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We present an analytic theory of three-dimensional Trojan~stable nonspreading! wave packets. The theory
is valid beyond the harmonic approximation presented previously. We show that electron wave packets that are
both radially and angularly well localized can be generated from an angularly completely delocalized state~a
circular Rydberg state! by adiabatic switching of a circularly polarized electric field. Confinement of the
Rydberg electron results from the suppression of the nonlinearity of the Coulomb spectrum, the same nonlin-
earity that is responsible for wave-packet spreading and revivals in the absence of the applied field. A com-
parison with the harmonic approach is also presented, as well as the results of numerical experiments based on
integration of the time-dependent and field-dependent Schro¨dinger equation for the electron.

PACS number~s!: 32.80.Rm, 42.50.Hz, 95.10.Ce

I. INTRODUCTION

We have shown@1–3# that the collective action of the
Coulomb potential and a circularly polarized electric field
leads to both the angular and the radial confinement of a
hydrogenic electron moving in a circular near-Rydberg orbit.
The origin of this phenomenon lies in the stability of a clas-
sical orbit @4#, but the packet is much more stable than one
could expect from its classical properties@5#. Because of a
close analogy with asteroid stability in planetary mechanics,
we call these probability distributions Trojan wave packets.

This stability enhancement can be understood from the
hydrodynamic formulation of quantum mechanics@6#.
Within the hydrodynamic approach the packet can be
thought of as an ensemble of particles distributed according
to the true quantum probability density moving in both clas-
sical and quantum potentials. The quantum potential depends
on the probability density itself in a nonlocal way and can
produce a drastic difference between the quantum and the
classical behavior. By proper choice of the packet shape one
can increase the stability of the classical potential@7# and
even cause probability localization around trajectories that
are classically unstable@8#.

Our recent numerical results@3# show that Trojan packets
exist even for low values of the angular momentum~on the
order of 10!. Similar electron confinement could be achieved
using a magnetic field in the case of a free electron~Landau
packets! when the cyclotronic frequency of the field is of the
order of the frequency of the circularly polarized field. The
existence of Trojan packets for low angular momenta~high
frequencies! provides a dynamic situation equivalent to the
focusing effect of magnetic fields on the order of 100 T,
which cannot be reached yet in laboratory experiments.

Interest in the experimental study of Rydberg atoms in
microwave and other fields is continuously growing@9–17#.
Rydberg wave-packet formation is an important part of those
studies@18–22# and we believe Trojan wave packets would
be interesting to observe.

In the following we present a theory of Trojan wave pack-
ets that is valid outside the harmonic domain of our first
study@1#. It works for lower values of the electric field when
the wave packet is less confined and the harmonic approxi-

mation can break down. Section II demonstrates how the
approximate energy spectrum and eigenfunctions can be ob-
tained from the wave function expansion in hydrogenic basis
through the theory of Mathieu functions. In Sec. III we show
the connection between the basis expansion method and the
harmonic approximation used originally in@1#. In Sec. IV we
demonstrate which manifolds of hydrogenic states are related
to the eigenstates of our harmonic Hamiltonian. The applica-
bility of the model for very low values of the electric field
allows us to explain our former numerical results@3#, which
had shown that some special Trojan wave packets are adia-
batically connected with circular Rydberg states. It suggests
that they can be generated from those states by adiabatic
switching of a circularly polarized field. In Sec. V we present
the energy spectra obtained numerically using an aligned
states basis and we compare them to those obtained from the
eigenvalues of Mathieu equation. Finally, in Sec. VI we dis-
cuss the results of a numerical experiment when the initial
circular state is subjected to the action of the external circu-
larly polarized field switched on quasiadiabatically. The pa-
per concludes with a summary in Sec. VII.

II. TROJAN WAVE PACKETS AND QUANTUM
PENDULUM

The quantum mechanical Hamiltonian of a hydrogen
atom in a circularly polarized electromagnetic field written in
the frame rotating with the field is given by~in a. u.,
e5\5m51)

H5
p2

2
2
1

r
1Ex2vLz . ~1!

