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I. INTRODUCTION

The energy levels and other properties of two-electron
ions continue to be of great experimental and theoretical in-
terest after 70 years. One of the problems on the theoretical
side is the inclusion of the so-called correlation effects, that
is, the energy and wave function corrections that arise from
our inability to solve the three-body problem exactly. In the
nonrelativistic approximation this problem can be said to be
nonexistent. From the original work of Hylleraas@1,2# to the
contemporary highly accurate calculations of Drake@3# and
Baker et al. @4#, the state has advanced so that theoretical
uncertainties are negligible compared to experimental uncer-
tainties.

The theoretical situation is less satisfactory for the rela-
tivistic theory. Apart from fundamental questions as to the
actual problem that is to be solved, the problem of solving
approximately the two-electron Dirac equation analogous to
the two-electron Schro¨dinger equation presents serious diffi-
culties that arise, as will be discussed extensively below, be-
cause the powerful variational approach used in the nonrel-
ativistic problem is not directly applicable to the Dirac
equation. Four methods in current application can be identi-
fied. The first, which has been extensively pursued by Drake
@5–7#, is to compute relativistic corrections in terms of a
power series inZa using the highly accurate approximate
wave functions computed nonrelativistically. Another group
of approaches is to solve the relativistic pair equation of
many-body perturbation theory@8,9#. This program suffers
from the problem that the angular momentum expansion of
the wave function is slowly convergent. A third approach
@10# is to make large-scale configuration-interaction~CI! cal-
culations, using a basis of products of solutions of the single-
particle Dirac equation. The fourth approach, which is appli-
cable more generally to many-electron systems, is the
multiconfiguration Dirac-Fock~MCDF! method @11–13#.
These also present the difficulty of the slow convergence of
the angular momentum expansion.

The problem of the slow convergence of the angular mo-
mentum expansion, which arises generally in any calculation
of the CI type@14,15#, is avoided in the nonrelativistic case

by the use of ‘‘explicitly correlated wave functions,’’ i.e.,
wave functions that depend explicitly on the interelectronic
distancer 12. ~An interesting alternative to the explicit intro-
duction of the variabler 12 into the wave function has been
proposed recently by Goldman@16#.! However, use of such
trial wave functions requires application of the variational
principle or its generalization to the Hylleraas-Undheim
theorem@17# or Poincare´ principle @18#. ~The latter asserts
that if the Hamiltonian is diagonalized in a finite basis, the
kth eigenvalue is an upper bound to the exactkth energy.!
The variational principle fails immediately in application to
the Dirac equation, in that the expectation value of the Dirac
Hamiltonian is unbounded from below because of the nega-
tive energy continuum in its spectrum.

A number of methods to circumvent this problem in the
case of the one-particle Dirac equation have been proposed
@19–26#. However, these are not, in general, clearly appli-
cable to the two-particle problem. In this article we discuss
the possibility of generalizing the minimax approach to the
single-particle problem that has been proposed by one of us
@27# to the two-electron problem. This approach to the Dirac
equation will be reviewed in Sec. II and the generalization to
the two-electron problem will be described and discussed in
Sec. III. The situation in the latter problem is complicated by
questions of the proper formulation of the problem and ques-
tions concerning the existence of solutions. Aspects of the
relationship of these questions to the minimax approach will
be discussed in some detail.

The remaining sections describe some applications of the
approach to demonstrate its feasibility. In particular, the re-
sults indicate that calculated energies are in fact practical
upper bounds to the energies, although the theoretical formu-
lation does not guarantee this.

The calculations described are of two types. In the first,
nonlinear parameters in the wave function are varied; it is in
this sense that the term ‘‘variational calculation’’ is often
used. The second type of calculation are CI calculations in
which the wave function is expanded in Slater states; these
are of course also variational in that the expansion coeffi-
cients serve as variational parameters. These calculations are
intended to demonstrate the validity of the approach; further

PHYSICAL REVIEW A JANUARY 1996VOLUME 53, NUMBER 1

531050-2947/96/53~1!/168~10!/$06.00 168 © 1996 The American Physical Society



studies using explicitly correlated basis functions are in
progress.

A problem in relativistic calculations that has been exten-
sively discussed is the appropriate form of basis functions to
use. One important aspect concerns the analytic behavior of
the functions at the nucleus. Another is related to the spuri-
ous solutions that can arise@28,29# in the solution of the
Dirac-Coulomb problem. The choice of basis sets for the
present calculations will be discussed in detail in Sec. IV.
Some calculational details are described in Sec. V. In Sec. VI
low-dimensional results, varying the nonlinear parameters,
and large-dimensional results, with the parameters fixed, are
given for the ground-state energy. Corresponding results for
then52 complex of states are given in Sec. VII.

In the following, units such thate5m5\51 will be used
throughout. In the calculations described,c51/a
5137.036.

II. MINIMAX APPROACH
TO THE SINGLE-PARTICLE PROBLEM

In this section, the minimax variational approach to the
single-particle problem will be reviewed in order to clarify
the issues involved in extending it to the two-particle prob-
lem. The time-independent, one-particle Dirac equation for a
potentialV(r ) is usually written in the form

@V~r !1c2#g1cs–pf5eg,

cs–pg1@V~r !2c2# f5e f, ~1!

whereg and f are two-component spinors customarily called
the ‘‘large’’ and ‘‘small’’ components. The expectation value
of the Dirac Hamiltonian for a normalized wave function is
given by

^HD&5^guV~r !1c2ug&12c^ f us–pug&1^ f uV~r !2c2u f &.
~2!

