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Trojan wave packets: Mathieu theory and generation from circular states
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We present an analytic theory of three-dimensional Trégaable nonspreadingvave packets. The theory
is valid beyond the harmonic approximation presented previously. We show that electron wave packets that are
both radially and angularly well localized can be generated from an angularly completely delocalizéd state
circular Rydberg stajeby adiabatic switching of a circularly polarized electric field. Confinement of the
Rydberg electron results from the suppression of the nonlinearity of the Coulomb spectrum, the same nonlin-
earity that is responsible for wave-packet spreading and revivals in the absence of the applied field. A com-
parison with the harmonic approach is also presented, as well as the results of numerical experiments based on
integration of the time-dependent and field-dependent ‘Satger equation for the electron.

PACS numbsis): 32.80.Rm, 42.50.Hz, 95.10.Ce

I. INTRODUCTION mation can break down. Section Il demonstrates how the
approximate energy spectrum and eigenfunctions can be ob-
We have showrf1-3] that the collective action of the tained from the wave function expansion in hydrogenic basis
Coulomb potential and a circularly polarized electric field through the theory of Mathieu functions. In Sec. Ill we show
leads to both the angular and the radial confinement of &€ connection between the basis expansion method and the
hydrogenic electron moving in a circular near-Rydberg orbit.harmonic approximation used originallyfii]. In Sec. IV we
The Origin Of this phenomenon |ies in the Stability of a Cias_demonstrate Wh|Ch manifolds Of hydl’ogenic states are related
sical orbit[4], but the packet is much more stable than onel© the eigenstates of our harmonic Hamiltonian. The applica-
could expect from its classical propertigs]. Because of a bility of the model for very low values of the electric field
close analogy with asteroid stability in planetary mechanicsallows us to explain our former numerical resy§, which
we call these probability distributions Trojan wave packets. had shown that some special Trojan wave packets are adia-
This stability enhancement can be understood from th&atically connected with circular Rydberg states. It suggests
hydrodynamic formulation of quantum mechani¢s]. that they can be generated from those states by adiabatic
Within the hydrodynamic approach the packet can peswitching of a circularly pqlarized fielq. In Sec..V we pre;ent
thought of as an ensemble of particles distributed accordingl€ energy spectra obtained numerically using an aligned
to the true quantum probability density moving in both clas-States basis and we compare them to those obtained from the
sical and quantum potentials. The quantum potential dependdigenvalues of Mathieu equation. Finally, in Sec. VI we dis-
on the probability density itself in a nonlocal way and canCuss the results of a numerical experiment when the initial
produce a drastic difference between the quantum and ﬂ'@-rcular state is Subjected to the action of the external circu-
classical behavior. By proper choice of the packet shape oni@rly polarized field switched on quasiadiabatically. The pa-
can increase the stability of the classical potenigland  Per concludes with a summary in Sec. VIL.
even cause probability localization around trajectories that
are classically unstable].
Our recent numerical resulf8] show that Trojan packets Il. TROJAN WAVE PACKETS AND QUANTUM
exist even for low values of the angular moment(on the PENDULUM
order of 10. Similar electron confinement could be achieved
using a magnetic field in the case of a free electiiandau
packets when the cyclotronic frequency of the field is of the
order of the frequency of the circularly polarized field. The
existence of Trojan packets for low angular momeitigh
frequencies provides a dynamic situation equivalent to the
focusing effect of magnetic fields on the order of 100 T, 2
which cannot be reached yet in laboratory experiments. H= P —+Zx—wl,. (1)
Interest in the experimental study of Rydberg atoms in 2.
microwave and other fields is continuously growir®g-17].
Rydberg wave-packet formation is an important part of those . . o .
studies[18—23 and we believe Trojan wave packets would W€ assume .th(at an eigenfunction of the Hamiltoritarwith
be interesting to observe. eigenvalueE!(#) can be expanded as
In the following we present a theory of Trojan wave pack-
ets that is valid outside the harmonic domain of our first
study[1]. It works for lower values of the electric field when —
the wave packet is less confined and the harmonic approxi- Ve(r.6.¢) n;m Coim(E)Rar(1)Yim(6,4), @

