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Minimax variational approach to the relativistic two-electron problem
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A minimax formulation for the time-independent Dirac equation is extended to the two-particle problem.
The question of solutions of the minimax formulation is discussed and related to the continuum dissolution
problem. The approach is applied to the ground state andh2 complex of states of He-like ions. Varia-
tional calculations are made for bases with a small number of basis functions, varying the nonlinear param-
eters, as well as for large-dimensional configuration-interaction-type bases.
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[. INTRODUCTION by the use of “explicitly correlated wave functions,” i.e.,
. wave functions that depend explicitly on the interelectronic
The energy levels and other properties of tWO_eleCtrondistancer (An interesting alternative to the explicit intro-
ions continue to be of great experimental and theoretical in- Lction o#zt.he variable i?lto the wave functionphas been
terest after 70 years. One of the problems on the theoreticé’] 12

roposed recently by Goldmdi6].) However, use of such

side is the inclusion of the so-called correlation effects, that . . ) e e
rial wave functions requires application of the variational

is, the energy and wave function corrections that arise fronbrinciple or its generalization to the Hylleraas-Undheim

our inab'ili'ty .to solve t'he three-pody problem exactly.' In thetheorem[l?] or Poincareprinciple [18]. (The latter asserts
nonrelativistic approximation this problem can be said to be[hat if the Hamiltonian is diagonalized in a finite basis, the

nonexistent. Frqm the original work of _HyIIeraEﬂsZ] tothe ih eigenvalue is an upper bound to the exiitt energy)
contemporary highly accurate calculations of DrgBeand  The variational principle fails immediately in application to
Baker et al. [4], the state has advanced so that theoreticajne Dirac equation, in that the expectation value of the Dirac
uncertainties are negligible compared to experimental uncefqamiltonian is unbounded from below because of the nega-
tainties. tive energy continuum in its spectrum.

The theoretical situation is less satisfactory for the rela- A number of methods to circumvent this problem in the
tivistic theory. Apart from fundamental questions as to thecase of the one-particle Dirac equation have been proposed
actual problem that is to be solved, the problem of solving 19—-26. However, these are not, in general, clearly appli-
approximately the two-electron Dirac equation analogous t@able to the two-particle problem. In this article we discuss
the two-electron Schringer equation presents serious diffi- the possibility of generalizing the minimax approach to the
culties that arise, as will be discussed extensively below, besingle-particle problem that has been proposed by one of us
cause the powerful variational approach used in the nonre[27] to the two-electron problem. This approach to the Dirac
ativistic problem is not directly applicable to the Dirac equation will be reviewed in Sec. Il and the generalization to
equation. Four methods in current application can be identithe two-electron problem will be described and discussed in
fied. The first, which has been extensively pursued by Drak&ec. Ill. The situation in the latter problem is complicated by
[5-7], is to compute relativistic corrections in terms of a questions of the proper formulation of the problem and ques-
power series irZa using the highly accurate approximate tions concerning the existence of solutions. Aspects of the
wave functions computed nonrelativistically. Another grouprelationship of these questions to the minimax approach will
of approaches is to solve the relativistic pair equation ofbe discussed in some detail.
many-body perturbation theofy8,9]. This program suffers The remaining sections describe some applications of the
from the problem that the angular momentum expansion oépproach to demonstrate its feasibility. In particular, the re-
the wave function is slowly convergent. A third approachsults indicate that calculated energies are in fact practical
[10] is to make large-scale configuration-interact{@t) cal-  upper bounds to the energies, although the theoretical formu-
culations, using a basis of products of solutions of the singlefation does not guarantee this.
particle Dirac equation. The fourth approach, which is appli- The calculations described are of two types. In the first,
cable more generally to many-electron systems, is th&onlinear parameters in the wave function are varied; it is in
multiconfiguration Dirac-Fock(MCDF) method [11-13.  this sense that the term “variational calculation” is often
These also present the difficulty of the slow convergence ofised. The second type of calculation are CI calculations in
the angular momentum expansion. which the wave function is expanded in Slater states; these

The problem of the slow convergence of the angular mo-are of course also variational in that the expansion coeffi-
mentum expansion, which arises generally in any calculatiogients serve as variational parameters. These calculations are
of the CI type[14,15, is avoided in the nonrelativistic case intended to demonstrate the validity of the approach; further
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studies using explicitly correlated basis functions are in <g|V(r)+Cz|g>+20<f|0-.p|g>+<f|V(r)_Cz|f>_ M[g]
progress.

A problem in relativistic calculations that has been exten- X[(glg) +(f[f)]=0. 4
sively discussed is the appropriate form of basis functions to
use. One important aspect concerns the analytic behavior & can be noted that this equation is valid independent of the
the functions at the nucleus. Another is related to the spuritormalization of the wave function. Equati¢#) can be re-
ous solutions that can arige8,29 in the solution of the Written, eliminating the cross term by completing the square
Dirac-Coulomb problem. The choice of basis sets for then f, as
present calculations will be discussed in detail in Sec. IV.
Some calculational details are described in Sec. V. In Sec. VI
low-dimensional results, varying the nonlinear parameters,
and large-dimensional results, with the parameters fixed, are 5
given for the ground-state energy. Corresponding results for +(fgV(r)—c*=M[g]|fg)=0, ()
then=2 complex of states are given in Sec. VII.

