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A numerical method for the solution of the time-dependent Dirac equation to describe atomic processes in
relativistic heavy-ion collisions is presented. Different from previous approaches found in the literature, we are
working entirely in momentum space to propagate the electron wave function in time. Due to the localization
of the electron in momentum space the wave function can be confined to a finite discretization volume without
the stringent violation of the boundary conditions which is encountered in configuration-space methods. From
the final state, we can extract probabilities on inner-shell ionization, excitation, electron transfer, and bound-
free pair production. Results are presented in the energy range from 0.24 to 10 GeV/nucleon. At 0.24 GeV/
nucleon we demonstrate that our formalism incorporates both the ionization and the transfer channel, which are
equally important at this energy. At higher energies from 0.93 to 10 GeV/nucleon we focus on ionization and
bound-free pair production. We find that the enhancement of bound-free pair production as compared to
perturbation theory is much smaller than reported previously by others.

PACS number~s!: 34.90.1q, 34.70.1e

I. INTRODUCTION

We present a theoretical study of atomic processes in rela-
tivistic heavy-ion collisions. The nuclear motion of the col-
lision partners is treated classically and the interaction is as-
sumed to be purely electromagnetic. The quantum-
mechanical problem for the electronic motion is then
governed by the time-dependent Dirac equation, which is
coupled to the classical electromagnetic fields of the nuclei.
The solution of this equation provides electron transition am-
plitudes for all nonradiative processes, such as ionization,
excitation, and electron transfer. In addition to these conven-
tional atomic physics processes electron-positron pair pro-
duction can be described as ‘‘ionization from the Dirac sea.’’
An electron that initially occupies a state in the negative
continuum can either get excited into a bound state of one of
the ions or it may be emitted free. These processes are called
‘‘bound-free pair production’’ and ‘‘free-free pair produc-
tion,’’ respectively. The produced vacancy in the Dirac sea
describes the positron that escapes from the collision.

Since the number of heavy-ion facilities is quite limited,
the amount of experimental work in this field is still rela-
tively small. Ionization, excitation, and charge transfer have
been investigated in a series of measurements by Anholt
et al. @1–3# and Meyerhofet al. @4,5# using heavy-ion beams
in the energy range of a few hundred MeV/nucleon. A few
further experiments have been performed by other authors
@6,7#. While inner-shell ionization, excitation, and charge
transfer are well-known atomic physics processes, bound-
free pair production has been observed only very recently at
the Bevalac at the Lawrence Berkeley Laboratory@8,9#. This
new ‘‘electron capture’’ from the Dirac sea is predicted to be
the dominant source of beam loss in relativistic heavy-ion
colliders like the Relativistic Heavy Ion Collider and Large
Hadron Collider and, therefore, has attracted considerable

interest in the recent years@10–20#. Measurements of free-
free pair production using a highly relativistic sulfur beam
have been performed at CERN@21#.

Relativistic collisions of heavy ions are fundamentally
different from those involving light ions, because the cou-
pling constant of the perturbation can be large (Za'0.6)
and the applicability of perturbation theory becomes ques-
tionable. Therefore, the theory of relativistic heavy-ion col-
lisions may be regarded as a challenging testing ground for
nonperturbative methods~for a general overview of the field,
see@22–24#!.

The perturbative approaches are based on the equivalent-
photon method@22# and, to the largest part, on time-
dependent perturbation theory, using a set of atomic wave
functions attached to the target ion as basis functions for the
electron or positron states@25#. Using distorted waves in a
perturbation theory framework, Decoet al. included higher-
order contributions of the Born series@26–28#. For simplic-
ity, most authors chose approximate Sommerfeld-Maue wave
functions for the continuum states and the corresponding
Darwin wave functions for the bound states@22,26,29–32#.
The exact Dirac wave functions have been used to describe
ionization and pair production by Becker and co-workers
@11,33–35# and recently by Baltz, Rhoades-Brown, and Wen-
eser@36#. Electron transfer in relativistic collisions has been
studied in a large variety of models, using both semirelativ-
istic and exact relativistic wave functions~see@23,24#!.

While it is still believed that perturbation theory in lowest
order with a set of atomic basis states located at the target
atom provides a correct description for small projectile
charge numbersZP even for the heaviest targets, it became
clear that this is no longer true in collisions withZP being
large. For the case of ionization this became obvious from
perturbation theory results at small impact parameters that
exceed unity@37–39#. Also for free-free pair production in
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extremely relativistic heavy-ion collisions single-pair pro-
duction probabilities can exceed unity@22,40,41#.

The nonperturbative methods are based on a fully numeri-
cal solution of the time-dependent one-electron Dirac equa-
tion, so that the interaction with both nuclei ought to be
included to all orders. These methods can be divided into
two groups: the coupled-channel~or ‘‘close-coupling’’!
methods, which are based on an expansion of the time-
dependent wave function in a discrete set of basis states, and
various grid methods, which tackle the Dirac equation by
discretization on a spatial lattice. Due to the inherent limita-
tion of the basis set, all coupled-channel calculations are
highly dependent on the basis states being used in the expan-
sion. However, they have been proven to be less numerically
‘‘delicate’’ and CPU-time intense than grid methods. There-
fore, coupled-channel calculations have been used exten-
sively with various choices for the basis functions, e.g.,~i!
two-center molecular states@42# to describe ionization and
pair production,~ii ! two-center atomic basis states to de-
scribe transfer and excitation@43–45#, ~iii ! a set of one-
center atomic states of the target, using a set of discrete wave
packets as an approximation for the continuum to describe
ionization, excitation, and bound-free pair production
@17,38,46–48#, and~iv! a set of free momentum space wave
packets to describe free-free pair production@49,50#.

Bound-free pair production has been the major point of
interest of the work presented by Rumrichet al. @12# and
Baltz, Rhoades-Brown, and Weneser@17,18#. The outcome
of a coupled-channel calculation by Rumrichet al.exceeded
the perturbation theory result for bound-free pair production
by about 1–2 orders of magnitude at small impact param-
eters.