The quantum mechanical Hamiltonian of a hydrogen
atom in a circularly polarized electromagnetic field written in
the frame rotating with the field is given bgin a. u.,
e=h=m=1)
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whereRy(r) is the radial part of the hydrogenic eigenfunc- with apxs=Cp n—kn-k—s- This simplification follows di-
tion andY),, is a spherical harmonic. In this basis the sta-rectly from the fact that dipole matrix elements between
tionary Schrdinger equation with the Hamiltoniail) takes  states within a single manifolfin,n—k,n—k—s)} are zero
the form except between two consecutive statesn—k,n—k—s)
and[n—1n—1-k,n—1-k-s).
o , ‘ Forn andl much larger than 1 we can assume that there
2 Xk =B —E,+mwlch,, (3 s no boundary restriction for the variablesand on. Under
n’.1’,m’ this assumption Eq5) is just the well known Mathieu equa-

_ _ _ tion written in Fourier spacg24]. In real space it becomes
where j labels the exact(discret¢ eigenvalues of(1),

E,=—1/2n?, and the hydrogenic dipole matrix elements[3 1 2 , _
+Zrocosp|f=[EN(£) —E,,

x"h™" are known analyticallf23]. 212 9¢?

Let us define |nlm) through the relation
{rInlmy=Ry(r)Y;m(6, ) and divide the{|nIm)} basis we +(ng—k—s)w]f. (6)
use into the manifolds  {|n,n—1,n—1)}, , L Lo N e ,
(Inn—1n-2)v ..., {Inn—k,n—Kk—=s)}, . ... The first Equation(6) is just Eq.(5) written in thee basis. It is

manifold represents circular states, the second all states Wi&lso the Schrdinger equation for a quantum pendulum of

. . mass—3 We can rewrite it in the standard Mathieu form
angular-momentunh, one atomic unit lower, etc. Fd<n 24]. Defining £= (- m)/2 we get
ands<n (states with angular-momentum quantum numberé ' 9 m g
close to circular matrix elements between states within a 92f
particular manifold labeled bl ands are much larger than — t[a—2pcosZ]f=0, @
those between states that belong to two different manifolds. 43
This can be checked directly by inspecting the analytical,qre
form of the matrix elements of the coordinatdetween two

different hydrogenic eigenfunctior[23]. As a result, in a a=—(8r3/3)[El—E, +(ny—k—5)w] (8)
first approximation, the interaction between different mani- 0
folds can be neglected. and the dimensionless parameter
Additionally we concentrate on rotating-frame eigenfunc-
tions that are well localized in angular-momentum space, 4 (eflmw?®) 4 &
namely, those requiring only a limited number of significant p= 3 (h2Imé) 3.2 €)

terms in the expansiof®) centered around some particular

value ofn denotedn,. The dipole matrix elements between is proportional to the ratio between the radius of the orbit of
the states within a particular manifold are slowly varying a free electron in the presence of a circularly polarized light
functions ofn and also slowly varying itk ands [23]. Be- field (Volkov problem) and the Bohr radiugCoulomb prob-
cause of the assumption of the localization of the wave functem).

tion in angular momentum space we will put all matrix ele-  Equation(7) has a discrete set of eigenvalueg and two

ments between states within a particular manifold equal. Thanalytic asymptotic expressions are knoj@4]. For p<u
conditions k<n and s<n allow us to take the value one gets

xﬂ[r'n'mrznﬁ/ZZro/Z for all matrix elements assumed to be 02
nonzero. 2
~pPt s 10
Under these assumptions E®) is block diagonal with @u(P)=p 2(u?—1) (10

blocks labeled by ands. The assumption about the local- ) ) . ]
ization in n allows us to expand the hydrogenic energy@nd in the opposite case far<p the asymptotic expression
aroundn, up to second order, namely, IS

2u+1)%2+1
1 3 5n2 aﬂ(p)%—%—l—Z(ZM-i-l)\/B—Zp. (11)
En=—2—2+w05n—§—2—, (4)
Ng )