We assume that an eigenfunction of the Hamiltonian~1! with
eigenvalueEj (E) can be expanded as

CE~r ,u,f!5 (
n,l ,m

cnlm~E!Rnl~r !Ylm~u,f!, ~2!
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whereRnl(r ) is the radial part of the hydrogenic eigenfunc-
tion andYlm is a spherical harmonic. In this basis the sta-
tionary Schro¨dinger equation with the Hamiltonian~1! takes
the form

E (
n8,l 8,m8

xnlm
n8 l 8m8cn8 l 8m8

j
5@Ej~E !2En1mv#cnlm

j , ~3!

where j labels the exact~discrete! eigenvalues of~1!,
En[21/2n2, and the hydrogenic dipole matrix elements

xnlm
n8 l 8m8 are known analytically@23#.
Let us define unlm& through the relation

^r unlm&5Rnl(r )Ylm(u,f) and divide the$unlm&% basis we
use into the manifolds $un,n21,n21&%,
$un,n21,n22&% . . . , $un,n2k,n2k2s&%, . . . . The first
manifold represents circular states, the second all states with
angular-momentumLz one atomic unit lower, etc. Fork!n
ands!n ~states with angular-momentum quantum numbers
close to circular! matrix elements between states within a
particular manifold labeled byk ands are much larger than
those between states that belong to two different manifolds.
This can be checked directly by inspecting the analytical
form of the matrix elements of the coordinatex between two
different hydrogenic eigenfunctions@23#. As a result, in a
first approximation, the interaction between different mani-
folds can be neglected.

Additionally we concentrate on rotating-frame eigenfunc-
tions that are well localized in angular-momentum space,
namely, those requiring only a limited number of significant
terms in the expansion~2! centered around some particular
value ofn denotedn0 . The dipole matrix elements between
the states within a particular manifold are slowly varying
functions ofn and also slowly varying ink ands @23#. Be-
cause of the assumption of the localization of the wave func-
tion in angular momentum space we will put all matrix ele-
ments between states within a particular manifold equal. The
conditions k!n and s!n allow us to take the value

xnlm
n8 l 8m85n0

2/25r 0/2 for all matrix elements assumed to be
nonzero.

Under these assumptions Eq.~3! is block diagonal with
blocks labeled byk ands. The assumption about the local-
ization in n allows us to expand the hydrogenic energy
aroundn0 up to second order, namely,

En52
1

2n0
2 1vcdn2

3

2

dn2

r 0
2 , ~4!

where vc51/n0
3 is the classical Kepler frequency corre-

sponding to the quantum numbern0 anddn5n2n0 .
We assume the resonance conditionvc5v and the Schro¨-

dinger equation~3! for a particular block then takes the
simple form

E

2
r 0~an21ks

j 1an11ks
j !5FEj~E !2En0

1~n02k2s!v

1
3

2

dn2

r 0
2 Ganksj , ~5!

with anks[cn,n2k,n2k2s . This simplification follows di-
rectly from the fact that dipole matrix elements between
states within a single manifold$un,n2k,n2k2s&% are zero
except between two consecutive statesun,n2k,n2k2s&
and un21,n212k,n212k2s&.

For n and l much larger than 1 we can assume that there
is no boundary restriction for the variablesn anddn. Under
this assumption Eq.~5! is just the well known Mathieu equa-
tion written in Fourier space@24#. In real space it becomes

F32 1

r 0
2

]2

]f2 1Er 0cosfG f5@Ej~E !2En0

1~n02k2s!v# f . ~6!

Equation~6! is just Eq.~5! written in theeidnf basis. It is
also the Schro¨dinger equation for a quantum pendulum of
mass21

3 We can rewrite it in the standard Mathieu form
@24#. Defining j5(f2p)/2 we get

]2f

]j2
1@a22pcos2j# f50, ~7!

where

a52~8r 0
2/3!@Ej2En0

1~n02k2s!v# ~8!

and the dimensionless parameter

p5
4

3

~eE /mv2!

~\2/me2!
5
4

3

E

v2 ~9!

is proportional to the ratio between the radius of the orbit of
a free electron in the presence of a circularly polarized light
field ~Volkov problem! and the Bohr radius~Coulomb prob-
lem!.