The variational formulation of the Dirac equation~1! is
based on the equation@27#

e5min
g Fmaxf ^HD& G . ~3!

It is straightforward to show that, if the constraint
^gug&1^ f u f &51 is included by using the Lagrange multi-
plier method, the variational problem~3! leads to the Dirac
equations~1!.

It is of interest, however, to go into the derivation of Eq.
~3! in more detail. It should be emphasized that the order of
finding the minimax is important;̂HD& is to be maximized
on f for any fixedg. The result is a functional ofg that is to
be minimized ong. If the potentialV(r ) is bounded from
above, as is usually the case in practice, it can be shown as
follows that the maximization problem must have a solution.
It can be seen that, for fixedg, ^HD& has an upper bound for
^HD& as a functional off . This upper bound, which depends
on g, will be denoted byM [g]. Then, for a fixedg and
arbitrary f

^guV~r !1c2ug&12c^ f us–pug&1^ f uV~r !2c2u f &2M @g#

3@^gug&1^ f u f &#<0. ~4!

It can be noted that this equation is valid independent of the
normalization of the wave function. Equation~4! can be re-
written, eliminating the cross term by completing the square
in f , as

K gUV~r !1c21s–p
c2

M @g#1c22V~r !
s–p2M @g#UgL

1^ f duV~r !2c22M @g#u f d&<0, ~5!

where

f d5 f2
c

M @g#1c22V~r !
s–pg. ~6!

From this it is evident that the maximumM [g] is actually
attained, forf d50, or for

f5
c

M @g#1c22V~r !
s–pg, ~7!

which is the second of the Dirac equations ife5M [g].
Substituting forf from Eq.~7! in Eq. ~2! gives, after some

manipulation,

^HD&5M @g#1 K gUV~r !1c21s–p
c2

M @g#1c22V~r !
s–p

2M @g#UgL , ~8!

which is to be minimized subject to the constraint

^gug&1 K gUs–p c2

@M @g#1c22V~r !#2
s–pUgL 51. ~9!

The variational derivative with respect tog is given by

d^HD&
dg

5FV~r !1c21s–p
c2

M @g#1c22V~r !
s–p2M @g#Gg

1F12^gug&2 K gUs–p c2

@M @g#1c22V~r !#2
s–pUgL G

3
dM @g#

dg
. ~10!

In view of Eq. ~9!, the variational derivative is zero ifg
satisfies the equation

s–p
c2

M @g#1c22V~r !
s–pg1@V~r !1c2#g5M @g#g.

~11!
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This, together with Eq.~7!, is the first of the Dirac equations.
Thus a solution of the variational problem is a solution of the
Dirac equations.

The properties of Eq.~11! can be considered further by
writing it in the form

H~m!gn~m!5en~m!gn~m!, ~12!

where

H~m!5s–p
c2

m1c22V~r !
s–p1V~r !1c2. ~13!

The second-order differential operatorH(m) is similar in
structure to the Schro¨dinger operator and evidently has the
same spectral properties. IfV(r ),0, as is usually the case, it
can be seen that it is bounded above by the corresponding
Schrödinger operator with the denominator replaced by 2c2

and the bound-state spectrum will be below the Schro¨dinger
spectrum. The positive energy eigenvalues of the Dirac are
then the eigenvalues ofH(m) that satisfy the identity

en~e!5e. ~14!

If V(r ).22c2,en(2c2).2c2. It can be seen from the
definition ofH(m) thaten(m) is a monotonically decreasing
function ofm and therefore that Eq.~14! has a unique solu-
tion for eachn. It can also be observed that ifẽn is an upper
bound toen , the corresponding solution of~14! is an upper
bound to the Dirac equation eigenvalue. In the case of the
Coulomb potential, the inequalityV(r ),22c2 is violated at
small r and it is well known that the solution of the Dirac
equation in this case breaks down forZ.c.

It is of course true that an approximate energy eigenvalue
computed from Eq.~3! is not a variational upper bound to
the exact energy, so that the minimax principle is not a com-
plete panacea for the variational collapse problem. On the
other hand, Eq.~5! shows that the amount by which it fails to
be an upper bound is quadratic in the errorf d . Therefore the
minimax energy is effectively an upper bound if the small
component is approximated to a greater degree of accuracy
than the large component.

In practical calculations, the problem is usually treated by
expanding g and f in finite bases $fm ,m<M % and
$xn ,n<N%, respectively, where the two sets may be as-
sumed to be orthonormal. The variational problem for the
expansion coefficients leads to a matrix eigenvalue problem

FV1c2 cW

cWT U2c2GFxyG5eFxyG , ~15!

wherex and y are the expansion coefficients forg and f ,
respectively, and

v i j5^f i uV~r !uf j&,

wi j5^f i us–pux j&,

ui j5^x i uV~r !ux j&. ~16!

The second variation in̂HD& with respect to variations in
x andy is given by

d2~^HD&!5dxT~V1c22e!dx12cdxTWdy

1dyT~U2c22e!dy. ~17!

This is negative for variations iny provided the matrix
U2c22e is negative definite. ForV(r ),0, this is true pro-
vided e.2c2, i.e., e is above the negative energy con-
tinuum. It was shown in@27# that the lowestN eigenvalues
of Eq. ~15! are below2c2 and theM largest eigenvalues are
above2c2. Therefore the solution of the minimax problem
in this matrix approximation is the (N11)st eigenvalue.

