For
the unperturbed case (e50), the Schro¨dinger equation for
stationary states,C i(x)5^xuEi&, with energyEi , is given by

2
1

2m

]2C i

]x2
5~Ei1e0x!C i for x<L. ~3!

The solution is given in terms of Airy functions:

C i~x!5NiAi @2$~2m!1/3e0
22/3Ei1~2me0!

1/3x%#, ~4!

whereNi is the normalization constant. The energy eigenval-
uesEi can be found from the condition thatC i(L)50. The
eigenspectrum is purely discrete and the eigenvaluesEi are
proportional toi 2/3, in correspondence to the classical case
whereE0(J)}J

2/3. We compute the acceleration and induced
dipole moment of the perturbed system (eÞ0) by integrat-
ing the Schro¨dinger equation in the unperturbed energy ba-
sis,

i
dcj
dt

5Ejcj1(
k
ckxjkj~ t !cos~vt !, ~5!

where uc(t)& is the probability amplitude of the particle at
time t, cj (t)5^Ej uc(t)&, and the turn-on function
j(t)5e sin2(vt/4n) for t,2pn/v and j(t)5e for
t.2pn/v. The turn-on function is used to simulate the
pulse rise time typical of experiments. In the turn-on func-
tion j(t), n is the number of cycles for the field to rise to
maximum strength. The expectation value of the acceleration
at time t is given by

^c~ t !uẍuc~ t !&5(
i j

^c~ t !uEi&^Ei uẍuEj&^Ej uc~ t !&

5(
i j

cicj* ẍi j , ~6!

where

ẍi j52~Ej2Ei !
2xi j2(

k
@2Ek2Ej2Ei #xikxk je cos~vt !

~7!

and the dipole matrix elements are given by@7#

xi j5H 2e0
m~Ei2Ej !

2 if iÞ j

2Ei

3e0
if i5 j .

~8!

The induceddipole moment is just given by

^c~ t !uxuc~ t !&5(
i j

cicj* xi j . ~9!

In order to obtain the power spectrum of the acceleration, we
compute the time series of the expectation value of the ac-
celeration and then take the modulus squared of its Fourier
transform.

In the strongly driven classical system we have overlap of
nonlinear resonances leading to chaos. In that case, the par-

ticle can sample a wide range of energies, and its subsequent
motion can be described by a diffusion process. In quantum
systems we have instead a significant broadening of the Flo-
quet eigenstates@9# ~these are sometimes called quasienergy
eigenstates!. This broadening generally falls into two re-
gimes: localized~due to dynamic Anderson localization!, and
delocalized or extended. Localized Floquet states are distrib-
uted over a relatively few unperturbed basis states and fall
off exponentially, whereas delocalized Floquet states extend
over nearly the entire set of unperturbed basis states~thus
making computations difficult when a finite basis is used!.
When delocalization occurs, the diffusion of the energy of
the quantum particle follows that of the corresponding clas-
sical particle. For localized systems this diffusion is sup-
pressed. An approximate condition for delocalization of a
driven quantum particle in a triangular potential well has
been given by Benvenutoet al. @7#. They found that delocal-

ization occurs whene. 1
2 v3/2. This criterion agreed qualita-

tively with numerical checks that they made.

III. ACCELERATION VERSUS DIPOLE MOMENT

While most researchers compute the modulus squared of
the Fourier transform of the induced dipole moment as the
power spectrum for single atomic systems or quantum wells,
Burnett et al. @10# and Sundaram and Milonni@3# have
pointed out that the spectrum of emitted radiation is obtained
directly from the expectation value of the acceleration, and
the power spectrum of the induced dipole moment can be
misleading. In principle, one could obtain the acceleration
from the dipole moment: the Fourier transformX(v) of the
acceleration is related to the Fourier transform of the dipole
moment as follows:

X~v!5
1

A2p
E
0

T

dte2 ivtẍ~ t !

5
1

A2p
S e2 ivTẋ~T!1 ive2 ivTx~T!