Equation~7! has a discrete set of eigenvaluesam and two
analytic asymptotic expressions are known@24#. For p!m
one gets

am~p!'m21
p2

2~m221!
~10!

and in the opposite case form!p the asymptotic expression
is

am~p!'2
~2m11!211

8
12~2m11!Ap22p. ~11!

The corresponding eigenfunctions of Eq.~7! are Mathieu
functions and because of periodic boundary conditions im-
posed on the wave function only those with periodicityp are
permitted. This implies that in the case of formula~10! only
every second eigenvalue can be permitted, namely,
m52 j , j50,1 . . . , since the eigenfunctions of~7! corre-
sponding to oddm have period 2p in the variablej and lead
to nonphysical wave functions. In the case of formula~11!,
m can be either even or odd since the solutions with period-
icity p become approximately degenerate@24# with those
with periodicity 2p and one corresponding to a physical so-
lution can always be found.

The coefficientsanks
j from Eq. ~5! can be found as
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anks
j 5E e2 j~j!e22i jdndj, ~12!

wheree2 j (j) is the j th Mathieu function of periodp. Ex-
pressions~10! and ~11! allow us to obtain two asymptotic
expressions for the field-dependent energy levels of the
Hamiltonian. For low values of the electric field we obtain

Ej~E ![Eks
j ~E !

5En0
2~n02k2s!v2

3

2

j 2

r 0
2 2

E2r 0
4

4 j 221
. ~13!

For larger field strengths we use~11! and get

Eks
j ~E !5En0

2~n02k2s!v

1
3

32

~2 j 212 j11!

r 0
2 2S j1 1

2DA3E

r 0
1r 0E . ~14!

The spectrum is labeled by three quantum numberss, k, and
j . The first two are associated with the angular-momentum
quantum numbers of hydrogen and the third with excitations
of the quantum pendulum. It is worth pointing out that the
weak-field and the strong-field results of Eqs.~13! and ~14!
can be interpreted as the quadratic and approximately linear
Stark effects in the frame rotating with the circularly polar-
ized field.

The corresponding eigenfunctions can be written directly
from ~2!

C jks~r ,u,f!5(
n

anksRn,n2k~r !Yn2k,n2k2s~u,f!.

~15!

Note that when the summation in~15! is restricted ton
around some particular valuen0 , as we assumed for the
expansion of hydrogenic energy~4!, the radial functions
Rn,n2k and Yn2k,n2k2s can be replaced by those for
n5n0 . This is a result of the fact that for fixeds andk they
have the same spatial character or, in other words, they are
slowly varying functions ofn. Under this assumption we get
from ~15!

C jks~r ,u,f!5Nn02k,n02k2se
i ~n02k2s!fRn0 ,n02k~r !

3Pn02k,n02k2s~u!(
dn

ankse
idnf, ~16!

where we have written the spherical harmonicsYlm as prod-
ucts of the Legendre polynomialPlm , the exponentialeilf,
and the normalization factorNlm . Note that now because of
relation ~12! the sum overdn can be reduced back to the
Mathieu function and therefore the wave function has a nice
analytical form

C jks~r ,u,f!5Nn02k,n02k2se
i ~n02k2s!fRn0 ,n02k~r !

3Pn02k,n02k2s~u!e2 j@~f2p!/2#. ~17!

We are particularly interested in the simplest eigenfunc-
tion ( j50, k51, and s50!. In this case the functions

Rn0 ,n021 , Pn021,n021 , ande0 have Gaussian-like shapes in
their coordinates@24,25#. Because of the connection with
harmonic theory~explained later! we can identify this state
with particular Trojan wave packets discussed previously
@1,2#. Forn0 large enough and for appropriate field strengths
the function~17! can be written as

C jks~r ,u,f!5Nei ~n021!fe2~v/2!~r2r0!2e2~v/2!r0
2u2

3e2b~v/2!r0
2f2

, ~18!

where the expression for the coefficientb is given by

b5AEsc/3. ~19!

HereEsc is the electric field scaled to the Coulomb field at
the distancer 0 from the nucleusEsc5Ev24/3.