The question of whether the minimax estimate is effec-
tively an upper bound depends on whether the basis$xn% can
give a more accurate representation forf than the basis
$fm% can give forg. These considerations are related to the
kinetic balance principle, which has often been taken as a
partial solution to the variational collapse problem. This
principle asserts that if a functionf is included in the large
component basis thens–pf should be included in the small
component basis, or its span. It is evident from the above
discussion that the minimax estimate fore is a true upper
bound if, for anyg, the exactf , as given by Eq.~7!, is
contained in the span of the small component basis. This is
true, for example, in the limitc→` if the kinetic balance
principle is satisfied. This shows that the theory goes over
into the correct nonrelativistic limit if the kinetic balance
principle is followed.

In actual calculations, the basis functions forg and f are
typically taken in the formPn(r )e

2ar or r g21Pn(r )e
2ar

multiplying a spin-angular factor, wherePn is a polynomial
of degreen. Equation~7! is then not satisfied exactly, but it
is plausible that if the polynomial approximation forf is of
higher degree than forg, the minimax estimate will be an
upper bound for the exact energy.~The question of the de-
pendence of the accuracy of an approximation on the degree
of the approximation has been recently discussed in detail by
Hill @30#.!

It is generally accepted that in going from the single-
particle problem to the many-particle problem, the many-
particle wave function should be formed in the Fock space of
products of single-particle wave functions that are positive
energy eigenfunctions of the single-particle problem. It is not
entirely clear which potential should define the single-
particle problem although it seems most plausible to choose
the bare nucleus Coulomb potential.

The problem of projecting onto positive energy states~the
PEP problem! is, however, not a simple one. We consider
now the relation of this problem to the minimax principle.
The exact solutions of the Dirac equation for the defining
potential will be denoted by (un ,vn) with eigenvaluesen . It
will be assumed that anyg can be expanded in the form

g5( 8
n

anun ~18!

where the prime on the summation denotes a sum on the
positive energy states. Thenf corresponding to the PEP ofg
is given by

f PEP5( 8
n

anvn . ~19!
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It is clear that if, for a particularg, the small-component
basis contains the correspondingf PEP, the result of maximiz-
ing ^HD& on f is at least as large as^HD&PEP. Therefore the
minimax energy is an upper bound to the PEP energy and
they are clearly equal ifg is the exact ground-state large-
component wave function.

More generally, ifg is given by Eq.~18!, f , as given by
Eq. ~7!, is given by

f5( 8
n

en1c22V~r !

M @g#1c22V~r !
anvn ~20!

and

f2 f PEP5( 8
n

en2M @g#

M @g#1c22V~r !
anvn . ~21!

The magnitudef2 fPEP can be estimated as (^de&/c2)Za,
where ^de& is an estimate of the spread of energies in the
components ofg and the factorZa reflects the fact that the
expansion is in the small componentsvn .

III. MINIMAX APPROACH
TO THE TWO-PARTICLE PROBLEM

The two-electron Dirac wave functionC has four com-
ponents, which will be denotedf l l ,fsl ,f ls ,fss, each of
which is a four-component spinor. The pairs of equations in
the single-particle Dirac equation generalize to a system of
four equations that can be written in terms of the components
as

@VT12c2#f l l1cs1•p1fsl1cs2•p2f ls5ef l l ,

VTf ls1cs1•p1fss1cs2•p2f l l5ef ls ,

VTfsl1cs1•p1f l l1cs2•p2fss5efsl ,

@VT22c2#fss1cs1•p1f ls1cs2•p2fsl5efss , ~22!

whereVT is the total potential-energy operator. If the Breit
interaction is included there are additional terms that mix
f ls andfsl in the middle two equations andf l l andfss in
the first and fourth equations.

The energy functional for a normalized wave function is

^HD&5^f l l uVT12c2uf l l &12c^fslus1•p1uf l l &

12c^f lsus2•p2uf l l &1^f lsuVTuf ls&

1^fsluVTufsl&12c^fssus1•p1uf ls&

12c^fssus2•p2ufsl&1^fssuVT22c2ufss&.

~23!

If f l l is expanded inNll basis functions, etc., the result is a
matrix diagonalization problem of dimension
Nll1Nls1Nsl1Nss. In the nonrelativistic limit, there are
Nll eigenvalues close to 2c2, Nls1Nsl eigenvalues near 0,
andNss eigenvalues near22c2. The eigenvalue of interest
in the two-electron ground-state problem is the smallest of
the eigenvalues near 2c2, i.e., the smallest of theNll largest
eigenvalues. The variational problem that picks out this ei-
genvalue is

e5min
f l l

F max
f ls ,fsl ,fss

^HD& G . ~24!

This leads us to Eq.~24! as the appropriate generalization of
Eq. ~3! to the two-particle problem. Physically, the compo-
nents of the wave function with a ‘‘small’’ label produce the
Dirac term for the kinetic energy, which should be maxi-
mized for the physical wave function. It is evident that a
solution of this equation is also a solution of Eq.~22!. This
minimax formulation of the two-electron problem does not
appear to be directly related to that of Rosenberg@31#, which
is based on the maximization of the energy with respect to an
effective potential describing the electron-electron scattering
amplitude.

If f ls andfsl are eliminated from these equations, it is
found that

^HD&5 K f l lUVT12c21s1•p1
c2

e2VT
s1•p11s2•p2

c2

e2VT
s2•p2Uf l l L 12K f l lUs1•p1

c2

e2VT
s2•p2

1s2•p2
c2

e2VT
s1•p1UfssL 1 K fssUVT22c21s1•p1

c2

e2VT
s1•p11s2•p2

c2

e2VT
s2•p2UfssL . ~25!