The corresponding eigenfunctions of EJ) are Mathieu

where wc=1/ng is the classical Kepler frequency corre- functions and because Qf periodic boun'dary c'onQi.tions im-
sponding to the quantum numbes and Sn=n—n,. poseq on the wave f_unct|on _only those with periodieityare
We assume the resonance conditigr= w and the Schiro permitted. This implies that in the case of formi®) only

dinger equation(3) for a particular block then takes the €V€'y second eigenvalue can be permitted, namely,
simple form ©n=2j,j=0,1..., since the eigenfunctions af7) corre-

sponding to odgk have period Zr in the variable and lead
[ to nonphysical wave functions. In the case of form(ila),

N[

El(#)—E, +(Np—k—9)w 4 can be either even or odd since the solutions with period-
0 icity = become approximately degenerdf] with those
with periodicity 27 and one corresponding to a physical so-
al ., (5) lution can always be found.
The coefficientsl,, from Eq. (5) can be found as

Fo(@h- kst ah 1ks) =

N w

+

8n?
o
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j _2igan Rng.ng-1+ Pny—1n,—1, @ndey have Gaussian-like shapes in
a"kszf &j(§)e dé, (12) their coordinate§24,25. Because of the connection with

_ _ _ _ _ harmonic theoryexplained laterwe can identify this state
whereey;(£) is the jth Mathieu function of periodr. Ex-  with particular Trojan wave packets discussed previously

pressions(10) and (11) allow us to obtain two asymptotic [1,2]. Forn, large enough and for appropriate field strengths
expressions for the field-dependent energy levels of thene function(17) can be written as

Hamiltonian. For low values of the electric field we obtain

. 2 2,2
El(£)=EL(%) Wis(r, 0,¢9) =Ne (N0~ Do~ (/2o g~ (w/2)ro0
(o) — kS &

3j2 2 x e A2, (18
=E, —(ng—k—-s)o— 55— —5—. (13
"o 2rg 4°-1 where the expression for the coefficightis given by

For larger field strengths we us#l) and get B=\7.J3 (19)
Js .

El(#)=En,—(No—k—8)w Here £ is the electric field scaled to th4e/300u|omb field at
2 the distance y from the nucleus?y= Zow ™"
+ i w_(j 1) \ /%_{_rog’. (14) The Gaussian approximation of the zeroth-order Mathieu
32 o o function e, originates directly from the fact that the c@sg

Eq. (7) can be replaced by its expansion up to second order
in £ when the wave function is compact enough to permit a
mall¢ approximation. This occurs whenever is large
nough compared ta. The Mathieu equation in this case
ecomes the Schdinger equation of a harmonic oscillator.
The quantum-mechanical condition for this replacement can
Ye found from the requirement that if one wants the har-
monic approximation to be valid for th¢h eigenstate in Eq.

2

The spectrum is labeled by three quantum numbgks and

j. The first two are associated with the angular-momentu
guantum numbers of hydrogen and the third with excitation%
of the quantum pendulum. It is worth pointing out that theb
weak-field and the strong-field results of EqE3) and (14)
can be interpreted as the quadratic and approximately line
Stark effects in the frame rotating with the circularly polar-

ized field. . . . . . (6) the amplitude of the cosine term %) must be larger
f Th(e )correspondlng eigenfunctions can be written dlrectly,[han the energy of thgth level obtained from the harmonic
rom (2

approximation. This self-consistent requirement means that

the cosine potential must be deep enough to listhtes in

\I'J-ks(r,a,qb):E ankRnn—k(rN Yn_kn-k-s(6, ). the harmonic port_ion of the potential weI.I. T_his reqqirer_nent
n gives the constraint for the scaled electric field, which is

(15
o . . , (j+1)2
Note that when the summation if15) is restricted ton L o> 3. (20)
around some particular value,, as we assumed for the No

expansion of hydrogenic energy), the radial functions

Ron_x and Y, «n . can be replaced by those for This implies that for very small field strengths the harmonic
n,n— n—K,n—K—s

n=n,. This is a result of the fact that for fixezlandk they approximation holds for the particular Trojan wave packets

have the same spatial character or, in other words, they atith j =0, and forj not far from the lowest the energy levels
slowly varying functions ofi. Under this assumption we get '€ almost equally spaced as predicted by forniida Note

from (15) that wave functior(18) only approximately satisfies periodic
boundary conditions with respect to the varial@nd when
\I,jks(rnayqs):Nnoiknofkfsei(no_k_s)‘ﬁRno ng— k(1) it is well localized around$=0. On the other hand, the

function (17) is free from this restriction since the Mathieu
in function eg has periodw. In the limit #=0 this function
X Prg—king—k-s 0); Anks® (16) converges to the circular state whose Kepler frequency is the

frequency of the circularly polarized light, which explains

where we have written the spherical harmorgs as prod-  analytically our numerical results reported[B].