The Gaussian approximation of the zeroth-order Mathieu
functione0 originates directly from the fact that the cos2j in
Eq. ~7! can be replaced by its expansion up to second order
in j when the wave function is compact enough to permit a
small-j approximation. This occurs wheneverp is large
enough compared tom. The Mathieu equation in this case
becomes the Schro¨dinger equation of a harmonic oscillator.
The quantum-mechanical condition for this replacement can
be found from the requirement that if one wants the har-
monic approximation to be valid for thej th eigenstate in Eq.
~6! the amplitude of the cosine term in~6! must be larger
than the energy of thej th level obtained from the harmonic
approximation. This self-consistent requirement means that
the cosine potential must be deep enough to bindj states in
the harmonic portion of the potential well. This requirement
gives the constraint for the scaled electric field, which is

Esc.3
~ j11!2

n0
2 . ~20!

This implies that for very small field strengths the harmonic
approximation holds for the particular Trojan wave packets
with j50, and forj not far from the lowest the energy levels
are almost equally spaced as predicted by formula~14!. Note
that wave function~18! only approximately satisfies periodic
boundary conditions with respect to the variablef and when
it is well localized aroundf50. On the other hand, the
function ~17! is free from this restriction since the Mathieu
function e0 has periodp. In the limit E50 this function
converges to the circular state whose Kepler frequency is the
frequency of the circularly polarized light, which explains
analytically our numerical results reported in@3#.

III. RYDBERG MANIFOLDS AND HARMONIC
OSCILLATORS

First we will revise and extend to the third dimension the
harmonic analysis presented originally in@1# in Cartesian
coordinates. The Hamiltonian~1! when written in cylindrical
coordinates is

H52
1

2 S ] r
21

1

r
] r1

1

r 2
]f
21]z

2D2
1

Ar 21z2
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1Ercosf1 iv]f . ~21!

After the transformation of the wave functionC(r ,f,z)
5F(r ,f,z)/Ar the Hamiltonian for the functionF becomes

H52
1

2 F] r21 1

r 2 S ]f
21

1

4D1]z
2G2

1

Ar 21z2

1Ercosf1 iv]f . ~22!

After dropping 1/4 in~22!, performing the first unitary trans-
formation U15eil 0f, and then expanding the resulting
HamiltonianH15U1

†HU1 up to second order in the opera-
tors ] r and]f and the variablesdr5(r2r c), f, andz @26#
around the stable, circular, classical orbit@4#, we obtain the
quadratic Hamiltonian

H15E02
1

2 S ] r
21

1

r c
2 ]f

21]z
2D 1

v r
2dr 2

2
2

vf
2 r c

2f2

2

22iv
1

r c
]fdr1

vz
2z2

2
, ~23!

where the classical condition of the equilibrium of forces
expressed by the equation

v2r c1E5
1

r c
2 ~24!

implies vanishing of the linear terms and leads to the require-
ment l 05vr c

2 . The frequenciesvf , v r , andvz are defined
by the relations

vf
25

E

r c
,

v r
25v212vf

2 ,

vz
25v22vf

2 ~25!

andE0 is the classical energy of the electron shifted by the
rotation of the coordinate system

E05
v2r c

2

2
2

1

r c
2 1r cE2 l 0v. ~26!

A second unitary transformationU25eivdrr cf next trans-
forms the Hamiltonian~23! into

HL5U2
†HU25E01

p r
21pf

2

2
1

22qv2Xr
21qv2Xf

2

2

2v~Xrpf2Xfp r !1
pz
2

2
1

vz
2z2

2
,

~27!

where we defined Xr5dr , Xf5r cf, p r52 i ] r ,
(2 i /r c)]f , andpz52 i ]z . The parameterq was defined in
@1# as

q5
1

v2r c
3 ~28!

and it can be interpreted as the ratio of the Coulomb force to
the centrifugal force. It can be directly related to the scaled
field Esc by the relation@1#

Esc5~12q!q21/3. ~29!

The part of the Hamiltonian~27! that is independent ofz
looks exactly like our harmonic Hamiltonian presented origi-
nally in @1#. The part dependent onz is decoupled from the
rest of the Hamiltonian. This explains our claim that the
essential physics of the problem can be obtained from an
analysis in two dimensions. The Hamiltonian~27! can be
written in diagonal form

HL5E01v1~a1
† a11 1

2 !2v2~a2
† a21 1

2 !