This expression for̂HD& reveals a problem in principle that
arises with the proposed formulation:^HD& is unbounded
from above under arbitrary variations infss. Although the
last term in Eq.~25! contains the very large and negative
term 22c2, if fss contains momentum components larger
thanc, they can overcome this negative term so that^HD&
can be arbitrarily large. This problem does not arise in the
calculations described here since the choice of basis func-
tions constrains the momentum components offss. Con-
ceivably, however, if the nonlinear parameters in the basis
functions ~see below! were to exceedc, problems could
arise.

The lack of a global maximum in̂HD& for a fixedf l l
does not preclude the possibility of local maxima, and indeed
the calculations reported below demonstrate their existence
at least in calculations in finite-dimensional subspaces. It can
also be argued that the many successful Dirac-Hartree-Fock,
and multiconfigurational Dirac-Fock, calculations are finding
such local maxima.

The question of whether local maxima of^HD& exist is
related to the question of whether bound-state solutions of
Eq. ~22! exist. This has been called into question because of
the continuum dissolution problem or Brown-Ravenhall dis-
ease@32#, which has been extensively discussed in the litera-
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ture. This problem suggests that there are no solutions of Eq.
~22! since such a solution could decay into a continuum of
degenerate states in which one particle is in a negative en-
ergy state and the other is in a state of large positive energy.
Since both problems are associated with components in the
wave function of large momenta, it is likely that they are
related.

This relationship can be established by the following ob-
servation. Equations~24! and ~25! indicate that the two-
electron Dirac problem can be modified in a variety of ways
to guarantee the existence of an upper bound. For example,
fss could be replaced in Eq.~22! by an integral transformed
function, e.g.,

fss~r1 ,r2!→
1

~2p!6
E

up1z<c
dp1E

up2u,c
dp2E dr18

3E dr28e
ip1•~r12r18!eip2•~r22r28!fss~r18 ,r28!.

~26!

This slight modification of the problem removes the large
momentum components fromfss so that^HD& is bounded
from above. It also projects out products of free particle
states in which one particle has large positive energy. This
integral transform in essence ‘‘smears’’fss over distances
comparable to the Compton wave length. A solution of the
modified variational problem is then also a solution of the
modified Dirac equation. Thus, even though the existence of
a solution of the Dirac equation is open to question, it is
plausible that solutions exist for a very similar problem and
indeed for any problem in which the momentum components
in fss are constrained to be less thanc.

However, the general viewpoint@33# in coping with the
continuum dissolution problem is that Eq.~22! is not the
correct formulation for the two-particle problem. Rather, the
proper Hilbert space for the problem is the product space
formed from products ofpositive energy solutionsof the one-
particle problem in an external potential, i.e., the PEP of the
Hilbert space. This is equivalent to projecting the potential
energy operators into this subspace. The problem of actually
carrying out this projection has not been solved, although
Chenget al. @34# have carried out CI calculations within this
framework.

The PEP principle indicates that the proper constraint on
the admissable variational trial functions is that they should
be contained in the PEP Hilbert space. It is plausible to as-
sume that for for an arbitraryf l l , there exist functions
f ls ,fsl ,fss such that the two-electron Dirac wave function
that they define is in the PEP projection. This can be shown
to be true if the PEP is onto free-particle positive energy
states by using Fourier transforms. In the single-electron
case, if the PEP is to be made onto the free-particle positive
energy solutions, then for a giveng(r ),

f ~r !5E cs•k

cAc21k21c2
g̃~k!eik–rdk, ~27!

whereg̃(k) is the Fourier transform ofg(r ). This expression
can be readily generalized to the two-electron case. How-
ever, we are not aware of any proof of this result for nonzero
single-particle potentials.

It can now be asserted that if, for a particularf l l , the
variational basis for the functionsf ls ,fsl ,fss is large
enough to include the corresponding PEP wave function,
then the result of the minimax calculation must be at least as
large as energy given by the PEP wave function.

The question of whether the PEP components are con-
tained within the trial function space is related to the kinetic
balance principle. In the single-particle case, the PEP
is given by Eq. ~27!. If g̃(k) contains only momentum
components small compared toc, this becomes f (r )
5s•pg(r )/(2c), with the correction being of order (k/c)2

or, equivalently, (Z/c)2. Thus, if the kinetic balance prin-
ciple is imposed on the trial wave function and PEP is to be
made onto free-particle states, the minimax energy provides
an upper bound to the true energy up to terms of order
(Z/c)2.

IV. BASIS SETS

The basis functions used in the calculations described be-
low are taken to be antisymmetrized products of single-
particle functions coupled to a total angular momentumJ.
The single-particle wave functions are of the form

cnk~r !5r g21r n2ukue2lrVkm~u,f!, l,n<N. ~28!

Here g5@k22Z2/c2#1/2 and Vkm is the two-component
spinor formed when spin angular momentum 1/2 is coupled
to orbital angular momentuml to give angular momentumj :

Vkm5( ^ 1
2m lml u jm&Ylml

~u,f!xm . ~29!

k is the quantum number usually introduced to describe the
Dirac equation solutions in spherical symmetry, defined by
k52 l21 for j5 l1 1

2 and k5 l for j5 l2 1
2. In the tables,

these functions will be denoted bynl j . The integern is
assigned according to the usual spectroscopic convention;
n. l with an exception to be discussed below.

The spinorsVkm satisfy the identity

is•prVkm5~k12!V2km . ~30!