In the following, units such tha=m=7%=1 will be used Where
throughout. In the calculations described¢c= 1/«
—137.036. f=f— ¢ o-pg. ®)

M[g]+c?—V(r)

C2
g‘v(r)+cz+o-pM[g]+C2_V(r) a-p—M[g]‘g>

II. MINIMAX APPROACH

From this it is evident that the maxim i Il
TO THE SINGLE-PARTICLE PROBLEM om this it is evident that the maximuM[g] is actually

attained, forf4=0, or for
In this section, the minimax variational approach to the
single-particle problem will be reviewed in order to clarify c

the issues involved in extending it to the two-particle prob- = M[g]+c?—V(r) o-Pg. 0
lem. The time-independent, one-particle Dirac equation for a
potentialV(r) is usually written in the form which is the second of the Dirac equation®i# M[g].
Substituting forf from Eq.(7) in Eq. (2) gives, after some
[V(r)+c?]g+co-pf=eg, manipulation,
CZ
co-pg+[V(r)—c?lf=ef, () (Hp)= M[g]+<g‘V(r)—I—cz+o--pM[g]+C2_V(r) a-p
whereg andf are two-component spinors customarily called
the “large” and “small” components. The expectation value —M[dg] g>, 8
of the Dirac Hamiltonian for a normalized wave function is
given by

which is to be minimized subject to the constraint

CZ
90+ 6l oagr ey Plo) <1 ©

The variational derivative with respect pis given by

<HD>=<g|V(r)+c2|g>+20<f|v-plg>+<f|V(r)—c2|f>(-2)

The variational formulation of the Dirac equati¢h) is
based on the equatid27]

S6(H
| o 2o

e=min [max (Hp)
g f

2

It is straightforward to show that, if the constraint :[V(rHCZJFmpM[g]Jrcz—V(r)g'p_M[g]}g

(g|lg)+(f|f)=1 is included by using the Lagrange multi-
plier method, the variational problef) leads to the Dirac 2
equationg1). _ _ . .

It is of interest, however, to go into the derivation of Eq. +[1 (ole) <g 7 p[M[Q]JFCZ—V(f)]ZU p‘g”
(3) in more detail. It should be emphasized that the order of SM[g]
finding the minimax is importan{Hp) is to be maximized % 9
on f for any fixedg. The result is a functional af that is to o9
be minimized ong. If the potentialV(r) is bounded from ) o o )
above, as is usually the case in practice, it can be shown 48 View of Eq. (9), the variational derivative is zero i
follows that the maximization problem must have a solution Satisfies the equation
It can be seen that, for fixegl (Hp) has an upper bound for ,

Hp) as a functional of. This upper bound, which depends c 27
E)n g> will be denoted byM[g]. Then, for a fixedg and U'pM[g]+c2—V(r)0'pg+[v(r)+c lg=MIlglg.
arbitrary f (12

(10
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This, together with Eq(7), is the first of the Dirac equations. 5?((Hp)) = ox"(V+c?—e) 8x+2cox"Wdy
Thus a solution of the variational problem is a solution of the
Dirac equations. +y"(U—c?~e)dy. 7
The properties of Eq(11) can be considered further by
writing it in the form This is negative for variations ity provided the matrix
U-—c?—e is negative definite. FOv(r)<O0, this is true pro-
H(w)gn(w)=en()gn(m), (120 vided e>—c?, i.e., e is above the negative energy con-
tinuum. It was shown in27] that the lowesN eigenvalues
where of Eq. (15) are below—c? and theM largest eigenvalues are
2 above—c?. Therefore the solution of the minimax problem
— . 2 in this matrix approximation is theN+ 1)st eigenvalue.
Hlu)=o p,u+cz—V(r) o-prV(r)+c (13 The question of whether the minimax estimate is effec-

tively an upper bound depends on whether the bagjs can
The second-order differential operatbi(x) is similar in  give a more accurate representation fothan the basis
structure to the Schainger operator and evidently has the £ 1 can give forg. These considerations are related to the
same spectral properties.\{r) <0, as is usually the case, it kinetic balance principlewhich has often been taken as a
can be seen that it is bounded above by the correspondingartial solution to the variational collapse problem. This
Schradinger operator with the denominator replaced oy 2 principle asserts that if a functiog is included in the large
and the bound-state spectrum will be below the Sdimger  component basis thesr-p¢ should be included in the small
spectrum. The positive energy eigenvalues of the Dirac argomponent basis, or its span. It is evident from the above
then the eigenvalues &f(u) that satisfy the identity discussion that the minimax estimate feris a true upper
bound if, for anyg, the exactf, as given by Eq(7), is
€n(e)=e. (14) contained in the span of the small component basis. This is
true, for example, in the limit— if the kinetic balance
principle is satisfied. This shows that the theory goes over
into the correct nonrelativistic limit if the kinetic balance
principle is followed.
In actual calculations, the basis functions épandf are
typically taken in the formP,(r)e ¢ or r* P,(r)e ¢
ultiplying a spin-angular factor, whei, is a polynomial

If V(r)>—2c? e,(—c?)>—c? It can be seen from the
definition of H(w) thate,(w) is a monotonically decreasing
function of u and therefore that Eq14) has a unique solu-
tion for eachn. It can also be observed thatdf is an upper
bound toe,, the corresponding solution ¢14) is an upper
bound to the Dirac equation eigenvalue. In the case of th