1v0~a0
†a01

1
2 !, ~30!

with the eigenfrequencies

v15vA22q1A9q228q YA2,

v25vA22q2A9q228q YA2,

v05vAq. ~31!

The operatorsa1 anda2 can be expressed as complicated
linear combinations of the operatorsXr , p r , Xf , andpf ,
anda0 has standard form. They are

a15S vp r1 i
v
Mf

pf2
i

Mf
Xr2uXfDAN1,

a25S 2 i
v
Mr

p r2vpf1uXr1
i

M r
XfDAN2,

a05~ ipz1v0z!/Av0, ~32!

with

N152
v
Mf

~12u!,

N252
v
Mr

~12u!,

Mr5
122vv2v2v r

2

u212uvv1v2vf
2 ,

Mf5
122vv2v2vf

2

u212uvv1v2v r
2 , ~33!

whereu andv are the solutions of the system of equations

u2vv2uvv2v2v r
250,
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u1vv1uvv1v2vf
250. ~34!

Thus the spectrum of the Hamiltonian~21! within the three-
dimensional harmonic approximation is

Em1 ,m2 ,m0
~E !5E01~m11 1

2!v12~m21 1
2 !v2

1~m01
1
2 !v0 . ~35!

The connection with the basis expansion method follows
directly from formula~14!. For the field strengths that guar-
antee classical stability@1# the parameterq satisfies the con-
dition (8/9),q,1, so q'1 and we havev1'v and
v0'v. For E large enough for fixedk and s, the energy
levels given by expression~14! are equally spaced with the
spacing

s5A~3E /r c!. ~36!

The behavior ofs as a function of the parameterq ~shown in
Fig. 1! allows us to associate this spacing with the frequency
v2 from the harmonic approximation. Note additionally that
E0'En0

1Er c2( l 021)v, since the radius of the classical

orbit r c is only a very little different from the radius of the
corresponding Kepler orbitr 0 . The small difference between
those two radii is given by the relationr c5r 0 /q

1/3.
It is worth emphasizing that the magneticlike interaction

term proportional to]fdr , together with the quadratic poten-
tial hill in f in the Hamiltonian~23!, makes the effective
electron mass fractional and negative (21/3), as expressed
by the Schro¨dinger equation of an inverted pendulum~6!.
This results in the negative sign of the term with the fre-
quencyv2 in the harmonic Hamiltonian~30!.

IV. IDENTIFICATION OF TROJAN STATES

The connection between the basis expansion method and
the harmonic approximation allows us to tell which Rydberg
manifolds contribute most in creating the eigenfunctions of
the Hamiltonian~30!. The quantum numberm0 from the for-
mula ~35! associated with the excitation perpendicular to the
plane of the motion of the packet obviously corresponds to
the quantum numbers in the expression~14!. The quantum
numberm1 in ~35! corresponds tok in ~14! and finally the
Mathieu function indexj corresponds to the indexm2 in

~35!. Therefore the eigenstate of Hamiltonian~30! with the
eigenvalueEm1 ,m2 ,m0

is built mainly from the hydrogenic

eigenfunctions that belong to the$un,n212m1 ,
n212m12m0&% manifold with n in the vicinity of n0 ,
which is defined by the resonance conditionv51/n0

3 .
Let us consider a particular three-dimensional Trojan

wave packet, the eigenfunction with the energyE000. It con-
tains in its expansion in terms of eigenfunctions of hydrogen
mainly circular states with the principal quantum numbern
localized aroundn0 . For well-confined wave functions the
factor Ar multiplying the functionF can be replaced by
Ar c and the harmonic approximation in this case gives the
following expression for the wave functionC ~taking into
account the action of the unitary transformationsU1 and
U2 as well!:

C~r ,f,z!5Neil 0fe2~v/2!@A~r cf!21B~r2r c!2#

3e2~v/2!@2i ~C21!~r2r c!r cf1Dz2#. ~37!

The part of the wave function that depends only onf andr
can be obtained from our two-dimensional wave function in
Cartesian coordinates@1# by a coordinate transformation up
to second order@2#. The coefficientsA,B,C were given in
@1# as functions ofq. The coefficientD characterizing the
spread of the wave function around the plane of the circular
motion can also be expressed in terms of the parameterq,

D5Aq. ~38!