It is well known that in spherical symmetry the single-
particle Dirac equation can be separated by choosing the
wave function in the form

ckm5F ig~r !Vkm

f ~r !V2km
G . ~31!

The form chosen for the basis functions is dictated by the
behavior of the single-particle Dirac wave function close to
the nucleus; for the Coulomb problem Eq.~10! takes the
form
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2
Z

r
g1cF2

d

dr
1

k21

r G f50,

cF ddr 1
k11

r Gg2
Z

r
f50. ~32!

These equations show thatg and f have the same power-law
behavior at the nucleus as given in Eq.~28! with n5k.

An important comment should be made concerning the
functions with k.0. In the nonrelativistic limit, in which
g5uku5 l , these behave liker l21 for small r rather than as
the usualr l behavior. The solutions of the Coulomb-Dirac
problem are of the form

cnlm5Arg21e2lrF Pn21~r !Vkm

Qn21~r !V2km
G , ~33!

wheren can be viewed as the usual principal quantum num-
ber andPn2uku(r ) andQn2uku(r ) are polynomials of degree
n2uku, i.e., of degree one higher than for the corresponding
solution of the Schro¨dinger equation in thek.0 case. The
constant term in the polynomialPl vanishes in the nonrela-
tivistic limit, but it is important to include it at largerZ
values. These contributions to the bases in thek.0 case will
be labeled 1p1/2, 2d3/2, etc.

A second point concerning the states withk.0 concerns
the ‘‘spurious solutions’’ that can arise for particular choices
of the basis. For example, if the Dirac matrix withk51 for
the Coulomb problem is diagonalized in the basis of Eq.~28!
with an equal number of identical large and small component
functions to findp1/2 states, a physically spurious eigenvalue
at the 1s1/2 ground-state energy is obtained@28,29#. The true
solution is also found, but it is associated with the next larger
eigenvalue. Extensive calculations show that this spurious
eigenvalue is readily eliminated by modifying the basis. For
example, if the three large component functions and four
small component functions are used with the exact value of
the nonlinear parametera, the exact 2p1/2 energy is obtained
as third largest eigenvalue. Similarly, if two large component
and two small component functions are used and the nonlin-
ear parameters are varied, minimax solutions are found for
which the third largest is a close approximation to the true
value. Therefore, to eliminate possible problems from spuri-
ous states, ifr ‘‘large’’ single-particle states for somek.0
are included in the large-large basis,r11 corresponding
‘‘small’’ states will be included in the large-small and small-
small bases. It has been found that if this is not done and the
small states exactly pair off with the large states, as pre-
scribed by the kinetic balance principle, a spurious root con-
taminates the spectrum and displaces the physical ground
state so as to correspond to the next largest eigenvalue. On
the other hand, if the nonlinear parameters are varied, this
problem is removed.

V. CALCULATIONAL DETAILS

The basis functions used in the calculations are antisym-
metrized products of single-particle functions of the form
given in Eq.~28! coupled to give total angular momentum
quantum numbersJ,M . The basis states forf l l can then be
written un1k1a1 ;n2k2a2 ;JM&. Similarly the basis states for

f ls are written un1k1b1 ;n2k2g1 ;JM& and the basis states
for fss are writtenun1k1d1 ;n2k2d2 ;JM&. Because of anti-
symmetry, the Hamiltonian matrix is reduced from the
434 block form to a 333 block form since the functions
fsl andf ls are not linearly independent. In the CI-like cal-
culations, all possible products (n1 ,n2) for a particular
choice of (k1 ,k2) are included. The nonlinear parameters
b,g,d are to be chosen to maximize^HD& and the param-
etersa are chosen to minimizêHD&. According to the ki-
netic balance principle, if a particular pair (k1 ,k2) occurs in
f l l , the pairs (k1 ,2k2) and (k2 ,2k1) must occur inf ls
and the pair (2k1 ,2k2) must occur infss, with the corre-
spondingn values. It must be observed, however, that the
principle is not strictly satisfied since the nonlinear param-
eters can differ in the three different bases.

The triangular transformations to orthonormal bases for
the three functionsf l l ,f ls ,fss are constructed from these
basis states using the standard Gram-Schmidt procedure.

Overlap integrals and the matrix elements of the nuclear
attraction energy and the kinetic-energy operators are com-
puted for these basis functions in a straightforward way us-
ing standard angular momentum techniques and are ex-
pressed in terms of theg function. The matrix elements of
the operatorr 12

21 require the calculation of integrals of the
form

I5E E r 1
S1e2a1r1YLM~u1 ,f1!*

1

r 12
r 2
S2e2a2r2

3YLM~u2 ,f2!dr1dr2 . ~34!

These are calculated in momentum representation as

I58E
0

`

FS1L
~k,a1!FS2L

~k,a2!dk, ~35!

using numerical Gauss-Laguerre integration. The functions
FSL(k,a) are the spherical Bessel transforms of the radial
factors, defined by

FSL~k,a!5E
0

`

j L~kr !r
Se2ar r 2dr. ~36!

In the caseL50,

FS0~k,a!5
G~S12!

kRS12 sin~S12!F, ~37!

wherea1 ik5ReiF. For L.0, FSL(k,a) can be obtained
from the recurrence relation

FSL~k,a!5
L1S11

k
FS21,L21~k,a!2

a

k
FS,L21~k,a!.

~38!

The minimax calculation of the nonlinear parameters
a,b,g,d can be greatly facilitated if the derivatives of
^HD& are known. A method for calculating the first and sec-
ond derivatives analytically will be described separately.