ucts of the Legendre polynomi#,,,, the exponentiat' ?,

and the normalization factd¥,,,. Note that now because of . RYDBERG MANIFOLDS AND HARMONIC

relation (12) the sum overdn can be reduced back to the OSCILLATORS

Mathieu function and therefore the wave function has a nice

analytical form First we will revise and extend to the third dimension the

harmonic analysis presented originally fih] in Cartesian
Vo1, 0, ) = Nnofk,nofkfsel(noikis)(ﬁRno,nofk(r) coordinates. The Hamiltoniaid) when written in cylindrical
coordinates is

X Pry—kng—k-s(0)€2j[ (p—m)/2]. (17)
. . . : : 1 1 1 1
We are particularly interested in the simplest eigenfunc- H=—>| >+ =a,+ _253)+ 92| —
tion (j=0, k=1, and s=0). In this case the functions 2 r r r°+z°
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+rcospt+iwdy. (21

After the transformation of the wave functioW (r,¢,z)
=®(r,¢,z)/\r the Hamiltonian for the functio® becomes

1

2

1

r<+z

H

1 1
2 2
ﬁr+r—z(ﬂ¢+4

+02

+Zrcospt+iwdy. (22
After dropping 1/4 in(22), performing the first unitary trans-
formation U;=€''o?, and then expanding the resulting
HamiltonianH1=UIHU1 up to second order in the opera-
tors d, andd,, and the variablesr =(r —r.), ¢, andz [26]
around the stable, circular, classical orf#it, we obtain the
guadratic Hamiltonian

1 1 w?or?  wirig?
_E T 920 = 92 2 r _éc
H,=Egq 5 ar+r§a¢+az + 5 5
2i ! 1) w§z2 23
- |wa(9¢ r+ 5 (23

where the classical condition of the equilibrium of forces

expressed by the equation

; 1
0T+ E=— (24

IfC
implies vanishing of the linear terms and leads to the requir
mentl,=wr?2. The frequencies,, o, andw, are defined
by the relations

wg =w?— w(zl, (25

andE, is the classical energy of the electron shifted by the

rotation of the coordinate system

2.2 1

() N i
= ——2+rC?5—|ow.
rC

Eo=—— (26)

A second unitary transformatio) ,=e'“?"c# next trans-
forms the Hamiltoniar(23) into

2,2 2y2 2y2

Ty + T —2qwX;+gqwX

H =U}HU,=Eg+ ———2 r .

2 2
ol

—w(Xrﬂ'(b—X(bﬂ'r)-f-?-f- 5
(27)
where we defined X,=6r, Xy=r¢¢, m=-id,,

(—ilrg)dy, andm,= —id,. The parameteq was defined in
[1] as

MACIEJ KALINSKI AND J. H. EBERLY

e_

9=—3 (28
C
and it can be interpreted as the ratio of the Coulomb force to
the centrifugal force. It can be directly related to the scaled
field #. by the relation1]
Ze=(1-q)q (29

The part of the Hamiltoniafi27) that is independent of
looks exactly like our harmonic Hamiltonian presented origi-
nally in [1]. The part dependent anis decoupled from the
rest of the Hamiltonian. This explains our claim that the
essential physics of the problem can be obtained from an
analysis in two dimensions. The Hamiltoni&®7) can be
written in diagonal form

H =Ept+w.(ala,+})-w_(ala_+13)

+wo(agagt3), (30
with the eigenfrequencies
o, =w\2—q+/992—8q /ﬁ
w_=w\2—q—/992—8q /ﬁ
wozw\/a. (32)

The operator@, anda_ can be expressed as complicated
linear combinations of the operatoxs, =, X,, and,,
anda, has standard form. They are

R i
a,= U7Tr+IM—¢7T¢—M—¢Xr—UX¢>\/N+,
v i
a_= —IM—rWr—UW¢+UXr+M—rX¢ VN_,

ay= (i m,+ wz)/ oo, (32)

with

v
N+—2M—¢(1_U),

v

N =25

1-u),

1—20w—vzwr2

r_u2+2uvw+v2w$5’

_ _ 2.2
1-2vw viwy

P+ 2w+ vle?’