For large enoughr c and appropriate field strengths the
wave function~37! can be compared directly with the ex-
pression~18! using the approximate relationz5r cu. Note
that when this approximation holds~for wave functions well
localized around the plane of orbital motion! the circular
coordinater is approximately the same as the cylindricalr
and a comparison is possible.

For lower field strengths whenq is very close to 1~Fig. 2!
we haveB'C'D'1, and alsoA'b ~see Fig. 2!, so those
two wave functions do not differ too much from each other,
which confirms the applicability of our model of noninteract-
ing manifolds. The deviation for higher field strengths is a
result both of the assumption of the lack of the interaction
between manifolds as well as the fact that the basis of hy-
drogenic bound states is not a complete basis. The orthogo-
nal space of the continuum states also exists, but the interac-
tion with the continuum has been totally neglected. The
interaction with the continuum states will lead to a small

FIG. 1. Eigenfrequencies of the harmonic Hamiltonian~30! as
functions of the parameterq and the spacings obtained from for-
mula ~36!. Note that generallyv0'v1'v and s'v2 , so the
energy spectra obtained from the basis expansion method with the
assumption about noninteracting manifolds and from the harmonic
approximation approximately coincide. For lower field strengths
~largerq! the agreement is better.

FIG. 2. Parameters of the Trojan wave packet obtained from the
harmonic approximation in cylindrical coordinates as functions of
the parametersq andb from the noninteracting manifolds model.
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amount of ionization, which we have observed numerically
@2#, and this contributes to a nonzero width of the energy
levels.

Note that in the limitl 0→` the harmonic approximation
becomes exact@1# while the model of noninteracting mani-
folds does not and for very largel 0 the harmonic approxima-
tion should be used as a test of the former model rather than
vice versa. For lower values ofl 0 and lower field strengths,
when the harmonic theory predicts weak radial confinement
of the electron wave function, we can expect that the nonin-
teracting manifolds model works better. In the limitE→0 it
recovers the quadratic nonlinearity of the Coulomb spectrum
and the exact hydrogenic eigenfunctions. In particular the
Trojan wave packet in this limit becomes a circular state and
the limit can safely be taken because the wave function given
in ~15! is always periodic.

In the case of the function~37!, the limit E→0 can be
taken only formally, since for very low electric-field values
the harmonic approximation predicts large angular spreading
of the wave function and the quadratic expansion is not well
justified. Additionally, the function~37! strongly violates pe-
riodic boundary conditions for very low field strengths, when
it is not well confined in coordinatef.

V. NUMERICAL ANALYSIS

It is difficult to judge the range of validity of approxima-
tions based on inequalities such asn@k, etc. In this section
we compare the energy spectra obtained by solving the sta-
tionary Schro¨dinger equation for Hamiltonian~1! using a
reduced hydrogenic basis with the spectra obtained from
Mathieu analysis. We show that our analytic approximations
are remarkably well obeyed even for relatively low Rydberg
quantum numbers. We also examine Trojan packet formation

by time-dependent numerical integration of the Schro¨dinger
equation with the circularly polarized field switched on in a
quasiadiabatic manner.

We have solved the stationary Schro¨dinger equation using
only aligned states~states withl5m! in the expansion of the
wave function~2!, which is approximately equivalent to con-
sidering a two-dimensional hydrogen atom@27#. This corre-
sponds to taking into account all~numerically truncated!
states from $un,n21,n21&%, . . . ,$un,n2k,n2k&% mani-
folds, with all interactions between those states governed by

FIG. 3. Energy spectrum as a function of scaled electric field in
the vicinity of then0510 circular state forv51/n0

3 . The marker
points belong to the Trojan lines. One can see two doublets on the
diagram separated by approximatelyv50.001. The large marker
point corresponds to the Gaussian-like Trojan packet for
Esc50.016.

FIG. 4. Energy spectrum as a function of scaled electric field in
the vicinity of then0520 circular state forv51/n0

3 . The marker
points belong to the Trojan lines. One can see two triplets on the
diagram separated by approximatelyv50.000 125. The large
marker point corresponds to the Gaussian-like Trojan packet for
Esc50.016.