53 173MINIMAX VARIATIONAL APPROACH TO THE RELATIVISTI C . . .



The minimax procedure in the nonlinear parameters leads
to a directional search problem that can be written in the
matrix form

F X Y

YT ZGFDa

DbG52FabG . ~39!

The matrix is the Hessian matrix of second derivatives, the
right-hand side is the vector of first derivatives, and the first
entries in the vectors belong to large-large parameters and
the second entries belong to the large-small and small-small
parameters. At a minimax, the vector of first derivatives must
vanish, the matrixZ must be negative definite, and the ma-
trix

X2YZ21YT ~40!

must be positive definite.

VI. RESULTS FOR GROUND STATES

In this section we present the results of various calcula-
tions for the 1s1/2

2 1S0 ground states for ions of differentZ
values to indicate the validity of the minimax approach and
to discuss a number of considerations concerning its success-
ful application. In all the calculations, the electron-electron
potential is taken to be the pure Coulomb potential. The non-
linear parameters occurring in the large-large component will
be denoted bya, parameters in the large-small component
by b and g, respectively, and the parameters in the small-
small component byd.

The lowest-order calculation hasNll5Nls5Nss51 with
f l l51s1/2

2 , f ls51s1/21p1/2, and fss51p1/2
2 . In the case

Z52, the energy without varying the parameters
(a5b5g5d52) is22.750 015. The minimax calculation,
constrained with b5g5d, gives an energy of
22.847 794, with all the parameter values equal to 1.6875 to
four decimal places. Permitting the small component nonlin-
ear parameters to vary separately did not change this result.

The same calculations withZ58 give an energy of
259.048 334 when the nonlinear parameters are fixed at 8.0.
When the parameters are varied, withb5g5d, the result is
259.146 390 witha57.6866 andb5g5d57.6870. Al-
lowing the parameters to vary independently gives the same

energy to the accuracy shown, withb57.6866 and
g5d57.6873. The corresponding result of the calculation
of Chenget al. @34# is 259.174 716.

At Z590 the energy with the parameters fixed at 90.0 is
29166.7040. When the parameters are varied, with
b5g5d the energy is 29166.8906 obtained for
a589.496,b5g5d589.567. Ifb is allowed to vary inde-
pendently, with g5d the energy is raised slightly, to
29166.8832 with a589.516, b589.516, and
g5d589.646. Allowingg andd to vary separately does not
change the results to this accuracy.

These results suggest that, although it is important to in-
clude small component factors, as dictated by the kinetic
balance principle, to prevent the variational collapse, the de-
tailed results are insensitive to small changes in the param-
eters. This has been looked at further by including terms of
the form 1s1/22p1/2 in the large-small basis and of the form
1p1/22p1/2 and 2p1/22p1/2 in the small-small basis. Including
these additional terms does not affect the results, perhaps
because maximizing on the nonlinear parameters incorpo-
rates these terms implicitly. Including then53 terms as
well, for the above optimized parameter values, does not
affect the results forZ52 andZ58, but raises the energy for
Z590 slightly to 29166.8808, an increase of 2 parts in
107. Table I presents results for low-dimensional CI-type cal-
culations in which the nonlinear parameters are varied. The
variational calculation on the nonlinear parameters converges
very rapidly, in four or five iterations, when only one large or
small single-particle state is included in the calculation.
However, if more than one single-particle state is included,
so that the energy surface is a function of a large number of
parameters, it becomes difficult to find the local minimaxes
in the surface. For this reason, the variational calculation is
constrained to three nonlinear parameters:a, the nonlinear
parameter in the large-large states;b, the nonlinear param-
eter in the large factor in the large-small states, andg, the
nonlinear parameter in the small component factors. With
this constraint on the variation, the calculation again con-
verges rapidly. It may be noted that the parameters tend to
increase as the dimension increases; evidently this is to com-
pensate for the fact that asn increases, the orbital radii in-
crease. The result of a large dimension calculation in the
z58 case with 45ns1/2n8s1/2 large-large states and the cor-
responding large-small and small-small states varying the

TABLE I. Ground-state energy in the caseZ58 computed for states of the formf l l5ns1/2n8s1/2,
f ls5ns1/2n8p1/2, fss5np1/2n8p1/2. Nll , Nls , andNss give the total number of large-large, large-small, and
small-small states, respectively.a is the nonlinear parameter for the large-large states,b is the nonlinear
parameter for the large factor in the large-small states, andg is the nonlinear parameter for the small factors.
EZ is the energy computed with the nonlinear parameters fixed atZ58 and Evar is the result of the
variational calculation.

Nll Nls Nss EZ Evar a b g

1 1 1 259.048 334 259.146 390 7.6866 7.6866 7.6873
3 4 3 259.156 13 259.158 386 7.7168 7.7217 7.7050
3 6 6 259.156 13 259.158 386 7.7168 7.7217 7.9747
6 9 6 259.172 727 59.173 710 8.7595 8.7569 8.7594
6 12 10 259.172 727 59.173 710 8.7593 8.7569 8.7594
10 16 10 259.174 013 259.174 249 9.2317 9.2478 9.2315
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nonlinear parameters is259.174 07, which is very close to
the result of Chenget al. @34# of 259.174 16.

Results of two calculations in which the large-small and
small-small bases are incremented by adding an additional
small component single-particle factor are included in Table
I, showing that to the indicated accuracy, there is no change
in the energy. This supports the above remark that the energy
result is essentially insensitive to the small components in
the wave function provided the kinetic balance principle is
followed. Moreover, as the quality of the wave function is
improved by varying the nonlinear parameters or by adding
functions systematically to the large and small bases, the
energy result decreases and appears to be bounded from be-
low. It therefore appears that the minimax approach is in
effect equivalent to the standard variational approach.