(33

whereu andv are the solutions of the system of equations

2 2_

U—vw—Uw—v-w;=0,
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FIG. 1. Eigenfrequencies of the harmonic Hamilton{&0) as FIG. 2. Parameters of the Trojan wave packet obtained from the

functions of the parameter and the spacing- obtained from for-  harmonic approximation in cylindrical coordinates as functions of
mula (36). Note that generallywy~w,~w and c~w_, so the the parameterg and 8 from the noninteracting manifolds model.
energy spectra obtained from the basis expansion method with the

assumption about noninteracting manifolds and from the harmoni¢35). Therefore the eigenstate of Hamiltoniéd0) with the
approximation approximately coincide. For lower field strengthseigen\/a|ueEm+ m_my is built mainly from the hydrogenic

(largerq) the agreement is better. eigenfunctions that belong to the{|n,n—1-m,,
n—1-m,—mgy)} manifold with n in the vicinity of ng,
which is defined by the resonance conditior 1/n3.

Let us consider a particular three-dimensional Trojan
wave packet, the eigenfunction with the eneEgy. It con-
tains in its expansion in terms of eigenfunctions of hydrogen

u+vw+uvw+vzw§,=0. (39

Thus the spectrum of the Hamiltoni&a1) within the three-
dimensional harmonic approximation is

Em m m(H)=Eog+(Mi+ Ho,—(M_+Hew_ mainly circular states with the principal quantum numhber
oo localized aroundh,. For well-confined wave functions the
+(Mo+ 1) wg. (35) factor \/F multiplying the function® can be replaced by

\/E and the harmonic approximation in this case gives the
The connection with the basis expansion method followdollowing expression for the wave functio (taking into
directly from formula(14). For the field strengths that guar- account the action of the unitary transformatidds and
antee classical stabilifyl] the parameteq satisfies the con- U, as wel):
dition (8/9)<q<1, so g~1 and we havew,~w and

wo~w. For £ large enough for fixek ands, the energy W(r,¢,z)=Ne'ote (@RAATcH*+B(r—ro)?]

levels given by expressiofi4) are equally spaced with the

spacing y exp a4 quaty sp X @~ (@/2[2I(C-1)(r—r)rc¢+Dz*] (37)
o=+(3&Ir.). (36)  The part of the wave function that depends onlydmandr

can be obtained from our two-dimensional wave function in
The behavior otr as a function of the parametgr(shown in  Cartesian coordinatdd] by a coordinate transformation up
Fig. 1) allows us to associate this spacing with the frequencyto second ordef2]. The coefficientsA,B,C were given in
w_ from the harmonic approximation. Note additionally that[1] as functions ofg. The coefficientD characterizing the
Eo~En,* 2rc—(lo—1)w, since the radius of the classical spread of the wave function around the plane of the circular
orbit r is only a very little different from the radius of the motion can also be expressed in terms of the parangter
corresponding Kepler orbity. The small difference between
those two radii is given by the relatian=r,/q*°. D=1a. (39)

It is worth emphasizing that the magneticlike interaction

term proportional ta),,r, together with the quadratic poten- ~ For large enougfr; and appropriate field strengths the
tial hill in ¢ in the Hamiltonian(23), makes the effective Wave function(37) can be compared directly with the ex-
electron mass fractional and negative 1/3), as expressed Pression(18) using the approximate relatior=r 6. Note
by the Schrdinger equation of an inverted pendulu®. that when this approximation holdfor wave functions well
This results in the negative sign of the term with the fre-localized around the plane of orbital motjothe circular

guencyw_ in the harmonic Hamiltoniaf30). coordinater is approximately the same as the cylindrical
and a comparison is possible.
IV. IDENTIEICATION OF TROJAN STATES For lower field strengths whenis very close to XFig. 2)