However, these authors have been criticized for using a
relatively small basis set by Baltz, Rhoades-Brown, and
Weneser@17,18#, who claim that in a converged calculation
this enhancement will get reduced to at most one order of
magnitude at moderate relativistic collision energies and that
it will not increase considerably the total cross section at
ultrarelativistic energies.

With the advance of computer technology, grid calcula-
tions in relativistic atomic scattering theory have already be-
come feasible today. For example, the finite-differences
method and the finite-element method have been applied to
the problem of ionization and pair production. Beckeret al.
@37,51# used a two-dimensional finite-differences method to
compute ionization in almost central collisions and Thiel
et al. @15# applied the same formalism to bound-free pair
production. They report that their results exceed predictions
by perturbation theory by 1–2 orders of magnitude. A two-
dimensional finite-element code has been developed by
Müller @52#. Wells et al. @53# applied a three-dimensional
basis-spline collocation method to the problem of muonic
bound-free pair production. Their results overshoot previous
predictions in perturbation theory for comparable collision
systems@54# by several orders of magnitude.

A common problem of these grid methods, which are all
formulated in configuration space, is the fact that the electron
density in configuration space dissolves during the collision
@15,37# because of continuum components of the wave func-
tion that are arising due to the ionization and transfer reac-
tion and ‘‘spread’’ over the whole configuration space. At the

boundaries, however, the values of the wave function have to
be set to zero. Therefore, the propagation in time has to be
stopped, as soon as non-negligible components of the wave
function are beginning to ‘‘hit the wall.’’

In this paper, we will present a method that removes the
boundary condition problems to the largest part. We are solv-
ing the Dirac equation on a grid within a finite volume in
momentum space, where the bound states as well as the con-
tinuum states are strongly localized@55#. The same is true for
the time-evolved electron wave function. If the volume in
momentum space is sufficiently large, the values of the wave
function can, in a very good approximation, be set to zero at
the boundaries of the grid. We are going to demonstrate that
this formalism incorporates a description of inner-shell ion-
ization, excitation, electron transfer, and bound-free pair pro-
duction.

Common to all grid methods is the dilemma of finding a
satisfactory treatment of the continuum. We are following the
majority of the authors in this field@15,51,52# and use the
analytically known solutions of the ‘‘continuous’’ problem,
i.e., the Coulomb-Dirac eigenfunctions. This approach has
been criticized because in a fully consistent grid calculation
one ought to solve the eigenvalue problem of the discrete
atomic Hamiltonian to compute a set of atomic eigenstates
@56–58#. However, such states have not been satisfactorily
implemented yet in a complete scattering calculation. Our
choice of the Coulomb-Dirac wave functions is justified if
the calculation is converged in the sense that a refinement of
the grid will not critically affect the final results.

In the next section of this paper, we derive the time-
dependent Dirac equation in momentum space and discuss
the numerical implementation on two different parallel com-
puters. In Sec. III, this method is applied to collision systems
in the energy range from 0.24 to 10 GeV/nucleon. The tech-
nical details of the evaluation of the atomic states in momen-
tum space are described in the Appendix.

II. THEORY

A. The Dirac equation

Let us assume the collision of a fully stripped projectile
ion with chargeZP on a target ion with chargeZT , which is
carrying only one electron in case we are considering ioniza-
tion, excitation, or transfer or none in case of electron-
positron pair production. Furthermore assuming pointlike
charges and a straight line trajectoryRW (t)5(b,0,vPt) for the
projectile with constant velocityvP the time-dependent
Hamiltonian for one electron can be written as@23#

HD5H01VP~ t !, ~2.1!

whereH0 is the one-electron Hamiltonian corresponding to
the target

H052 iaW •¹W 1b2
ZTe

2

r
. ~2.2!

Here, aW and b are the Dirac matrices@59#. VP(t) is the
time-dependent perturbation by the projectile
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VP~rW,t !5
2ZPe

2g~12vPaz!

A~x2b!21y21g2~z2vPt !
2
. ~2.3!

Natural units are used throughout the paper (\5m5c51);
i.e., length will be measured in units of the reduced Compton
wavelengthl5\/mc5386 fm and momentump5\k is
measured in units of\/l. vP denotes the projectile velocity
andg51/A12vP

2 is the Lorentz factor. This expression for
VP(t) can be derived from coupling the Lie`nard-Wiechert
potential of a moving point charge@60# to the Dirac equa-
tion. To the atomic HamiltonianH0 belongs to a complete set
of stationary hydrogenlike relativistic eigenstatesf j (rW) with

H0f j~rW !5Ejf j~rW !. ~2.4!

In the somewhat naive picture of Dirac’s hole theory, we
have to think of the initial state as being given by the
K-shell electron together with the initially fully occupied
negative continuum~‘‘Dirac sea’’! in the case of ionization,
or of the fully occupied negative continuum only, in the case
of pair production~for a formulation in terms of quantum
electrodynamics, see@46# and@53#!. We are going to neglect
the electron-electron two-body interaction. Under this as-
sumption, each electron state will evolve in time indepen-
dently from all the others@61,62# according to the one-
electron Dirac equation

i
]

]t
c j~rW,t !5@H01VP~ t !#c j~rW,t !, ~2.5!

with the initial condition

lim
t→2`

c j5f je
2 iE j t, ~2.6!

while orthogonality and completeness are preserved during
the collision. We still have to deal with an infinite number of
electrons. After introducing a wave packet approximation for
both continua, one can in fact propagate each state and com-
pute any desired many-particle transition amplitude, as has
been done for correlated one-pair electron-positron pair pro-
duction @14,49#. The many-particle amplitudes can be ex-
pressed in terms of one-electron amplitudes. In case we are
interested only in thetotal probabilities for ionization or pair
production, these very complicated expressions can be re-
duced to simple incoherent sums of the one-electron transi-
tion probabilities@46,53#. For example, the total probability
to observe an electron from bound-free pair production is
given by

Pbfpp5 (
E,2m0c

2
z^f1sucE~`!& z2 ~2.7!

and the probability to observe aK-shell vacancy from
K-shell ionization is

Pioniz5 (
E.m0c

2
z^fEuc1s~`!& z2. ~2.8!