COUII?mb pzjot.ter.\tlal, t"hi mequ?rlllt\yt(trg< IZCt IS V'fltﬁte%at of degreen. Equation(7) is then not satisfied exactly, but it
2maat'ror?r'1n tlh'lscvgee b?g;\ll(n dg n ;;2 ution ot the Lirac s plausible that if the polynomial approximation fbris of
quation | IS cas S dow ’ higher degree than fag, the minimax estimate will be an

It is of course true that an approximate energy eigenvalu%pper bound for the exact energfhe question of the de-

crg)mputed from Eq(3)h|s nr?t a .vqnatlongl L{plpe.r bound to pendence of the accuracy of an approximation on the degree
the exact energy, so that t 1€ minimax principie I hot a COMt the approximation has been recently discussed in detail by
plete panacea for the variational collapse problem. On tht]g|i|| [30])

other hand, Eq(5) shows that the amount by which it fails to '
be an upper bound is quadratic in the erfrgr Therefore the
minimax energy is effectively an upper bound if the smal
component is approximated to a greater degree of accura

than the large component.

It is generally accepted that in going from the single-
Iparticle problem to the many-particle problem, the many-
article wave function should be formed in the Fock space of
‘g’roducts of single-particle wave functions that are positive
. . . energy eigenfunctions of the single-particle problem. It is not
In practical calculations, the problem is usually treated byentirely clear which potential shopuld def[i)ne the single-

?;par?gipl? grezggctfivélr;/ f\i/\r/]ri::rebﬁseest\fvﬁmégsg I\n/:;y at?ed as particle problem although it seems most plausible to choose
nt1= 3 [} X

dtob h L Th ational bl for th the bare nucleus Coulomb potential.
sumed 1o be orthonormal. The variational problem lor the = pq problem of projecting onto positive energy stdtes
expansion coefficients leads to a matrix eigenvalue proble

"BEP problemis, however, not a simple one. We consider

V+c2 oW 1lx X now the relation of this problem to the minimax principle.
. ) =¢ |, (15  The exact solutions of the Dirac equation for the defining
cW' U-c]ly y potential will be denoted byw, ,v,,) with eigenvalue,. It

) o will be assumed that ang can be expanded in the form
wherex andy are the expansion coefficients fgrand f,

respectively, and

g= , apUp (18
vij=(ilV(r)| ¢, Z
Wi = (i o-plx:) where the prime on the summation denotes a sum on the
! | " positive energy states. Thércorresponding to the PEP gf
uij =l VD) | x;)- (16 'S 9wven by
The second variation ifHp) with respect to variations in IR
x andy is given by prp—Z @nUn - (19
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It is clear that if, for a particulag, the small-component whereV; is the total potential-energy operator. If the Breit
basis contains the correspondifygp, the result of maximiz- interaction is included there are additional terms that mix
ing (Hp) on f is at least as large d#1p)pep. Therefore the  ¢is and ¢ in the middle two equations andl; and ¢ in
minimax energy is an upper bound to the PEP energy anthe first and fourth equations.

they are clearly equal ifj is the exact ground-state large- The energy functional for a normalized wave function is

component wave function. _ 2 .
More generally, ifg is given by Eq.(18), f, as given by (Ho) ={gn[Vr+2c du) +2c(dall oy pal )

Eq. (7), is given by +2¢( dis| 02- pal i)+ bis| Vil is)

, en+c2—V(r) +<¢SI|VT|¢SI>+ZC<¢SS| Ul'pl| ¢Is>

f:Z manvn (20) 2
9 +20< d’ss| 0y p2| d’sl>+<¢ss|VT_20 |¢ss>
and (23)
e,—M[g] If ¢, is expanded i\, basis functions, etc., the result is a

f—fpgp= Y ——a—p v anUp. (21) matrix  diagonalization  problem  of  dimension
2 M[g]+c=V(r) Ny +N;s+Ng+Ngs. In the nonrelativistic limit, there are
The magniue ey can be esimated ad de)/c"Za, 1 SHECEES S0%0 o, et SO0ELES 120 0
where (5e) is an estimate of the spread of energies in the ss €19 ) g

in the two-electron ground-state problem is the smallest of
components ofy and the factoZ«a reflects the fact that the the eigenvalues nea?c%, i.e. the s?nallest of thhl, largest

expansion is in the small components. eigenvalues. The variational problem that picks out this ei-
genvalue is
111. MINIMAX APPROACH .
TO THE TWO-PARTICLE PROBLEM e=min l max (Hp)| . (24)
Ll Dis 1 &s1 Pss

The two-electron Dirac wave functio has four com- This lead t0 Eq24 th iat lizati f
ponents, which will be denotee , by, dic,bee, €ach of is leads us to Eq24) as the appropriate generalization o
which is a four-component spinor. The pairs of equations inEq' (3) to the two-partlc_le pr(_)blem. Physically, the compo-
the single-particle Dirac equation generalize to a system o ents of the wave fur)cthn ks “smqll” label produce th‘::’

irac term for the kinetic energy, which should be maxi-

four equations that can be written in terms of the <:omponent§nized for the physical wave function. It is evident that a

as solution of this equation is also a solution of Eg2). This
[V+2C%| ¢y + Cay- Probs+ COo Pochis=€ minimax formulation of the two-electron problem does not
T ! LRl 2 Fetls ! appear to be directly related to that of Roseni&d, which
Vihis+Cory - Prpsst CO- Pocdy = s, is based on the maximization of the energy with respect to an
effective potential describing the electron-electron scattering
VigsitCoy-P1dy+CO2 Prpss= €y, amplitude.