we haveB~C~D~1, and alscA~ 8 (see Fig. 2, so those

The connection between the basis expansion method artdio wave functions do not differ too much from each other,
the harmonic approximation allows us to tell which Rydbergwhich confirms the applicability of our model of noninteract-
manifolds contribute most in creating the eigenfunctions ofing manifolds. The deviation for higher field strengths is a
the Hamiltonian(30). The quantum numben, from the for-  result both of the assumption of the lack of the interaction
mula (35) associated with the excitation perpendicular to thebetween manifolds as well as the fact that the basis of hy-
plane of the motion of the packet obviously corresponds talrogenic bound states is not a complete basis. The orthogo-
the quantum numbes in the expressioril4). The quantum nal space of the continuum states also exists, but the interac-
numberm, in (35) corresponds t& in (14) and finally the tion with the continuum has been totally neglected. The
Mathieu function indexj corresponds to the indem_ in interaction with the continuum states will lead to a small



1720 MACIEJ KALINSKI AND J. H. EBERLY 53

amount of ionization, which we have observed numerically 20,0034

[2], and this contributes to a nonzero width of the energy —\,3%'

levels.
Note that in the limitl,— o the harmonic approximation %
A——*

becomes exadtl] while the model of noninteracting mani-
folds does not and for very lardg the harmonic approxima-
tion should be used as a test of the former model rather than ~ -0.0035§
vice versa. For lower values &f and lower field strengths,
when the harmonic theory predicts weak radial confinement
of the electron wave function, we can expect that the nonin-
teracting manifolds model works better. In the lirdit-0 it q
recovers the quadratic nonlinearity of the Coulomb spectrum -0.0036
and the exact hydrogenic eigenfunctions. In particular the
Trojan wave packet in this limit becomes a circular state and '
the limit can safely be taken because the wave function given
in (15) is always periodic.
In the case of the functiof37), the limit #—0 can be

. i -0.0037
taken only formally, since for very low electric-field values 0.01 0.02 0.03 0.04 0.05
the harmonic approximation predicts large angular spreading Electric field
of the wave function and the quadratic expansion is not well
justified. Additionally, the functior{37) strongly violates pe-
riodic boundary conditions for very low field strengths, when
it is not well confined in coordinate.

Energy

FIG. 4. Energy spectrum as a function of scaled electric field in
the vicinity of theny=20 circular state forw=1/n(3). The marker
points belong to the Trojan lines. One can see two triplets on the
diagram separated by approximately=0.000 125. The large
V. NUMERICAL ANALYSIS marker point corresponds to the Gaussian-like Trojan packet for

It is difficult to judge the range of validity of approxima- #5c=0.016.

tions based on inequalities suchrask, etc. In this section

¥ye comgan(;he energy ?pectfra Oﬁta”?lfd bymi)olvmg the St%’quation with the circularly polarized field switched on in a
ionary Schrdinger equation for Hamiltoniaril) using a quasiadiabatic manner.

reduced hydrogenic basis with the spectra obtained from . _ . .
Mathieu analysis. We show that our analytic approximations We have solved the stationary Sctifeger equation using

are remarkably well obeyed even for relatively low Rydber only aligned statetstates withl =m) in the expansion of the
y y . . y YOPErg, yave function(2), which is approximately equivalent to con-
guantum numbers. We also examine Trojan packet formatio

gidering a two-dimensional hydrogen at¢&v]. This corre-
sponds to taking into account alhumerically truncated
-0.012 states from{|n,n—1,n—1)}, ... {|n,n—k,n—k)} mani-
folds, with all interactions between those states governed by

by time-dependent numerical integration of the Sdimiger

e ey 0012

-0.013¢———
q

\//g 0013 //

00146 ER—
o—.—’—‘/’—-\

\ o

Energy

Energy

0015 0.02 0.04 0.06 0.08 0.1
Electric field
-0.015
FIG. 3. Energy spectrum as a function of scaled electric field in - 0.02 Q.04 0.06 0.08 0.1
the vicinity of theny=10 circular state fow = 1/n8. The marker Electric field
points belong to the Trojan lines. One can see two doublets on the
diagram separated by approximatehy=0.001. The large marker FIG. 5. Doublets obtained from the eigenvalues of Mathieu