FIG. 5. Doublets obtained from the eigenvalues of Mathieu
equation ~7!. As in Fig. 3, the large point corresponds to the
Gaussian-like Trojan packet forEsc50.016.

1720 53MACIEJ KALINSKI AND J. H. EBERLY



the values of the exact matrix elements between them.
Figures 3 and 4 show the rotating-frame energy spectra as

functions of the scaled electric field for the frequency
v51/n0

3 , for n0510 and 20. One can barely identify two
doublets in Fig. 3, but two triplets can be picked out in Fig.
4 consisting of energy lines almost linearly proportional to
the field strength. This is the imprint of the harmonic spec-

trum. Note that from condition~20! one gets the maximum
number of levels contributing to a harmoniclike structure
within a single bunch asnmax5n0(Esc/3)

1/2. For the maxi-
mum value of the scaled fieldEsc50.05 andn0520 we get
nmax52.58, so one should expect about three harmonic en-
ergy lines as one sees in Fig. 4. ForEsc50.1 andn0510 we
havenmax51.83, so one expects to see up to two lines, as
can be identified in Fig. 3. If the identification of the har-
monic energies is not totally obvious, reference to Figs. 5
and 6, which show the corresponding energy lines obtained
from the eigenvalues of Mathieu equation~7!, is helpful. One
can see very satisfactory agreement between analytical and
numerical results forn0520 and still satisfactory for
n0510.

Our analysis formally confirms our former numerical re-
sult @3# that the wave functions that correspond to the eigen-
values from the energy line that ends at a particular circular
state are Gaussian-like Trojan wave packets. The Kepler fre-
quency of this circular state is in resonance with the fre-
quency of the circularly polarized field. In Figs. 3 and 4 this
is the line going through the large black point on the dia-
gram.

Figures 7 and 8 show contour plots of two-dimensional
versions of Trojan wave packet intensity~electron probabil-
ity density! obtained from various approximations for the
scaled fieldEsc50.016 forn0510 and 20. Plots~a! show the
result of the harmonic approximation discussed in Sec. III. In
plots ~b! we show Trojan packets obtained from the modified
Gaussian approximation given by formula~40!. Results of
the Mathieu function approach and the aligned states expan-
sion are shown in plots~c! and ~d!. In the case of functions
given by the expansions~2! and~15!, Legendre polynomials
were replaced by a constant value and then the function was

FIG. 6. Triplets obtained from the eigenvalues of Mathieu equa-
tion ~7!. As in Fig. 4, the large point corresponds to the Gaussian-
like Trojan packet forEsc50.016.

FIG. 7. Trojan wave packet forEsc50.016 andv51/103 ob-
tained from~a! the harmonic approximation from formula~37!, ~b!
the modified Gaussian approximation given by~40!, ~c! the Mathieu
functions approach from expression~15!, and~d! the solution in the
aligned states basis~2!. Functions~c! and~d! correspond to the two
large points on the energy diagrams in Figs. 3 and 5. The gauge in
the left lower corner of plot~a! indicates the distance equal to 100
a. u. The black dot in the center indicates the position of the nucleus
(x5y50).

FIG. 8. Trojan wave packet forEsc50.016 andv51/203 ob-
tained from various approximations as in Fig. 7. Functions~c! and
~d! here correspond to the two large points on the energy diagrams
in Figs. 4 and 6. The gauge in the left lower corner of plot~a!
indicates the distance equal to 100 a. u. The black dot in the center
indicates the position of the nucleus (x5y50).
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normalized in two dimensions.
One can see that the difference increases when the value

of n0 decreases, but qualitatively all approaches give the
same result. One expects the wave function obtained from
the plain harmonic approximation to be the least accurate,
since it significantly violates periodic boundary conditions
for this value of the field.

VI. QUASIADIABATIC SWITCHING

The adiabatic connection between a Gaussian-like Trojan
packet and its parent circular state implies@3# that a state
originally prepared as a circular state will become angularly
compact during the time evolution, if the electromagnetic
field is switched on adiabatically. In this case the state will
follow the Trojan energy line if one switches the field slowly
enough not to cause transitions. This line has a series of
crossings with other levels, some of them clearly avoided
within the plot resolution~see Figs. 3 and 4!, so the turn-on
should also be diabatic enough to pass them and remain on
the Trojan line. On this basis we predict Trojan packet for-
mation to be feasible by an adiabatic switching that is con-
ceptually extremely simple, depends on only the single pa-
rameterE , and starts from a circular Rydberg state. Various
techniques of circular state preparation have been reported
@28–32#.