If ¢ and ¢, are eliminated from these equations, it is
[V1—2¢?]dsst COp-Prbist COp-Pocpsi=Ess , (22) found that

2

c? c? c
<HD>:<¢II‘VT+202+ 0'1'P1e_—VT0'1'p1+ Uz'pze_VTﬂ'z‘pz <Z'>||> +2< ¢||‘0'1‘ple_VT0'2'I02
c? c? c?
+0'2'pze_—v_r0'1'p1 ¢ss> +<¢53‘VT_202+ Ul'ple_—vTo'l'pl"' 0'2'p2e_—v_r0'2'p2 ¢ss> . (25

This expression fofH) reveals a problem in principle that The lack of a global maximum i§Hp) for a fixed ¢
arises with the proposed formulatiofHp) is unbounded does not preclude the possibility of local maxima, and indeed
from above under arbitrary variations if. Although the the calculations reported below demonstrate their existence
last term in Eq.(25) contains the very large and negative at least in calculations in finite-dimensional subspaces. It can
term —2c?, if ¢4 contains momentum components largeralso be argued that the many successful Dirac-Hartree-Fock,
thanc, they can overcome this negative term so tftdg) and multiconfigurational Dirac-Fock, calculations are finding
can be arbitrarily large. This problem does not arise in thesuch local maxima.

calculations described here since the choice of basis func- The question of whether local maxima @fip) exist is
tions constrains the momentum components¢Qf. Con-  related to the question of whether bound-state solutions of
ceivably, however, if the nonlinear parameters in the basi€q. (22) exist. This has been called into question because of
functions (see beloyw were to exceed:, problems could the continuum dissolution problem or Brown-Ravenhall dis-
arise. easd 32], which has been extensively discussed in the litera-
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ture. This problem suggests that there are no solutions of Eqvhereg(k) is the Fourier transform ad(r). This expression
(22) since such a solution could decay into a continuum ofcan be readily generalized to the two-electron case. How-
degenerate states in which one particle is in a negative erever, we are not aware of any proof of this result for nonzero
ergy state and the other is in a state of large positive energgingle-particle potentials.
Since both problems are associated with components in the It can now be asserted that if, for a particulgyj, the
wave function of large momenta, it is likely that they are variational basis for the functiongs,ds,dss is large
related. enough to include the corresponding PEP wave function,
This relationship can be established by the following ob-then the result of the minimax calculation must be at least as
servation. Equationg24) and (25 indicate that the two- large as energy given by the PEP wave function.
electron Dirac problem can be modified in a variety of ways The question of whether the PEP components are con-
to guarantee the existence of an upper bound. For exampleined within the trial function space is related to the kinetic
¢ss could be replaced in Eq22) by an integral transformed balance principle. In the single-particle case, the PEP
function, e.g., is given by Eg.(27). If g(k) contains only momentum
components small compared to, this becomesf(r)
= pg(r)/(2c), with the correction being of ordek(c)?

1 , or, equivalently, Z/c). Thus, if the kinetic balance prin-
bsdr1.ra)— (2m)° \p1|<cdp1 |p2‘<cdp2 dry ciple is imposed on the trial wave function and PEP is to be

made onto free-particle states, the minimax energy provides

Xf drgeipl'”fri)e‘pz'“fré)gﬁss(ri,rg). z(a;/cu)pz).per bound to the true energy up to terms of order

(26)
IV. BASIS SETS

This slight modification of the problem removes the large The basis functions used in the calculations described be-

momentum components from., so that(Hp) is bounded Iowiare take.n to be antisymmetrized products of single-
from above. It also projects out products of free particleP@rticle functions coupled to a total angular momentim

states in which one particle has large positive energy. Thid N€ Single-particle wave functions are of the form

integral transform in essence “smeard;, over distances

comparable to the Compton wave length. A solution of the Y1) =17 Ile™ Q) (6,¢), 1<n<N. (29
modified variational problem is then also a solution of the

modified Dirac equation. Thus, even though the existence ofjere y=[x2—2z%/c?]2 and Q,,, is the two-component

a solution of the Dirac equation is open to question, it isspinor formed when spin angular momentum 1/2 is coupled

plausible that solutions exist for a very similar problem andto orbital angular momentuinto give angular momentur
indeed for any problem in which the momentum components

in ¢ are constrained to be less than

H_owever, _the ge_neral viewpo_irﬁBB] in coping with the QKmZE <%M|ml|jm>Y|m,(9v¢)Xﬂ- (29
continuum dissolution problem is that ER2) is not the
correct formulation for the two-particle problem. Rather, the
proper Hilbert space for the problem is the product spaces is the quantum number usually introduced to describe the
formed from products gbositive energy solutionsf the one-  Dirac equation solutions in spherical symmetry, defined by
particle problem in an external potential, i.e., the PEP of thec=—1—1 for j=1+3 and k=1 for j=1—3. In the tables,
Hilbert space. This is equivalent to projecting the potentialthese functions will be denoted hyl;. The integern is
energy operators into this subspace. The problem of actuallgssigned according to the usual spectroscopic convention;
carrying out this projection has not been solved, althougm>1 with an exception to be discussed below.
Chenget al.[34] have carried out Cl calculations within this ~ The spinorH} ., satisfy the identity
framework.