To simplify the calculation ofPbfpp we make use of the time-
reversal rulez^f i uc j (`)& z25 z^f j uc i(`)& z2, which is fulfilled

due to the assumption of a straight line projectile trajectory
@46#. This enables us to computePioniz and Pbfpp by only
propagating the 1s state. Projection of the final state onto the
positive and negative continuum states will yield the prob-
abilities for ionization and bound-free pair production, re-
spectively.

B. The transformation to momentum space

In this section, we will derive a time-dependent integral
equation for the Dirac equation in momentum space. We de-
fine the Fourier transformation of the time-dependent spinor
c(rW,t) as

c~rW,t !5
1

~2p!3/2
E d3kc̃~kW ,t !eik

W
•rW. ~2.9!

Insertion into the Dirac equation~2.5!, multiplication by

@1/(2p)3/2#exp(2ikW8rW! and integration overrW yields

]

]t
c̃~kW ,t !5

2 i

~2p!3
E E d3k8d3re2 ikW•rW

3@H01VP~ t !#eik
W8•rWc̃~kW8,t !. ~2.10!

The three-dimensional Fourier integral over the Coulomb po-
tential is known as the Bethe integral@25,63,74#:

E d3reiq
W
•rW
1

r
5
4p

q2
. ~2.11!

Making use of this equation we can perform ther integral in
Eq. ~2.10! and obtain the following integral equation for the
Dirac equation in momentum space:

]

]t
c̃~kW ,t !52 i @aW •kW1b#c̃~kW ,t !1

2 i

2p2E d3k8

3F2
ZTe

2

q2 G c̃~kW8,t !1
2 i

2p2E d3k8

3F2ZPe
2~12vPaz!e

i ~qxb1qzvPt !

~qx
21qy

21qz
2/g2! G c̃~kW8,t !,

~2.12!

whereqW 5kW82kW denotes the momentum transfer. This equa-
tion of motion has to be solved with the initial condition:

lim
t→2`

c̃~kW ,t !5c̃1s~kW ,t !. ~2.13!

The expressions for the initial state are derived in the Appen-
dix. In the next section we will describe how Eq.~2.12! is
treated numerically.

C. Numerical treatment of the time evolution
and computational details

The numerical method to perform the time integration of
~2.12! is based on the following idea: First, we enclose the
system in a finite volume in momentum space. In momentum
space, we expect the wave function to be well localized for
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all times during the collision, so that the values at the surface
of the volume can be set to zero or to some small constant
value for all times during the collision. The assumption that
the wave function will be well localized has to be checked at
all times during the collision. In the next step, we discretize
the problem by introducing a grid within this volume. The
grid has been defined in spherical and—in another version of
the code—in cylindrical coordinates, as we will describe
later in more detail. The wave function itself is represented
within the whole volume by defining a global three-
dimensional~3D! interpolating function on the grid. This in-
terpolating function is constructed from a two-dimensional
cubic spline ink anduk ~in the case of spherical coordinates,
or k'5Akx21ky

2 and kz in case of cylindrical coordinates!,
which is followed by a quadratic Lagrangian interpolation
@64# in the azimuthal anglefk . This is supposed to be less
accurate than a fully three-dimensional spline function, but
requires less CPU time and memory and has been found to
work well. Before the interpolation is carried out, the wave
function is multiplied by a weight functionw(q) given by

w~q!511@12exp~2hq!#q~E1s12!, ~2.14!

which behaves reciprocal to the asymptotic of the initial 1s
state and converges to one forq→0. The parameterh has
been set to 0.75. This choice of the weight function substan-
tially improves the quality of the interpolation.

Once the interpolating function is provided, we can evalu-
ate the momentum space integral in Eq.~2.12! by means of
Gaussian quadrature, as we will explain later in more detail.

Let us first have a closer look at what the discretization
does. We rewrite the Dirac equation in momentum space in
the following general way:

]

]t
c̃~kW ,t !5F1~kW !c̃~kW ,t !1E d3k8F2~qW ,t !c̃~kW8,t !,

~2.15!

whereF1 denotes the term in Eq.~2.12! that comes from the
free Dirac Hamiltonian andF2 stands for both of the
q-dependent kernels of the integral terms in Eq.~2.12!, de-
scribing the interaction of the electron field with the target
and the projectile, respectively. Discretization means that the
continuous variablekW8 goes over into a set of grid points in
spherical~cylindrical! coordinates:

kW85kW j85~kj8 ,u j8 ,f j8!, j51,~1!,N, ~2.16!

whereN is the maximum number of grid points. A spinor
function c̃(kW8,t! with 8 real components is attached to each
point kW j8:

c̃~kW8,t !→c̃~kW j8 ,t !5:c̃ j~ t !. ~2.17!

The continuous equation of motion in momentum space
~2.15! now goes over into a set of coupled differential equa-
tions of the general form

d

dt
c̃ j5F1~kW j !c̃ j~ t !1(

i
F2~kW i82kW j ,t !c̃~kW i8 ,t !wi .

~2.18!

Here,wi and kW i8 stand for the weights and abscissas of a
three-dimensional quadrature over the wholek space. Note
that the right-hand side of the system of differential equa-
tions ~2.18! is nonlinear. Note further that as many momen-
tum space integrals have to be solved as we have grid points
in momentum space. There are two characteristics of the
integral kernelF2 that make the numerical quadrature quite
cumbersome, namely,~i! a quadratic singularity atq50 and