It can also be noted that the effect on the energy of vary-
ing the nonlinear parameters is smaller than that of adding an
additional single-particle state in the bases. Thus, although
the variation of the nonlinear parameters illustrates the valid-
ity of the minimax approach and is an elegant approach, it is
computationally very inefficient compared with the simpler

approach of increasing the dimension of the matrix diagonal-
ization problem with a fixed value of the nonlinear param-
eters.

In Table II we present results of larger-scale diagonaliza-
tions with the nonlinear parameters fixed atZ for Z5 2, 8,
and 90. The large-large basis states are all products that
couple toJ50 of the single-particle states listed cumula-
tively in the first column and the large-small and small-small
bases are constructed similarly. At each step, in which a
single-particle state of a particulark is added to the set of
large factors, the corresponding state with the sign ofk
changed is added to the set of small factors. The exception is
in the case ofk.0, as discussed above. It can be observed
that when the large and small factors are added pairwise in
this way, as indicated by the principle of kinetic balance, the
energies decrease monotonically with two minor exceptions.
Thus the resulting energies are effectively upper bounds to
the exact energy. It is also evident that the rate of conver-
gence is discouragingly slow, both for increasingn values
and increasingl values.

It should be commented that in the calculations for
Z590, eigenvalues below the physical eigenvalue, but con-
siderably above22c2, appeared in the spectrum below the
Nll eigenvalue. These arise because the single-particle ener-
gies in the bases used become large and they therefore reflect
the Brown-Ravenhall problem. These did not present a prob-
lem in the calculations reported here, but if somewhat larger

TABLE II. Results for the ground-state energy forZ5 2, 8, and
90 from large-scale matrix diagonalization calculations. The first
two columns show the large and small single-particle factors added
at each step in the calculation and the third column shows the over-
all dimension of the matrix for theZ 5 2 and 8 calculations.

L S N Z52 Z58 Z590

1s1/2 1p1/2 3 22.750 115 259.048 344 29166.7040
2p1/2 6 22.750 115 259.048 344 29166.7013

2s1/2 - 10 22.850 364 259.156 318 29166.9024
3s1/2 3p1/2 21 22.878 252 259.172 727 29166.9053
4s1/2 4p1/2 36 22.878 733 259.174 013 29166.9057
5s1/2 5p1/2 55 22.879 003 259.174 395
6s1/2 6p1/2 78 22.879 074 259.174 542
7s1/2 7p1/2 105 22.879 101 259.174 597
1p1/2 1s1/2
2p1/2 2s1/2

3s1/2 120 22.886 443 259.183 046 29166.9080
3p1/2 4s1/2 132 22.886 516 259.183 011
4p1/2 5s1/2 150 22.886 553 259.183 089
5p1/2 6s1/2 171 22.886 559 259.183 108
6p1/2 7s1/2 196 22.886 558 259.183 109
2p3/2 2d3/2 199 22.897 946 259.194 171 29166.9169
3p3/2 3d3/2 206 22.899 721 259.198 154 29166.9234
4p3/2 4d3/2 217 22.900 192 259.199 164 29166.9260
5p3/2 5d3/2 232 22.900 378 259.199 543
6p3/2 6d3/2 251 22.900 466 259.199 724
7p3/2 7d3/2 274 22.900 503 259.199 801
2d3/2 2p3/2
3d3/2 3p3/2

4p3/2 289 22.901 400 259.201 146
4d3/2 5p3/2 302 22.901 406 259.201 177
3d5/2 3 f 5/2 305 22.901 847 259.201 632 29166.9261
4d5/2 4 f 5/2 312 22.902 250 259.202 256 29166.9267
5d5/2 5 f 5/2 323 22.902 456 259.202 659 29166.9272
6d5/2 6 f 5/2 338 22.902 577 259.202 887
7d5/2 7 f 5/2 357 22.902 636 259.203 011

TABLE III. Results for then52 energies forZ5 2, 8, and 90
obtained by varying the nonlinear parameters in the lowest-
dimensional basis. In most cases the nonlinear parametersa,b, and
g are almost the same. For the 2p1/2 orbital the parameterg differs
somewhat froma andb. DE gives the excitation energy of the state
in cm21 ~converted usingR`) above the ground-state energies of
22.847 794,259.146 390, and29166.8832 given by the calcula-
tions described at the beginning of Sec. VII.

Term Z E a1 a2 DE

2s 1S0 2 22.142 974 1.997 0.558 154 690
2s 3S1 2 22.174 355 2.003 0.633 147 802
2p 1P1 2 22.122 498 2.003 0.482 159 184
2p 3P0 2 22.130 800 1.991 0.545 157 361
2p 3P1 2 22.130 799 1.991 0.545 157 362
2p 3P2 2 22.130 798 1.991 0.545 157 362
2s 1S0 8 238.280 233 7.96 3.58 4579 580
2s 3S1 8 238.576 670 8.01 3.65 4514 520
2p 1P1 8 238.097 207 8.01 3.46 4619 750
2p 3P0 8 238.295 484 7.96 3.62 4576 230
2p 3P1 8 238.294 024 7.96 3.62 4576 550
2p 3P2 8 238.291 040 7.96 3.62 4577 210
2s 1S0 90 25782.722 89.9 47.5 7.427 35~8!