2v2E
0

T

dte2 ivtx~ t ! D , ~10!

whereT is the pulse length@the initial position and velocity
are assumed to be zero in Eq.~10!#. If the final position and
velocity of the electron is zero then the power spectrum of
the acceleration can be obtained by multiplying the power
spectrum of the dipole moment byv4. However, for strongly
perturbed or ionizing systems, this is not the case. Burnett
et al. @10# and Tsin-Fu Jiang and Shih-I Chu@11# give ex-
amples where there are large discrepancies in the computed
spectra when there is ionization present. In these cases the
final displacement of the ionized electron can be quite large.
Thus it may be numerically difficult, if not impossible, to
obtain the acceleration spectrum from the Fourier transform
of the dipole moment. For the model considered in this pa-
per, there is no possibility of ionization. Nevertheless, the
final position and velocity can be very large. In Figs. 1~a!
and 1~b!, we show the power spectra computed from the
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acceleration and dipole moment, respectively, for the param-
etersv52.52, e50.5, e050.4, andT5256 optical cycles
~sudden turn on! with the initial staten0560. The initial state
was chosen for comparison with the results of Benvenuto
et al. @7#. In Fig. 1~b! there is a spurious background due to
the first two terms of Eq.~10! being nonzero. Also, the peak
heights are diminished, especially for the higher harmonics,
because of the absence of thev4 factor.

IV. EFFECT OF PULSE RISE TIME
ON SHIFTED HARMONIC GENERATION

It has been shown, for systems similar to that presented
here, that a sudden turn on of the driving field can produce
shiftedharmonic peaks of the same order of magnitude as the
purely harmonic ones@5,6#. These shifted harmonic peaks
are located at frequenciesqa2qb1mv (m integer,qa ,qb
P@0,v#) whereqa andqb are quasienergies~Floquet eigen-
values! of the system. The shifted harmonics occur at inter-
mediate frequencies to the pure harmonics and may be of
comparable order of magnitude in strength. In Fig. 2~a! we
show the power spectrum for the parametersv52.52,
e50.5, e050.4 with sudden turn on@n50 in Eq. ~5!# of the
field for a pulse length of 256 cycles. For these parameters,
the quantum states are localized. We see many shifted har-
monics, particularly about a dozen between the fifth and
sixth pure harmonics, suggesting that about a half dozen or
so quasieigenstates significantly comprise the initial state,
n0560 @5 quasienergies can produce up to 5!/~3!2!!510
quasienergy differences#. In Fig. 2~b!, we show the power
spectrum for the system in the delocalized regime, where
now v50.6. As expected, many more quasieigenstates are
relevant to the evolution and thus there are many more
peaks. In Fig. 3, we show the power spectrum for the system
with the same parameters as in Fig. 2~a!, but with pulse rise
time of 3~a! 4 and 3~b! 12 optical cycles, respectively. The
shifted harmonic peaks are diminished considerably for the
slower rise time, while the purely harmonic ones are rela-
tively unaffected. Thus the absence of shifted harmonics sug-
gests that the turn on adiabatically moves the system into a

single Floquet eigenstate. Twelve optical cycles is a rela-
tively short time by experimental standards; thus it will be
very difficult to observe shifted harmonics in the laboratory.
However, we have not considered other pulse shapes or other
frequency regimes such as the on-resonance case~the driving
frequency equal to the transition frequency,Ei2Ej ) where
Rabi oscillations would be stronger.

V. HIGH HARMONIC GENERATION AND VARIATION
OF FIELD INTENSITY

We now look at the power spectrum of the acceleration as
the intensity is varied for constant frequency. In Fig. 4, we
show the power spectra for the parametersv52.52,
n0560, e050.4 and for the field strengthse50.01, 0.1, and
0.25 and a sudden turn on of the field. It appears that at some
critical field strength betweene50.1 and 0.25 there is sud-

FIG. 1. Power spectrum for the system for the parameters
v52.52, e50.5, e050.4, andT5256 optical cycles~sudden turn
on! with the initial staten0560 using the expectation value of~a!
the acceleration and~b! the induced dipole moment.