The P_EP princip!e _indicat_es that t_he proper constraint on o prQ m=(k+2)Q_ . (30)
the admissable variational trial functions is that they should
be contained in the PEP Hilbert space. It is plausible to as- . ) ) .
sume that for for an arbitraryp, , there exist functions It_ IS we_II known t_hat in spherical symmetry the S|_ngle-
b1, be1 bes SUCh that the two-electron Dirac wave function particle D|r_ac _equat|on can be separated by choosing the
that they define is in the PEP projection. This can be show/ave function in the form
to be true if the PEP is onto free-particle positive energy
states by using Fourier transforms. In the single-electron
case, if the PEP is to be made onto the free-particle positive «km
energy solutions, then for a givey(r),

(31)

ig(r)Qum
f(NQ_ ]

The form chosen for the basis functions is dictated by the
K behavior of the single-particle Dirac wave function close to
f(r):J co J(k)ekrdk 27) the nucleus; for the Coulomb problem E{.0) takes the
2 L

cyc?+k?+c? form
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d d «—-1 &5 are written|n,x181;N2k,,;JM) and the basis states
A TR f=0, for ¢ are written|n,x,8;;Nyx,5,;JM). Because of anti-
symmetry, the Hamiltonian matrix is reduced from the
d  k+1 7 4X 4 block form to a 3X3 block form since the functions
c a+ ; g-— ?f=0. (32 ¢s and ¢ are not linearly independent. In the Cl-like cal-

culations, all possible productsn{,n,) for a particular
These equations show thgand f have the same power-law choice of («;,«;) are included. The nonlinear parameters
behavior at the nucleus as given in EB8) with n=«. By, 6 are to be chosen to maximizéip) and the param-

An important comment should be made concerning thétersa are chosen to minimizeHp). According to the ki-
functions with x>0. In the nonrelativistic limit, in which netic balance principle, if a particular paik{, x,) occurs in

y=|k|=1, these behave liké ~! for smallr rather than as i~ the pairs f;,—«;) and (xz,— 1) must occur ings
the usualr' behavior. The solutions of the Coulomb-Dirac @nd the pair € «;,— k) must occur ingss, with the corre-
problem are of the form spondingn values. It must be observed, however, that the

principle is not strictly satisfied since the nonlinear param-

Po—1(N)Qm eters can differ in the three different bases.
Q11O : (33 The triangular transformations to orthonormal bases for

n-1 T Km the three functionsp,, , ¢\, dss are constructed from these
wheren can be viewed as the usual principal quantum numbasis states using the standard Gram-Schmidt procedure.
ber andP,,_|,((r) andQ,_,(r) are polynomials of degree Ove_rlap integrals and the matrix elements of the nuclear
n—|«|, i.e., of degree one higher than for the correspondingiiraction energy and the kinetic-energy operators are com-
solution of the Schidinger equation in the>0 case. The _puted for these basis functions in a stralghtforward way us-
constant term in the polynomid, vanishes in the nonrela- N9 Standard angular momentum techniques and are ex-
tivistic limit, but it is important to include it at largez ~ Pressed in te[TS of the function. The matrix elements of
values. These contributions to the bases inhed case will ~ the operator ;" require the calculation of integrals of the
be labeled p,,,, 2d,,, etc. form

A second point concerning the states with-0 concerns

lﬂnlm:Ary_le_)\r

the “spurious solutions” that can arise for particular choices B St ar L 1 S —ar

of the basis. For example, if the Dirac matrix with=1 for "f j rye Y w61, 1) L2

the Coulomb problem is diagonalized in the basis of 28)

with an equal number of identical large and small component XY m(Os,,)drdr,. (34

functions to findp,, states, a physically spurious eigenvalue

at the Js;, ground-state energy is obtaingzB,29. The true  These are calculated in momentum representation as
solution is also found, but it is associated with the next larger

eigenvalue. Extensive calculations show that this spurious R

eigenvalue is readily eliminated by modifying the basis. For |=8J Fs,L(k,a)Fs, (k,az)dk, (35
example, if the three large component functions and four 0

small component functions are used with the exact value 0asin numerical Gauss-Laguerre integration. The functions
the nonlinear parametey, the exact P4, energy is obtained 9 9 Y '

as third largest eigenvalue. Similarly, if two large componentfiiktgkr;sa)dsfzﬁetgeb;phencal Bessel transforms of the radial

and two small component functions are used and the nonlin-
ear parameters are varied, minimax solutions are found for
which the third largest is a close approximation to the true _ [~ Sa—ar, 2
value. Therefore, tg eliminate possitFJ)IF()a problems from spuri- Fsukia)= fo Julknjree “redr. (36)
ous states, if “large” single-particle states for some>0
are included in the large-large basisi1 corresponding In the casd. =0,
“small” states will be included in the large-small and small-
small bases. It has been found that if this is not done and the ['(S+2)
small states exactly pair off with the large states, as pre- Fso(k,a)= KRS sin(S+2)®, (37
scribed by the kinetic balance principle, a spurious root con-
taminates the spectrum and displaces the physwal groundhereaﬂk:Réq’. For L>0, F,(k,a) can be obtained
state so as to correspond to the next largest eigenvalue. Qn :
the other hand, if the nonlinear parameters are varied, thig°™M the recurrence relation
problem is removed.
L+S+1 a
Fsuk,a)= Tstl,Lfl(kva)_ EFS,Lfl(kva)-
V. CALCULATIONAL DETAILS (39)