~ii ! oscillations of the projectile term alongRW 5(b,0,vpt).
We solved the momentum space integral by slicing the

integration volume into cells, which were adjusted to the
behavior of the integrand. The integration is performed cell
by cell using three-dimensional Gaussian quadrature tech-
niques. In more detail, the way we slice momentum space in
cells depends on the underlying hardware being used for the
computation. We used two different kinds of parallel ma-
chines, which required totally different programming and in-
tegration techniques. First, we have run our computer code
on a cluster of~up to ten! SUN Sparc 10 workstations~pro-
viding a peak performance of 170 Mflops!, running the soft-
ware packagePVM ~parallel virtual machine!, which allows
an eventually heterogeneous computer network to be used as
a virtual parallel computer with distributed memory. Our
computer code is organized according to the master-slave
model. The ‘‘master’’ contains input and output, bookkeep-
ing, and the time-integration routine and is running on one of
the processors~host!, while the ‘‘slave’’ contains the momen-
tum space quadrature code and is running as identical copies
on all the other processors~nodes!. PVM allows for the mes-
sage passing between the host process and all the node pro-
cesses, especially copying the vectorc̃ j (t) from the host to
each node and returning the values of the derivative vector
dtc̃ j (t) in small packages from the hosts to the node. The
integration volume itself is defined to be a large sphere with
a radius of typically 10.0@1/l#. This volume encloses about
99.9% of the norm of the initial wave function and has been
found to be sufficiently large in a collision energy range from
0.24 to 10 GeV/nucleon. Within this sphere, we defined a
grid in spherical coordinates (k,uk ,fk) with (1337310)
points, respectively, using a logarithmic distribution ink and
an equidistant spacing in the angles. The 2D spline interpo-
lation is defined on the 10 (k,uk) planes, while we use qua-
dratic interpolation infk to calculate the values in between.
Since these processors provide a sufficient amount of
memory, we can perform the whole momentum space inte-
gral on each processor. In order to perform the integral over
the sphere, we embed the whole sphere in a cylindrical inte-
gration volume. This cylindrical volume is sliced into
smaller cells with a given thickness inDkz and Dk' and
angular segmentDfk . The thickness inkz is adjusted to the
time-dependent wavelength of the oscillation given by
RW 5(b,0,vpt). The cells that are neighboring the singularity
are integrated with higher accuracy than the rest. Since the
integration volume is larger than the sphere that contains the
time-dependent wave function, we have set the values of the
wave function outside the sphere equal to the values of the
1s ground-state wave function, just to give it some well-
defined nonzero values. This is an assumption that has been
found to work well.
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Thus, we are provided with a method to compute the
right-hand side of the system of differential equations~2.18!.
In the next step, we have to perform the time integration,
which is done on the host. We use a fourth-order Zonneveld-
Adams-Moulton predictor corrector method~in the PECE
scheme!, which uses a Runge-Kutta-type formula~Zonn-
eveld formula! for the start calculation@65#. This routine is
run with fixed step size of typically 0.05, in order to have a
good estimate of the CPU-time requirements. The CPU time
for one time integration at a given impact parameter running
PVM was up to several hundred hours.

On a later stage of this project, we moved our code to a
MasPar MP2, which is a massively parallel computer being
equipped with 4096 processors that provides a peak perfor-
mance of 1.6 Gflops. However, the MasPar system architec-
ture imposes some severe restraints on the code structure.
Memory on the MasPar MP2 is limited to 64 kbyte for each
processor, so that it is impossible to store the spline coeffi-
cients for the whole wave function in each processor. There-
fore, we had to redesign the momentum space integration
routine. First, we decided to get rid of the spherical grid and
define a cylindrical volume that contains the time-dependent
wave function on a grid in cylindrical variables
(k' ,kz ,fk), so that the volume in which the time-dependent
wave function is defined and the integration volume are iden-
tical. As before, we split this volume into smaller cells,
where the corners of these cells are given by the points of the
grid, i.e., the cells are defined independently of time now.
This allows for a one-to-one mapping between each cell of
the momentum space and each processor of the MasPar pro-
cessor element array. Each processor has to store only the
spline coefficients for one of the cells in memory. To obtain
the result of a whole momentum space integral, we simply
have to perform a summation over the MasPar processor
element array. We have to perform as many such integra-
tions, as we have grid points ink space. In order to match
approximately the dimensions of the 64364 processor ele-
ment array, we have chosen a grid of (12324314) points in
cylindrical coordinates (k' ,kz ,fk) with a logarithmic spac-
ing in k' andkz . The MasPar allows us to perform a whole
time integration within a minimum of 30 h with a much finer
grid compared to thePVM runs. A further important advan-
tage of the MasPar overPVM is the much better reliability
and stability of the system.

In yet another version of the computer code, we restricted
ourselves to almost central collisions~the impact parameter
is actually set to zero! so that we can assume rotational sym-
metry of the collision system. In this case, the time evolved
state will maintain the trivialfk dependence of the initial
1s state, so that we can reduce the grid to two dimensions
k' andkz with (323128) points. The quality of the numeri-
cal results in this 2D calculation clearly excels the 3D re-
sults. This indicates that in future work the 3D calculations
should be further refined.

III. APPLICATIONS AND RESULTS

We illustrate different features of our method by studying
collision systems at various projectile energies in the range
from 0.24 up to 10 GeV/nucleon for a gold projectile and a
uranium target. We will focus our discussion on different

processes as the energy varies. The energy of 0.24 GeV/
nucleon has been chosen to highlight the transfer process. At
this energy, the projectile velocity corresponds to the classi-
cal velocity of a bound electron in theK shell of the target
ion ~‘‘matching energy’’@23#!, so that charge transfer is ex-
pected to be large. At higher energies, ranging from 0.93 to
10 GeV/nucleon, transfer is small and we will concentrate on
the behavior of the ionization and the bound-free pair pro-
duction process. Most of these examples have been per-
formed with the MasPar using the ‘‘fine’’ grid at zero impact
parameter. To show the effect of nonzero impact parameters,
this section also includes an impact parameter study for the
collision system at 0.93 GeV/nucleon and values for total
cross sections. Results for ionization and bound-free pair
production will be compared with predictions in first-order
perturbation theory, which have been obtained using the per-
turbation theory codes provided by Becker@46#.