point corresponds to the Gaussian-like Trojan packet forequation(7). As in Fig. 3, the large point corresponds to the
#s=0.016. Gaussian-like Trojan packet fofs.=0.016.
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-0.0034
a b
-0.0035
? 100 a.u.
& .
-0.0036 C d
y
-0.0037 0.01 0.02 0.03 0.04 0.05
Electric field
FIG. 6. Triplets obtained from the eigenvalues of Mathieu equa- X
tion (7). As in Fig. 4, the large point corresponds to the Gaussian-
like Trojan packet forzs.=0.016. FIG. 8. Trojan wave packet fof,=0.016 andw=1/2C* ob-

tained from various approximations as in Fig. 7. Functi@sand
the values of the exact matrix elements between them. _(d) here correspond to the two_large points on the energy diagrams
Figures 3 and 4 show the rotating-frame energy spectra 48 Figs. 4 and 6. The gauge in the left lower comer of it
functions of the scaled electric field for the frequencylndlcates the distance equal to 100 a. u. The black dot in the center
w=1/n3, for ng=10 and 20. One can barely identify two indicates the position of the nucleus=y=0).

doublets in Fig. 3, but two triplets can be picked out in Fig.trum. Note that from conditiori20) one gets the maximum
4 consisting of energy lines almost linearly proportional topnumper of levels contributing to a harmoniclike structure
the field strength. This is the imprint of the harmonic specyithin a single bunch as,=ny(#</3)"% For the maxi-
mum value of the scaled field,.=0.05 andny=20 we get
Nmax=2.58, so one should expect about three harmonic en-
ergy lines as one sees in Fig. 4. Fay.=0.1 andnyg=10 we
haven,,,=1.83, so one expects to see up to two lines, as
can be identified in Fig. 3. If the identification of the har-
monic energies is not totally obvious, reference to Figs. 5
and 6, which show the corresponding energy lines obtained
from the eigenvalues of Mathieu equati@f), is helpful. One
can see very satisfactory agreement between analytical and
numerical results forng=20 and still satisfactory for
n0= 10

Our analysis formally confirms our former numerical re-
sult[3] that the wave functions that correspond to the eigen-
values from the energy line that ends at a particular circular
state are Gaussian-like Trojan wave packets. The Kepler fre-
qguency of this circular state is in resonance with the fre-
quency of the circularly polarized field. In Figs. 3 and 4 this
is the line going through the large black point on the dia-
gram.

Figures 7 and 8 show contour plots of two-dimensional
versions of Trojan wave packet intensiglectron probabil-

FIG. 7. Trojan wave packet fof,.=0.016 andw=1/10° ob- ity densit)b obtained from various approximations for the
tained from(a) the harmonic approximation from formu(a?), (h) ~ Scaled field”:=0.016 forn,=10 and 20. Plot¢a) show the
the modified Gaussian approximation given(49), (c) the Mathieu result of the harmonlq approximation c_hscussed in Sec. I_II_. In
functions approach from expressi¢ib), and(d) the solution in the plots (b) we show Trojan packets obtained from the modified
aligned states basi®). Functions(c) and(d) correspond to the two Gaussian approximation given by formuld0). Results of
large points on the energy diagrams in Figs. 3 and 5. The gauge ihe Mathieu function approach and the aligned states expan-
the left lower corner of plota) indicates the distance equal to 100 sion are shown in plotéc) and(d). In the case of functions
a. u. The black dot in the center indicates the position of the nucleugiven by the expansion®) and(15), Legendre polynomials
(x=y=0). were replaced by a constant value and then the function was
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normalized in two dimensions.

One can see that the difference increases when the value
of ny decreases, but qualitatively all approaches give the
same result. One expects the wave function obtained from
the plain harmonic approximation to be the least accurate,
since it significantly violates periodic boundary conditions
for this value of the field.