2s 3S1 90 25789.181 90.0 47.6 7.413 18~8!

2p 1P1 90 25635.585 a a 7.750 28~8!

2p 3P0 90 25790.842 89.9 51.6b 7.409 53~8!

44.8c

2p 3P1 90 25789.815 a a 7.451 79~8!

2p 3P2 90 25637.331 90.0 44.6 7.746 45~8!

aSee the text.
ba5b.
cg.
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bases had been used, they could possibly have become larger
than the physical ground-state energy, thereby confusing the
proper identification of the ground state.

Chenget al. @34# give a detailed breakdown of the various
contributions to the ground-state energy in the caseZ58.
The energy contributions from terms of the formnsn8s is
259.174 716 compared with259.174 597 in this calcula-
tion. Terms of the formnpn8p contribute20.025 393 com-
pared with20.025 109 here and terms of the formndn8d
contribute20.003 454 compared with20.003 051. The cal-
culations of Chenget al. are of much higher dimension, in-
cluding 25 single-particle states for eachl value. In that cal-
culation, small components are not varied independently of
the large components; therefore each single-particle state in
their calculation corresponds to two functions in the present
calculation.

VII. RESULTS FOR THE N52 STATES

To demonstrate the applicability of the minimax approach
to excited states, the results of calculations for then52
states are given in Table III. In these calculations, the large-
large component is of the form 1s1/2(a1)2l j (a2), where
l5s or l5p and j51/2 or 3/2. The large-small component is
of the form 1s1/2(b1)2l j8(g2) and the small-small compo-
nent is of the form 1p1/2(g1)2l j8(g2) ( l1 l 852 j ). However,
for the 2p1/2 large component state, both the 1s1/2 and the
2s1/2 small component states are included. Again the mini-
mization procedure described above converges very rapidly
and with no apparent ambiguities.

The two P1 states are mixtures of the 1s1/22p1/2 and
1s1/22p3/2 configurations and these have both been included
in the calculations. ForZ590 the states are essentially pure
j -j coupled, the effect of mixing is very small, and the non-
linear parameters of the dominant component are the same as
for the corresponding state of differentJ, i.e., J50 for the
p1/2 state andJ52 for thep3/2 state.

Table IV shows the results of CI-type calculations for the
n52 states and the trend of the results as the size of the basis
increases for theZ58 case. The large-large basis is con-
structed in the formnl j (a1)n8l 8 j 8(a2), a158.0, a254.0,
where thenl j range over the same set, as shown in column 1
for both the core and valence electron. The large-small and
small-small bases are constructed similarly, withl replaced
by the complementary value 2j2 l , except that in thek.0
case extra orbitals such as 1p1/2 are added, as discussed
above. Again the results indicate that as the ‘‘quality’’ of the
calculation increases, the energy eigenvalues decrease, sug-
gesting an effective upper bound principle. It may be of
some interest to compare the energy differences from the
ground state with observed values@35#. The computed and
observed differences in cm21 are respectively, for1S0 ,
4 589 760 and 4 588 558;3S1 , 4 526 510 and 4 525 340;
1P1 , 4 630 850 and 4 629 362;3P1 , 4 587 550 and
4 586 400. The systematic difference of about 1200 cm21

can be largely attributed to the Breit interaction energy in the
ground state, which is about 1130 cm21 @34#. The remaining
energy differences are well within the uncertainties from the
truncation of the angular momentum and polynomial expan-
sions.

VIII. DISCUSSION

The results of the variational calculations in which the
nonlinear parameters are varied show that the minimax prin-
ciple can be applied generally to the two-electron problem.
The results of the CI calculations show that this method can
be successfully applied to the relativistic problem; this is of
course well known from the extensive successful MCDF cal-
culations that have been made in addition to CI calculations
@36#. Despite the lack of a global upper bound in variations
of f ls ,fsl , andfss the evidence is clear that local minimax
points can be found that provide a good approximation to the
physical energies and wave functions.

TABLE IV. Results for then52 energies forZ58 obtained in CI calculations for various basis sets as
described in the text. The dimension of the matrix is also given for each calculation.

Basis 2s 1S0 2s 3S1 2p 1P1 2p 3P1

1s1/22s1/2
1p1/22p1/2 238.180 226 238.567 166 238.091 454 238.292 151
2p3/23p3/2 57 97 72
13s1/2 238.288 573 238.578 185 238.093 792 238.295 422

77 117 108
14s1/2 238.289 185 238.578 266 238.094 419 238.295 526

105 145 144
14p1/2 238.289 319 238.578 306 238.097 093 238.298 374

129 185 176
14p3/2 238.289 823 238.578 337 238.097 487 238.298 452

149 233 208
12d3/23d3/2 238.290 021 238.578 345 238.099 733 238.299 791

174 338 338
13d5/2 238.290 146 238.578 390 238.102 905 238.300 249

178 362 362
14d5/2 238.290 190 238.578 417 238.102 978 238.300 282

190 394 386
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The evidence of these calculations is that if the large-
small and small-small components of the wave function are
chosen according to the principles described here, the energy
calculated is effectively an upper bound to the true energy.
Since the projection onto positive energy states introduces an
additional constraint on the small-small component, maxi-
mizing on the small-small component should yield an energy
result above the energy computed in the basis of positive
energy states.

These successful calculations indicate that it will be pos-
sible to extend the the methods that have been developed to

explicitly correlated wave functions to overcome the prob-
lem of the slow convergence in the angular momentum and
polynomial expansions. This approach is currently under ac-
tive investigation.
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