FIG. 2. The power spectrum of the acceleration.~a! The local-
ized regime withv52.52, e50.5, e050.4 with sudden turn on of
the field for pulse lengthT5256 optical cycles.~b! The delocalized
regime with parametersv50.6, e50.5, e050.4 with sudden turn
on of the field for pulse lengthT5256 optical cycles.

FIG. 3. Power spectra of the system for the parameters
v52.52, e50.5, e050.4 with pulse rise time of~a! 4 and~b! 12
optical cycles.
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den generation of very high harmonics.~Note only 16 are
shown.! In order to gain some insight to this sudden increase
in harmonics, let us look at the corresponding classical dy-
namics of the system. In Fig. 5 we show classical phase
space strobe plots of the actionJ versus phase anglef of the
external field~not the canonical angleu) after each orbit for
an ensemble of initial conditions nearJ560 for the same
parameters as in Fig. 4. In Fig. 5~a!, the system is relatively
unaffected by the external field except in the vicinity of the
two resonances shown. The resonances are separated by
KAM tori, and the particle motion is stable throughout the
phase space shown. In Fig. 5~b! the resonances have in-
creased in size, but are still separated by KAM tori. In Fig.
5~c! the resonances have overlapped, and all KAM tori sepa-
rating the resonances are destroyed. The motion is then cha-
otic throughout most of the phase space. Comparing Figs. 4
and 5 it seems that HHG occurs when the classical system
becomes fully chaotic. It has been shown for many systems
@9# ~microwave driven hydrogen, for example!, multiphoton
ionization is associated with the onset of chaos in the corre-
sponding classical system. Thus for atomic systems, HHG
may generally be expected to occur near the ionization
threshhold. Indeed, Ferrayet al. point out that ‘‘ . . . harmon-
ics are only generated in a laser intensity range very close to
that required for multiphoton ionization of the medium@1#.’’
However, in general, ionization is not necessary for HHG to
occur. For example, HHG also occurs in a two-level model
@3#. HHG seems particularly efficient when there is localiza-
tion or quantum suppression of classical chaos. Therefore
higher frequencies may lead to more efficient harmonic gen-
eration, since the delocalization threshhold is higher. This is
the same conclusion reached~for perhaps different reasons!
by Lewensteinet al. @12# and Corkum@13# in their atomic
models, though the connection between our model and theirs
requires more study.

VI. CONCLUSION

We have presented a very simple model that exhibits
HHG very similar to that found in recent experiments. While
our model is not directly applicable to the experiments of
Ferrayet al., the model may nevertheless provide some in-
sights. For example, it may lead to an explanation of why
HHG occurs near the multiphoton ionization as reported by
Ferry et al.An understanding of the corresponding classical
dynamics may lead to a deeper understanding of HHG, much
as it has for multiphoton ionization. While classical and
quantum systems do not have the same spectra, the radiation
laws governing them are nonetheless very similar. Thus com-
paring the quantum and classical dynamics may be insight-
ful. Also of interest is when the classical and quantum dy-
namics are very different, as in the case of dynamic
localization. Here we may find new regimes of efficient
HHG. The triangular well is particularly useful because it is
one of the simplest models that exhibit both dynamic local-
ization and delocalization.

We should point out that with regard to the experiments
mentioned above, a fairly developed theory has emerged
@12,13#. We think the approach provided here could provide
a complementary view. We think the results presented here
are fairly general and may apply to a wide variety of quan-
tum systems.

As a final comment, we note that in any laboratory ex-

FIG. 4. Power spectra of the system for the parameters
v52.52 and~a! e50.01, ~b! e50.1, ~c! e50.25.

FIG. 5. Strobe plots of the classical system for the same param-
eters as in Fig. 4.
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periment, there will usually be an ensemble of quantum
wells or atoms, and one has to be concerned about the
matching of the phases of the emitted radiation from all of
the wells or atoms. For the conditions of the experiments
mentioned above, a tightly focused beam and low pressure,
L’Huillier et al. @14# have found that the phased-matched
results do not differ significantly from the single-atom re-
sponse. Therefore, the study of the spectra of single atoms or

wells may be very useful in furthering our understanding of
actual experimental results.
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