In order to check this prediction we have solved the time-
dependent Schro¨dinger equation numerically with the two-
dimensional version of the circular staten0520 taken for the
initial condition. The frequency of the circularly polarized
field was tuned to the Kepler frequency of this state
v51/n0

3 . The field was switched on exponentially during
twenty optical cycles according to the formula
E(t)5E0e

20.2(t220) until the value E050.016v24/3 was
reached (Esc50.016). After the turn-on was complete we
monitored an additional ten cycles of evolution with the con-
stant value of the amplitudeE5E0 . Figure 9 confirms our
prediction. It shows the formation of a sharply angularly lo-
calized packet during the adiabatic switching process.

To check this confirmation quantitatively, we have also
calculated the testing functions

C~ t !5U E F*CdrU2,

R~ t !5E
R

uFu2dr ,

P~ t !5E uFu2dr . ~39!

Here the wave functionF is a numerical solution of the full
time-dependent Schro¨dinger equation, such as that shown in
Fig. 9, and the wave functionC is obtained from our modi-
fied Gaussian approximation@2# with E chosen to be the
final field strengthE0 reached during the switching. That is,
C is given in two dimensions by

C~r ,f!5Neilfexp$2~ l /2r c
2!@2r c

2a~12cosf!

1b~r2r c!
212icr c~r2r c!sinf#%

5Neilfexp$2~ l /2r c
2!@4r c

2asin2~f/2!

1b~r2r c!
214icr c~r2r c!sin~f/2!

3A12sin2~f/2!#%, ~40!

FIG. 10. Correlation functionC(t) as defined in~39!.

FIG. 9. Adiabatic angular localization of electron probability
density. Snapshots ofuFu2 at t50 and after 6, 14, and 20 cycles
show increasing angular bunching during exponential switching of
the field. The initial state is the circular state forn0520. The gauge
in the right upper corner of plot~a! indicates the distance equal to
100 a. u. The black dot in the center indicates the position of the
nucleus (x5y50).
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with the parameters

l520,

r c5388.69,

a50.057 06, b50.716 56, c520.138 60. ~41!

The letterR refers to a specific area of integration.R is
defined as the rectangle in the laboratory frame that contains
60% of the probability calculated from the initial wave func-
tion ~40!: *RuCu2dr50.6 att50.

The growth of the correlation functionC plotted in Fig.
10 shows that a state with a large component of Trojan
packet is actually generated. The amplitude increase of the
functionR, as shown in Fig. 11, is also evidence of localiza-
tion. The quantityP(t) is the total probability in a circle
concentric with the packet orbit, with radius 2r c. It is impor-
tant to note that the probability of escape out of the circle is
negligible. This is represented by the decrease of the function
P, which is shown in Fig. 12, and is a useful measure of
ionization.

VII. SUMMARY AND CONCLUSIONS

In conclusion, we have shown how the presence of the
external field can suppress the nonlinearity of the Coulomb

spectrum and can produce a harmonic spectrum. This spec-
trum agrees with the one found by an explicit harmonic ap-
proximation @1#. Our model of noninteracting Coulomb
manifolds explains why the harmonic structure appears in
the energy levels even for low angular momenta, when the
harmonic approximation originally introduced in@1# may not
be well justified. This approach is especially useful for those
who would like to observe Trojan wave packets numerically
for lower values of the circularly polarized fields by integrat-
ing Schrödinger’s equation using a hydrogenic basis expan-
sion rather than a spatial grid integration@2#, since it tells
which states from the eigenspace of hydrogen should be used
in the expansion of the time-dependent wave function. It also
permits a strong prediction that Gaussian-like Trojan wave
packets are adiabatically connected with circular Rydberg
states whose Kepler frequency matches the frequency of the
circularly polarized light. The numerical experiment pre-
sented here fully confirms those predictions.
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