The basis functions used in the calculations are antisym-
metrized products of single-particle functions of the form The minimax calculation of the nonlinear parameters
given in Eq.(28) coupled to give total angular momentum «,B3,v,8 can be greatly facilitated if the derivatives of
quantum number§,M. The basis states fap, can then be (Hp) are known. A method for calculating the first and sec-
written [Ny k1@ ;Nyka;IM). Similarly the basis states for ond derivatives analytically will be described separately.
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TABLE I. Ground-state energy in the cage=8 computed for states of the formp, =ns;;,n’s;,
b1s=NSyN P12, Pss=NP1N' P12- Ny, Nig, andNg, give the total number of large-large, large-small, and
small-small states, respectively. is the nonlinear parameter for the large-large stafess the nonlinear
parameter for the large factor in the large-small states,aisdhe nonlinear parameter for the small factors.
E is the energy computed with the nonlinear parameters fixed=a8 and E,,, is the result of the
variational calculation.

Ny Nis Nss E Evar o B Y
1 1 1 —59.048 334 —59.146 390 7.6866 7.6866 7.6873
3 4 3 —59.156 13 —59.158 386 7.7168 7.7217 7.7050
3 6 6 —59.156 13 —59.158 386 7.7168 7.7217 7.9747
6 9 6 —59.172 727 59.173 710 8.7595 8.7569 8.7594
6 12 10 —-59.172 727 59.173 710 8.7593 8.7569 8.7594
10 16 10 —59.174 013 —59.174 249 9.2317 9.2478 9.2315

The minimax procedure in the nonlinear parameters leadsnergy to the accuracy shown, witlB=7.6866 and
to a directional search problem that can be written in they=§=7.6873. The corresponding result of the calculation
matrix form of Chenget al. [34] is —59.174 716.
At Z=90 the energy with the parameters fixed at 90.0 is
—9166.7040. When the parameters are varied, with
(39 B=v=65 the energy is —9166.8906 obtained for
a=89.4968=y= 6§=89.567. If 8 is allowed to vary inde-

Ap
The matrix is the Hessian matrix of second derivatives, thege;fgggﬁggv ith gv:hé tZe: 8e9n.gr1963f IS Brjgg% 1zl’|ghtl3gnéo

right-hand side is the vector of first derivatives, and the first ,
entries in the vectors belong to large-large parameters any~ 9= 89-646. Allowingy andé to vary separately does not
the second entries belong to the large-small and small-smafhange the results to this accuracy. o .
parameters. At a minimax, the vector of first derivatives must 1hese results suggest that, although it is important to in-
vanish, the matrix@ must be negative definite, and the ma- ¢lude small component factors, as dictated by the kinetic
trix balance principle, to prevent the variational collapse, the de-
tailed results are insensitive to small changes in the param-
X=YZ 1yT (40)  eters. This has been looked at further by including terms of
the form 1s,,,2p4» in the large-small basis and of the form
must be positive definite. 1p4/22p12 and 204,,2p4s» in the small-small basis. Including
these additional terms does not affect the results, perhaps
VI. RESULTS FOR GROUND STATES because maximizing on the nonlinear parameters incorpo-
rates these terms implicitly. Including the=3 terms as
In this section we present the results of various CalCUlawe”, for the above Optimized parameter Va|ueS, does not
tions for the 7,'S, ground states for ions of differel  affect the results foz=2 andZ=8, but raises the energy for
values to indicate the validity of the minimax approach andz=90 slightly to —9166.8808, an increase of 2 parts in
to discuss a number of considerations concerning its successe’. Table | presents results for low-dimensional Cl-type cal-
ful application. In all the calculations, the electron-electroncylations in which the nonlinear parameters are varied. The
potential is taken to be the pure Coulomb potential. The nonvariational calculation on the nonlinear parameters converges
linear parameters occurring in the large-large component wiljery rapidly, in four or five iterations, when only one large or
be denoted byr, parameters in the large-small componentsmall single-particle state is included in the calculation.
by B8 and v, respectively, and the parameters in the small-However, if more than one single-particle state is included,
small component by. so that the energy surface is a function of a large number of
The lowest-order calculation had, =N;;=Ng.=1 with  parameters, it becomes difficult to find the local minimaxes
o =1s§,2, bd1s=1S191p1j2, and ¢SS=lp§,2. In the case in the surface. For this reason, the variational calculation is
Z=2, the energy without varying the parametersconstrained to three nonlinear parameters:ithe nonlinear
(a=B=y=6=2)is—2.750 015. The minimax calculation, parameter in the large-large statgk; the nonlinear param-
constrained with B=vy=4, gives an energy of eterin the large factor in the large-small states, andhe
—2.847 794, with all the parameter values equal to 1.6875 tmonlinear parameter in the small component factors. With
four decimal places. Permitting the small component nonlinthis constraint on the variation, the calculation again con-
ear parameters to vary separately did not change this resulterges rapidly. It may be noted that the parameters tend to
The same calculations witZ=8 give an energy of increase as the dimension increases; evidently this is to com-
—59.048 334 when the nonlinear parameters are fixed at 8.@ensate for the fact that asincreases, the orbital radii in-
When the parameters are varied, witks y=§, the resultis crease. The result of a large dimension calculation in the
—59.146 390 witha=7.6866 andB=y=46=7.6870. Al- z=8 case with 4ms,;,,n’s,,, large-large states and the cor-
lowing the parameters to vary independently gives the sameesponding large-small and small-small states varying the