A. Study of a ‘‘low’’-energy collision at 0.24 GeV/nucleon

1. Time evolution in momentum space

In Fig. 1 we display the time evolution of the electron
density in momentum spacec̃†(k)c̃(k) for a collision at
0.24 GeV/nucleon (g51.259) and impact parameterb50.
This is a result of a MasPar run with the ‘‘fine’’ grid of
128332 points inkz and k' . The density is shown on a
linear scale in a square region of thekx-kz plane, ranging
from 23 to13 in both coordinates~note that the calculation
was actually performed within a cylindrical volume with a
length and diameter of 20 units!. In configuration space, the
projectile is traveling along thez axis. As is obvious from
this figure, the electron density remains localized nearby the
origin at all times. Different from the situation in configura-
tion space, we do not observe a ‘‘spread’’ of the wave func-
tion over the whole grid and the change of the wave function
at the boundaries remains negligible. The time propagation
has been performed fromt5230 to120. The wave func-
tion is displayed at timet525, 0, 5, 10, 15, and 20. At
larger negative times, the changes of the wave function are
not very drastic. Att525 it is still very close to the density
of the initial 1s state, however, we find it to be slightly
shifted in the direction of the incoming projectile, which
means that the electron gets accelerated towards the projec-
tile. Aroundt50 the electron density looks as if it is strongly
localized around the center, meaning that the electron has
reacted to the combined charge of the projectile and target.
At positive times, we can observe strong excitation and ion-
ization processes coming up. Fort.5 we notice that the
maximum of the electron density is localized around
kz50.76. This value of the momentum corresponds to the
momentum of a free electron moving with the sameg value
as the projectile ion. We observe circular continuum waves
that are centered around the momentum of the projectile.
These waves can be interpreted as continuum states in the
projectile frame, describing ‘‘capture to the continuum of the
projectile.’’

The wave function att5120 has been projected onto the
target states and the projectile bound states. We found only
3.5% in the target 1s state and 7.3% in the higher target
bound states. By projection onto the projectile bound states,
we found about 31.4% for the projectile 1s state and 3.3%
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for theL shell. For the projection onto the continuum states
we followed the procedure outlined in the Appendix. The
angular momentum summation has been extended to up to
uku510, while the energy integration was typically extended
over the interval fromuEu51.05 to 5.05 for both the positive
and negative continuum. The projection on the negative con-
tinuum amounts to about 231023. The overlap with the
positive continuum states of the target amounts to more than
89%. These values are to be compared to the perturbation
theory predictions of 94.4% for the positive continuum and
1.9531025 for the negative continuum, respectively.

Special care has to be taken in the interpretation of these
projections. In any case, the projection on the positive con-
tinuum can be interpreted as the probability for electron re-
moval from the target ion. However, since the projectile
bound states are nonorthogonal to the complete set of target
states, we are counting the components found in the projec-
tile bound states twice, once as transfer probability and once
as probability for a transition within the set of target states,
so that we end up with a total transition probability larger
than 100%. As shown in the Appendix~Sec. 2 b!, the inner-
shell states of the projectile are at larger times predominantly
overlapping with the positive continuum states of the target,
while the overlap with the negative continuum is small and
the overlap with the bound states of the target is practically
negligible. That means that in particular the projections on
the positive and negative continua have to be corrected for

the contributions from the projectile bound states. We are
doing this by subtracting the projectile bound states coher-
ently, weighted by their amplitudes, from the time-evolved
state. After subtraction of theK- andL-shell projectile states
we obtain a corrected value for ionization of 55% and a
value of 231024 for bound-free pair production. The latter
value exceeds perturbation theory by one order of magni-
tude.

The time evolution of the projections on the 1s state, the
higher target bound states~up to theN shell!, the positive
continuum ~corrected for K-shell transfer!, and for the
K-shell transfer are shown in Fig. 2. Only the asymptotic
values for timet→` are physically meaningful, since the
projection on the target states cannot be interpreted as tran-
sition probabilities while the projectile field is still present.
The time evolution is shown here, because this allows for a
comparison with the previous calculations in the coupled
channel and finite-differences method. Apparently, the trans-
fer probability is perfectly converged, while ionization and
the target 1s state are still slightly increasing and the excita-
tion is decreasing. For reasons of CPU-time limitations, the
time propagation has been stopped here.

To illustrate the subtraction procedure we show in Fig. 3
~a! the density of the projectile bound states of theK and
L shells taken at timet5120 ~being summed up coherently
with the amplitudes that have been found in the projection!

FIG. 1. Time evolution of the
momentum space density in the
collision system Au 1 U at
Elab5 0.24 GeV/nucleon and im-
pact parameter zero.
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and~b! the state obtained by subtraction of~a! from the state
displayed in Fig. 2 at timet5120.

After the subtraction we find the maximum of the density
distribution at the origin. The relative maxima around
kz520.2 andkz510.3 that can be observed in Fig. 1 at
time t520 have disappeared. A small peak remains at
kz50.76, which we ascribe to even higher projectile bound

states and continuum components traveling with the speed of
the projectile.

2. Fast Fourier transformation to configuration space

In order to support the interpretations of the results for the
various processes that have been presented in the previous
section, we performed a fast Fourier transformation~FFT! of
c̃(kW ,t) to obtain c(rW,t) in configuration space, using the
MATHEMATICA environment~for details about FFT, see, e.g.,
@66# and@67#!. For the FFT we have chosen a Cartesian grid
in kx andkz , ranging from23 to 13 in each variable with
a step size of 0.1. This grid ink space corresponds to a
reciprocal lattice in configuration space. The boundaries of
the reciprocal lattice are related to the grid ink space by
zmax52p/Dkz andDz5p/kmax. In our case, this means that
the grid in configuration space extends from210p to
110p in x andz with a step size ofp/3. The time evolution
of the density inconfigurationspace is displayed in Fig. 4 on
a logarithmic scale. At timet520 the density distribution has
its global maximum around the position of the projectile~at
vpt50.60755320512.15) and is surrounded by a large well
of continuum waves, which have partially passed the projec-
tile and are mainly going into the forward direction. Another
local maximum is found around the origin, corresponding to
the target bound states. The final state att5120 is high-
lighted in Fig. 5 on a linear scale, in order to emphasize that
this structure in configuration space is strongly peaked, while
it is smooth in momentum space. This is due to the fact that
the bound-state wave functions in configuration space are
singular around the origin, while they are regular in momen-
tum space~see Appendix, Sec. 2 b!.

This figure demonstrates clearly that the configuration-
space wave function spreads proportionally to the timet and
therefore a much larger volume would be necessary to fully
enclose the wave function within a given time range, as com-
pared to momentum space. Additionally, the sharp peak
structures around the target and the projectile are very hard
to describe on a mesh in configuration space.