VI. QUASIADIABATIC SWITCHING

The adiabatic connection between a Gaussian-like Trojan
packet and its parent circular state impligg that a state y
originally prepared as a circular state will become angularly
compact during the time evolution, if the electromagnetic
field is switched on adiabatically. In this case the state will
follow the Trojan energy line if one switches the field slowly
enough not to cause transitions. This line has a series of
crossings with other levels, some of them clearly avoided
within the plot resolution(see Figs. 3 and)4so the turn-on
should also be diabatic enough to pass them and remain on X
the Trojan line. On this basis we predict Trojan packet for-
mation to be feasible by an adiabatic switching that is con-
ceptually extremely simple, d(_apends on only the smglg P& FiG. 9. Adiabatic angular localization of electron probability
rameter<, and starts from a circular Rydberg state. Variousyensity. snapshots ¢fb|? att=0 and after 6, 14, and 20 cycles
techniques of circular state preparation have been reportegow increasing angular bunching during exponential switching of
[28-32. the field. The initial state is the circular state foy=20. The gauge

In order to check this prediction we have solved the time-n the right upper corner of plat) indicates the distance equal to
dependent Schdinger equation numerically with the two- 100 a. u. The black dot in the center indicates the position of the
dimensional version of the circular statg=20 taken for the nucleus §=y=0).
initial condition. The frequency of the circularly polarized
field was tuned to the Kepler frequency of this state
wzl/ng. The field was switched on exponentially during

t=20

W(r,$)=Ne'%exp{— (1/2r3)[ 2r2a(1—cosp)

twenty optical cycles according to the formula +b(r—rg)?+2icry(r—rg)sing]}
Z(t)=Zoe %2720 yntil the value #,=0.016w *® was ) o,
reached £,=0.016). After the turn-on was complete we =Neé'Pexp{ — (1/2r5)[4rzasir( ¢/2)

monitored an additional ten cycles of evolution with the con- 2 4 .
stant value of the amplitud&’= #,. Figure 9 confirms our Fh(r=ro)dicre(r—ro)sin(4/2)
prediction. It shows the formation of a sharply angularly lo- X \1—sirt($/2)]}, (40)
calized packet during the adiabatic switching process.

To check this confirmation quantitatively, we have also

calculated the testing functions 1.0
0.9
2
C(t)=f<l>*‘lfdr , 0.8
0.7
) 0.6
R(t)=] |®
(t) fﬁ| | r, C(t) 0.5
0.4
P(t)zf |®|%dr. (39) 03
0.2
o . . 0.1
Here the wave functiod is a numerical solution of the full
time-dependent Schdinger equation, such as that shown in 0 5 10 T 20 25 30
Fig. 9, and the wave functioW is obtained from our modi-
fied Gaussian approximatiof2] with Z chosen to be the t (units of cycles)

final field strength’, reached during the switching. That is,
W is given in two dimensions by FIG. 10. Correlation functiol€(t) as defined in39).
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FIG. 12. Total electron probabilit?(t) as defined in39). The
FIG. 11. Localization functiomR(t) as defined ir(39). The am- values along th& axis emphasize the negligible loss to ionization.
plitude of this function grows as probability localizes since the

packet periodically sweeps a fixed rectangle. spectrum and can produce a harmonic spectrum. This spec-
trum agrees with the one found by an explicit harmonic ap-
proximation [1]. Our model of noninteracting Coulomb
manifolds explains why the harmonic structure appears in
I =20, the energy levels even for low angular momenta, when the
harmonic approximation originally introduced|ih] may not
r.=388.69, be well justified. This approach is especially useful for those
who would like to observe Trojan wave packets numerically
for lower values of the circularly polarized fields by integrat-

The letter.7 refers to a specific area of integratiow is  INg Schralinger’s equation using a hydrogenic basis expan-

defined as the rectangle in the laboratory frame that containgon rather than a spatial grid integratif2y, since it tells

60% of the probability calculated from the initial wave func- which states from the eigenspace of hydrogen should be used

tion (40): [ ,|¥|?dr=0.6 att=0. in the expansion of the time-dependent wave function. It also
The growth of the correlation functio@ plotted in Fig.  permits a strong prediction that Gaussian-like Trojan wave

10 shows that a state with a large component of Trojarpackets are adiabatically connected with circular Rydberg

packet is actually generated. The amplitude increase of thstates whose Kepler frequency matches the frequency of the

functionR, as shown in Fig. 11, is also evidence of localiza-circularly polarized light. The numerical experiment pre-

tion. The quantityP(t) is the total probability in a circle sented here fully confirms those predictions.

concentric with the packet orbit, with radius 2 It is impor-

tant to note that the probability of escape out of the circle is

negligible. This is represented by the decrease of the function

_P, _whi_ch is shown in Fig. 12, and is a useful measure of ACKNOWLEDGMENTS

ionization.
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