X Y
YT z

Aa a

bl
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TABLE II. Results for the ground-state energy o+ 2, 8, and TABLE Ill. Results for then=2 energies foZz= 2, 8, and 90
90 from large-scale matrix diagonalization calculations. The firstobtained by varying the nonlinear parameters in the lowest-
two columns show the large and small single-particle factors addedimensional basis. In most cases the nonlinear parametgrsand
at each step in the calculation and the third column shows the overy are almost the same. For th@ 42, orbital the parametey differs

all dimension of the matrix for th& = 2 and 8 calculations. somewhat fromx and 3. AE gives the excitation energy of the state
in cm™! (converted usindR.,) above the ground-state energies of
L S N =2 Z=8 Z=90 —2.847 794,—59.146 390, and-9166.8832 given by the calcula-

tions described at the beginning of Sec. VIlI.
1sy, 1py, 3 —2.750115 —59.048 344 —9166.7040 ginning

2py, 6 —2.750115 —59.048 344 —9166.7013  Term  z E al @ AE
25 - 10 -2.850364 —59.156 318 —9166.9024
3sy, 3py, 21 —2.878252 —59.172727 —9166.9053 25'S 2 -2142974 1997 0558 154 690
4sy, 4py, 36 —2.878733 —50.174013 —9166.9057 2S°S1 2 —2174355 2003  0.633 147 802
5s,, 5py, 55 —2.879003 —59.174 395 2p'P; 2 —2122498 2003 0.482 159 184
65, 6py, 78 —2.879074 —59.174542 2p%P, 2  -2.130800 1.991 0.545 157 361
7S, TPy, 105 —2.879101 —59.174597 2p%P; 2 -2130799 1.991 0545 157 362
1py, 1Sy, 2p%P, 2  -2130798 1.991  0.545 157 362
201 251 2s's, 8 —38280233 796 358 4579 580

3s,, 120 —2.886443 —50.183046 —9166.9080 2S°S1 8 38576670 801  3.65 4514 520
6py, 7Sy, 196 —2.886558 —59.183 109 2p %P, 8 —38.291040 7.96 3.62 4577 210
2py; 2dy, 199 —2.897946 —50.194171 -9166.9169 25 S 90  —5782722 899 475 7427
3py, 3dy, 206 —2.899721 —50.198154 —9166.9234 25°Si 90  -5789.181 900 476 74138
Apy, 4dy, 217 —2.900192 —59.199164 —9166.9260 2P P1 90  —5635.585 a a 7750 8
5pyy 50y, 232 —2.900378 —59.199 543 2p3P, 90 -—5790.842  89.9  51% 7.409539)
6Py, 6dy, 251 —2.900466 —59.199 724 44.8
7psp  7ds, 274 —2.900 503 —59.199 801 2p°P; 90  —5789.815 a a 7.451 78
2dsy 2P 2p3P, 90  —5637.331 90.0 446  7.746 08
3032 3pgp See the text.

4py, 289 —2.901400 —59.201146 b=,
4dy, 5py, 302 —2.901406 —59.201177 oy,

3dg, 3fg, 305 —2.901847 —59.201632 —9166.9261
4ds, 4fg, 312 —2.902250 —59.202 256 —9166.9267 approach of increasing the dimension of the matrix diagonal-
5ds, 5fsp, 323 —2.902456 —59.202 659 —9166.9272 ization problem with a fixed value of the nonlinear param-
6ds, 6fy, 338 —2.902577 —59.202 887 eters.
7ds, 7fs, 357 —2.902636 —59.203 011 In Table 1l we present results of larger-scale diagonaliza-
tions with the nonlinear parameters fixedzafor Z= 2, 8,
and 90. The large-large basis states are all products that
nonlinear parameters is 59.174 07, which is very close to couple toJ=0 of the single-particle states listed cumula-
the result of Chengt al. [34] of —59.174 16. tively in the first column and the large-small and small-small
Results of two calculations in which the large-small andbases are constructed similarly. At each step, in which a
small-small bases are incremented by adding an additionaingle-particle state of a particular is added to the set of
small component single-particle factor are included in Tabldarge factors, the corresponding state with the signkof
I, showing that to the indicated accuracy, there is no changehanged is added to the set of small factors. The exception is
in the energy. This supports the above remark that the energg the case ok>0, as discussed above. It can be observed
result is essentially insensitive to the small components irthat when the large and small factors are added pairwise in
the wave function provided the kinetic balance principle isthis way, as indicated by the principle of kinetic balance, the
followed. Moreover, as the quality of the wave function is energies decrease monotonically with two minor exceptions.
improved by varying the nonlinear parameters or by addingrhus the resulting energies are effectively upper bounds to
functions systematically to the large and small bases, ththe exact energy. It is also evident that the rate of conver-
energy result decreases and appears to be bounded from lg@nce is discouragingly slow, both for increasimgralues
low. It therefore appears that the minimax approach is imand increasing values.
effect equivalent to the standard variational approach. It should be commented that in the calculations for
It can also be noted that the effect on the energy of varyZ= 90, eigenvalues below the physical eigenvalue, but con-
ing the nonlinear parameters is smaller than that of adding asiderably above-2c?, appeared in the spectrum below the
additional single-particle state in the bases. Thus, althougN,, eigenvalue. These arise because the single-particle ener-
the variation of the nonlinear parameters illustrates the validgies in the bases used become large and they therefore reflect
ity of the minimax approach and is an elegant approach, it ithe Brown-Ravenhall problem. These did not present a prob-
computationally very inefficient compared with the simplerlem in the calculations reported here, but if somewhat larger
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TABLE IV. Results for then=2 energies foZ=8 obtained in ClI calculations for various basis sets as
described in the text. The dimension of the matrix is also given for each calculation.