B. Study of higher energetic collisions
at „0.93–10… GeV/nucleon

In this section, we will move to higher energies and focus
our discussion on the behavior of ionization and bound-free
pair production. In particular, we will put a strong emphasis
on a comparison of our data for bound-free pair production
to the results in perturbation theory and comment on the
‘‘nonperturbative enhancement effect’’ that has been claimed
by several authors@12,14,17,18#.

1. Time evolution of the collision system at 0.93 GeV/nucleon

Let us investigate first the collision system Au1 U at
E lab50.93 GeV/nucleon (g52), which is shown at several
time steps ranging from25 to120. For Fig. 6, we have also
chosen impact parameterb50, which has been run on the
MasPar with the ‘‘fine’’ grid. Although the general features at
negative times are quite similar to the previous example, the
situation is remarkably different at positive times. The trans-
fer peak, which at this energy should be located atkz51.4, is
not visible anymore. Unlike the previous example, where

FIG. 2. Time evolution of the occupation probabilities for the
collision system Au1 U at Elab5 0.24 GeV/nucleon obtained by
projection on the various sets of target and projectile states. The
ionization probability has been corrected for transfer by subtraction
of theK- andL-shell projectile states, as explained in the text.

FIG. 3. Coherent sum of theK- and L-shell projectile states
~weighted with their complex amplitudes! ~a! and the distribution
obtained by subtraction of these states from the wave function at
time t5120 shown in Fig. 1~b!.
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transfer was dominant, we find the global maximum of the
density at the center of the coordinate system. We observe
circular continuum waves of higher momentum centered
around the origin. Note that the grid lines are rectangular in
thekx-kz plane and that no grid related structures are visible.

For a further comparison with the previous example, we
performed the FFT with the same method and grid parameter
settings as before. In Fig. 7 we display the configuration-
space density of this collision system taken at timet5120
on a logarithmic scale. We find a strongly dominant maxi-

mum at the center of the coordinate system, surrounded by a
very broad distribution of continuum components that are
traveling outward. About 30° from the forward direction a
sharp ridge sitting on the broad background of continuum
states can be observed, which is traveling with about the
same speed as the transfer peak. At this collision energy, the
transfer peak is not passed by continuum waves, as had been
found in Fig. 4, since its velocity is close to the speed of
light.

In the next step, we analyzed the time evolved states from
Fig. 6 by projection onto the various sets of target states to
obtain the probabilities for inner-shell ionization, excitation,
and bound-free pair production. Results are displayed in Fig.
8. The figure shows the probabilities for the initial 1s state
~which is starting at 100%!, K-shell ionization, excitation,
and bound-free pair production. We find that the initial 1s
state gets strongly depleted aroundt50 and converges rap-
idly to a final value of about 29.5%. The final value for
excitation to higher bound states amounts to 9.8%. We find
that the final excitation probabilities for the higher shells
exhibit a 1/n3 behavior. The final value forK-shell transfer,
which is not displayed in this figure, amounts to 2.5%.

The projection onto the positive continuum reaches a
maximum value of about 61% at timet5110 and is going
down at larger times to about 54.3%. For the bound-free pair
production we find the typical behavior, which is already
well known from coupled channel calculations, that it even-

FIG. 4. Time evolution of the
configuration space density on a
logarithmic scale corresponding to
the collision system shown in Fig.
1, obtained by FFT.

FIG. 5. Configuration-space density for the collision system in
Fig. 4 taken at timet520 on a linear scale.
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tually reaches very high values of the order of several per-
cent aroundt50 and drops by orders of magnitude at larger
positive times. Here, it converges to a final value of
3.931024, which is about 4.4 times larger than the pertur-
bation theory value of 0.8931024. The correction of this
value with respect to the overlap of the projectile 1s state
~charge transfer! leads to a further reduction of this value by
about 10%. We do not consider this correction as significant
and, therefore, it has not been included in this figure. In Fig.

9 we show the energy distributions obtained by the projec-
tions on the positive and negative continua in comparison to
the perturbation theory results. This figure shows that the
enhancement of bound-free pair production comes mainly
from positrons with a kinetic energy less than 1 mc2.

The result for bound-free pair production contradicts the
predictions of a strong ‘‘nonperturbative enhancement of
bound-free pair production’’ of typically more than an order
of magnitude being found in coupled-channel calculations
for similar collision systems@12#. Although all the arguments
about the nonapplicability of perturbation theory given in
@12# and @39#, in first place the violation of unitarity in per-
turbation theory, still hold, we suspect that this enhancement
effect has been overestimated due to the restricted atomic
basis sets being used in these calculations.

2. Time evolution of the collision system at 10 GeV/nucleon

To demonstrate that this formalism can be extended to
higher g values, we finally present results for the system
Au1U at Elab510 GeV/nucleon (g511.7) and impact pa-
rameterb50 using the two-dimensional ‘‘fine grid’’ on the
MasPar. The time integration has been performed from
t5220 to120. The time evolution of the momentum space
density is shown in Fig. 10 at timest525, 0, 5, 10, 15, and
20. At time t50 we notice a stronger excitation of high
momentum components in the negativekz direction as com-

FIG. 6. Time evolution of the
momentum space density shown
in the collision system Au1 U at
0.93 GeV/nucleon and impact pa-
rameter zero.

FIG. 7. Configuration-space density obtained by FFT for the
collision system shown in Fig. 6 at timet520 on a logarithmic
scale.
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FIG. 8. Time evolution of the occupation probabilities for the
collision system shown in Fig. 6 obtained by projection on the
various sets of target states. The corrections with respect to the
overlap of the projectile states with the target states have not been
included here, sinceK-shell transfer amounts only to 2.5%.

FIG. 9. Results of the projections of the time evolved state taken
at time t520 onto the positive and negative continuum as a func-
tion of the absolute value of the energy. The dashed lines show the
corresponding perturbation theory results for ionization and bound-
free pair production.

FIG. 10. Time evolution of the
momentum space density in the
collision system Au 1 U at
Elab510 GeV/nucleon and impact
parameter zero.
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pared to the results atg52. Aroundkz50 the momentum
space density looks as if it is being ‘‘pinched’’ by the
Lorentz-contracted field of the projectile. At larger positive
times, the wave function appears to belessperturbed as com-
pared to Fig. 6, especially since we observe fewer high mo-
mentum components going in the forward direction. Corre-
spondingly, we found the probability for ionization going
down from 54% atg52 to 30.4% atg511.7, whereas it has
been predicted by perturbation theory to saturate to a value
of about 51% aboveg52 @46#. Running the 3D version of
the MasPar code, we find that the suppression of the ioniza-
tion becomes less pronounced with increasing impact param-
eter. In particular, our results merge into perturbation theory
for impact parameters larger than 2l.

The probability for inner-shell excitation has been found
to be remarkablyg independent and amounts to about
12.8%.

For bound-free pair production we find a value of
3.331024. The energy integration has been extended up to
uEu510 and the angular momentum summation up to
uku510. This value for thetotal probability agrees within
our accuracy with the perturbation theory prediction of
431024. However, it has to be pointed out that it would be
deceiving to speak of ‘‘agreement with perturbation theory,’’
since the energy and angular momentum distributions ob-
tained in both calculations are quite different in detail. This
result is important, as it indicates that we cannot confirm any
‘‘nonperturbative enhancement’’ for bound-free pair produc-
tion at this collision energy. In contrast, an enhancement by
1–2 orders of magnitude has been reported previously for a
comparable collision system, using the finite-differences
method@15#.

3. Impact parameter study and total cross sections

Next, we give an example of a collision at a large impact
parameter that has been run on the MasPar using the 3D grid
with (12324314) points in cylindrical coordinates
(k' , kz , andfk) for the system Au1U at 0.93 GeV/
nucleon. In Fig. 11 we display the momentum space density
in a collision with an impact parameter of 4l at time t520
in comparison to a collision at zero impact parameter. This
figure demonstrates that the wave function gets distorted by a
transversal momentum transfer, but the perturbation is in
general much weaker than at zero impact parameter. For ex-
ample, the ionization probability goes down from 54% at
impact parameter 0 to 6.55% at impact parameter 4.

Since the grid dimensions in this calculation are deter-
mined by the MasPar machine size, we have not performed a
systematic convergence check for the 3D calculation yet.
Judging from a comparison of the 3D results obtained with
the MasPar to those obtained withPVM on an even ‘‘coarser’’
grid, the MasPar results for the dominant processes, namely,
ionization and excitation, appear to be converged within an
accuracy of a few percent. Therefore, we are able to present
impact parameter dependences and total cross sections for
ionization and excitation, The impact parameter dependences
of the probabilities for the initial 1s state, excitation, and
ionization are shown in Fig. 12. The impact parameter ranges
from 0 to 4. Ionization has a global maximum at zero impact
parameter and drops continuously with growing impact pa-
rameters, while excitation has its global maximum around

0.5l ~193 fm!. The excitation probabilities up to the 3p1/2
state are shown in Fig. 13. Both the excitation probabilities
for the 2s1/2 and the 3s1/2 have their global maxima around
0.5l, while the probabilities of thep states extend over a
large impact parameter range.

FIG. 11. Comparison of the momentum space density at two
different impact parametersb, namely, ~a! b50 and ~b! b54l.
The collision system is Au1 U at 0.93 GeV/nucleon, the time is
t5120. The zero impact parameter has been run with a 2D grid of
(323128) inr andz and the impact parameterb54 has been run
with a grid of (12324314) points in (r,z,f).

FIG. 12. Impact parameter dependences for the 1s state, total
excitation, and ionization for the collision system Au1 U at 0.93
GeV/nucleon.
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From the curves in Fig. 12 total excitation and ionization
probabilities have been calculated. To estimate the contribu-
tion from impact parameterb54l to ` an exponential ex-
trapolation has been employed. We obtained an ionization
cross section of 14.4 kb, which practically agrees with the
value in perturbation theory of 14.7 kb. For excitation, the
total cross section amounts to 8.26 kb. The 2s1/2 and 3s1/2
states contribute to the excitation cross section with 1.37 and
0.25 kb, respectively.

For the case of bound-free pair production, we encoun-
tered the problem that the probabilities as a function of im-
pact parameter do not drop below a value of the order of
1024. The ‘‘coarse’’ grid on the MasPar does not provide
sufficient accuracy to describe probabilities below 1024. At
the present stage we can only give a crude estimate of the
total cross section by assuming a constant, impact parameter
independent background, which we subtract for all impact
parameters. Doing so, we obtained probabilities for bound-
free pair production, which drop reasonably fast on the im-
pact parameter range from 0 to 2l. For larger impact param-
eters we extrapolated with the perturbation theory results.
With this procedure, we obtain a cross section of 2.33 b,
which overshoots the cross section in perturbation theory of
0.96 b by only a factor of 2.4 and furthermore agrees well
with the experimental cross section of 2.2 b~the latter in-
cluding capture to all bound states, which typically account
for about 20% of the total cross section!. We admit that the
assumptions to extract this cross section are rather crude and
we regard the agreement as accidental. Future work with a
refined 3D grid will be necessary to predict cross sections for
bound-free pair production reliably.

4. Remarks on convergence and accuracy

To get an estimate of the convergence of our calculation,
we compared results at zero impact parameter obtained with
the grid used forPVM (1337310 points! and the ‘‘coarse’’
grid used for the 3D calculation on the MasPar

(12324314 points! with the 2D grid on the MasPar
(323128 points!. Again, we are considering the system Au
1 U at 0.93 GeV/nucleon. It turned out that further refine-
ment of the grid yields values for bound-free pair production
that are closer to the perturbation theory result, while ioniza-
tion remains basically unaffected. For example, the result
obtained withPVM on the coarser grid explained above yields
a final probability for bound-free pair production of about
1023 for this collision system; i.e., the refinement of the grid
on the MasPar reduced the probability by a factor of 2. A
further refinement has not been performed yet.