Basis %15, 2s3s; 2p P, 2p 3P,

1sy/2289p7

1p122P1 —38.180 226 —38.567 166 —38.091 454 —38.292 151

2pP323P3r2 57 97 72

+3sy)n —38.288 573 —38.578 185 —38.093 792 —38.295 422
77 117 108

+4s), —38.289 185 —38.578 266 —38.094 419 —38.295 526
105 145 144

+4p1 —38.289 319 —38.578 306 —38.097 093 —38.298 374
129 185 176

+4p3p —38.289 823 —38.578 337 —38.097 487 —38.298 452
149 233 208

+2d3,3d3 —38.290 021 —38.578 345 —38.099 733 —38.299 791
174 338 338

+3ds), —38.290 146 —38.578 390 —38.102 905 —38.300 249
178 362 362

+4ds), —38.290 190 —38.578 417 —38.102 978 —38.300 282
190 394 386

bases had been used, they could possibly have become largerTable IV shows the results of Cl-type calculations for the
than the physical ground-state energy, thereby confusing the= 2 states and the trend of the results as the size of the basis
proper identification of the ground state. increases for thZ=8 case. The large-large basis is con-
Chenget al.[34] give a detailed breakdown of the various structed in the forrml;(a,)n’l’j (az), @;=8.0, a,=4.0,
contributions to the ground-state energy in the cZse8.  where thenl; range over the same set, as shown in column 1
The energy contributions from terms of the fomsn's is  for both the core and valence electron. The large-small and
—59.174 716 compared with-59.174 597 in this calcula- small-small bases are constructed similarly, witleplaced
tion. Terms of the forrmpn’p contribute—0.025 393 com- by the complementary valuej 2 I, except that in thec>0
pared with—0.025 109 here and terms of the formin’d  case extra orbitals such a4, are added, as discussed
contribute— 0.003 454 compared with 0.003 051. The cal- above. Again the results indicate that as the “quality” of the
culations of Chenget al. are of much higher dimension, in- calculation increases, the energy eigenvalues decrease, sug-
cluding 25 single-particle states for edchalue. In that cal- gesting an effective upper bound principle. It may be of
culation, small components are not varied independently ofome interest to compare the energy differences from the
the large components; therefore each single-particle state ground state with observed valug35]. The computed and
their calculation corresponds to two functions in the presenbbserved differences in cm are respectively, for!Sy,
calculation. 4589760 and 4588 558%S,, 4526510 and 4 525 340;
p,, 4630850 and 4629362;3P,, 4587550 and
4 586 400. The systematic difference of about 1200 tm
can be largely attributed to the Breit interaction energy in the
To demonstrate the applicability of the minimax approachground state, which is about 1130 ¢h[34]. The remaining
to excited states, the results of calculations for the?2 energy differences are well within the uncertainties from the
states are given in Table Ill. In these calculations, the largetruncation of the angular momentum and polynomial expan-
large component is of the formsy(a;)2l;(a;), where sions.
[=sorl=pandj=1/2 or 3/2. The large-small component is
of the form ]sl,z(ﬁl)ZIj’(yz) and the small-small compo-
nent is of the form pl,z(yl)ZIj’(yz) (I+1"=2j). However,
for the 2p,;, large component state, both the;4 and the The results of the variational calculations in which the
2s4, small component states are included. Again the mini-nonlinear parameters are varied show that the minimax prin-
mization procedure described above converges very rapidlgiple can be applied generally to the two-electron problem.
and with no apparent ambiguities. The results of the ClI calculations show that this method can
The two P, states are mixtures of thesl,2p,, and be successfully applied to the relativistic problem; this is of
1s,,,2p3» configurations and these have both been includegourse well known from the extensive successful MCDF cal-
in the calculations. FoZ =90 the states are essentially pure culations that have been made in addition to CI calculations
j-j coupled, the effect of mixing is very small, and the non-[36]. Despite the lack of a global upper bound in variations
linear parameters of the dominant component are the same aé ¢, ¢, and ¢, the evidence is clear that local minimax
for the corresponding state of differedt i.e., J=0 for the  points can be found that provide a good approximation to the
P, State andl=2 for the ps, state. physical energies and wave functions.

VII. RESULTS FOR THE N=2 STATES

VIII. DISCUSSION
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The evidence of these calculations is that if the large-explicitly correlated wave functions to overcome the prob-
small and small-small components of the wave function ardem of the slow convergence in the angular momentum and
chosen according to the principles described here, the energyplynomial expansions. This approach is currently under ac-
calculated is effectively an upper bound to the true energytive investigation.

Since the projection onto positive energy states introduces an
additional constraint on the small-small component, maxi-
mizing on the small-small component should yield an energy
result above the energy computed in the basis of positive This work has been supported by the Natural Sciences
energy states. and Engineering Research Council of Canada and by the

These successful calculations indicate that it will be posResearch Council of NorwafProgramme for Supercomput-

sible to extend the the methods that have been developed tog) through a grant of computing time.
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