The normalization of the time evolved wave function has
been found to be remarkably stable, although we do not en-
force normalization by any means. For example, in the col-
lision system considered here, we find a norm of 0.99930 at
time t5225 and 0.9955 att5110. Beyond120, however,
the normalization dropped to reach a value of about 94% at
t5130. The projections for bound-free pair production, ex-
citation, and the 1s state remained practically unaffected by
this loss of normalization, whereas the projection onto the
positive continuum decreased. This indicates that the loss of
normalization is due to positive continuum waves that have
reached the boundaries of the volume at larger times and that
these waves are not reflected completely.

A further test of our accuracy is the summation of our
projections on the complete set of target states. In case of the
collision system atg52, we typically arrive at 98% of the
total norm or better, if we extend the projections to energies
as high asuEu58 in both continua.

IV. SUMMARY

The one-electron Dirac equation that governs the electron
behavior in relativistic heavy-ion collisions has been trans-
formed to momentum space, where it has the form of a time-
dependent integral equation. By discretization on a grid in
momentum space, this integral equation goes over into a sys-
tem of coupled differential equations. The wave function is
represented on the grid by a global 3D interpolation function,
which is constructed from a 2D spline function and a qua-
dratic interpolation. The time propagation is performed with
a standard predictor-corrector routine. The right-hand side of
this system of differential equations is given by a numerical
integral over momentum space. Probabilities can be ex-
tracted for inner-shell ionization, excitation, transfer to the
projectile, and bound-free pair production. Calculations have
been performed in the energy range fromElab50.24 to 10
GeV/nucleon. At 0.24 GeV/nucleon we have shown that our
formalism implements a closed-form description of the
charge transfer as well as the ionization process. We found
that the transfer process is rapidly going down with increas-
ing collision energy. At higher collision energies, we concen-
trated on ionization and bound-free pair production. Bound-
free pair production has been predicted by previous coupled-
channel calculations to exceed the results of perturbation
theory of first order by typically more than one order of
magnitude in this collision energy range. At a collision en-
ergy of 0.93 GeV/nucleon and impact parameter zero we
found an enhancement of merely about a factor of 4–5 com-
pared to perturbation theory. This enhancement effect has
been found to go down with increasing collision energy. We

FIG. 13. Impact parameter dependences for various inner-shell
states ranging from the 2s1/2 up to the 3p1/2 state for the collision
system Au1 U at 0.93 GeV/nucleon.
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conclude that the previously published coupled-channel cal-
culations overestimate bound-free pair production due to the
truncation of the atomic basis set being used.

The ionization rate has been found to decrease with in-
creasing collision energy. This is an astounding result, since
it disagrees with perturbation theory, but also with the pre-
diction by Baltz, Rhoades-Brown, and Weneser@17,18#, who
claim thatall processes are going to becomeg independent.
Therefore, the energy dependence of the ionization process
will be subject to future investigations at much higher colli-
sion energies.

As a further visualization of the scattering process, we
computed the electron density in configuration space using
FFT. This gave us useful information on the angular distri-
bution of the ionization process and clearly demonstrated the
inclusion of the transfer channel in our formalism.

Most of the results in this paper have been presented at
zero impact parameter, which allowed reduction of the cal-
culation to two dimensions. For a reasonably accurate 3D
calculation a further refinement of the grid will be necessary.
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APPENDIX: ATOMIC WAVE FUNCTIONS
IN MOMENTUM SPACE

Our method for computing the atomic wave functions in
momentum space is based on the work by So”rensen and
Belkacem@55#. We are going to review some of their equa-
tions, and discuss some important properties of the con-
tinuum wave functions and the differences in our numerical
technique compared to theirs. In addition to@55#, we derive
expressions for bound projectile states that are needed for the
description of the electron transfer.

1. The Dirac spinor in momentum space

The standard representation of the relativistic Dirac spinor
in a spherical symmetric field is@68#

f~rW !5S fu~rW !

f l~rW !
D 5S g~r !xk

m~u,f!

i f ~r !x2k
m ~u,f!D . ~A1!

Here,g(r ) and f (r ) are the radial components of the upper
and lower components, respectively. Thexk

m(u,f) are the
spin-angular functions with good angular momentumj and
m j :

xk
m5 (

m561/2
^ l ,m2m,1/2,mu j ,m&Yl

m2m~u,f!jm , ~A2!

where^ & denotes a Clebsh-Gordan coefficient,Yl
m a spheri-

cal harmonic, andjm a Pauli spin eigenfunction. The trans-
formation to momentum space is performed according to Eq.
~2.9!. Using the series expansion of the exponential@60#

eik
W
•rW54p(

l50

`

(
m52 l

l

i l j l~kr !Yl
m* ~uk ,fk!Yl

m~u,f! ~A3!

we arrive at the following representation for the Dirac spinor
in momentum space@69#:

f̃~kW !5 i2 lS g~k! xk
m ~uk ,fk!

2sgn~k! f ~k! x2k
m ~uk ,fk!

D . ~A4!

The radial integrals are defined as

g̃~k!5~2/p!1/2E
0

`

g~r ! j l~kr !r
2dr,

~A5!

f̃ ~k!5~2/p!1/2E
0

`

f ~r ! j l̄ ~kr !r
2dr,

wherel̄ is the orbital momentum quantum number related to
2k: l̄5 l2sgn(k) and j l are the spherical Bessel functions.
The evaluation of these integrals is shown in the next sec-
tions.

2. Radial integrals for momentum space wave functions

a. Continuum wave functions

The radial functionsg(r ) and f (r ) with a given energy
E and angular momentumk in configurationspace are

E.1:

gk~r !

f k~r !
J 5Nrs213H ~E11!1/2Re

2~E21!1/2ImJ
3@e2 ik0reid~s1 ih!1F1~11s1 ih,2s11,2ik0r !#.

~A6!

For E,21 the factors in braces have to be replaced by
(uEu21)1/2 and1(uEu11)1/2. The parameters are

s5@k22~ZTe
2!2#1/2, k05~E221!1/2, h5ZTe

2E/k0 ,

e2id5~2k1 ih/E!/~s1 ih!, ~A7!

N5
eph/2uG~s1 ih!u2sk0

s21/2

p1/2G~2s11!
.

We have to solve the following radial integral:

I k5E
0

`

j l~kr !r
s11e2 ik0r

1F1~s111 ih,2s11,i2k0r !dr.

~A8!
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Now we make use of a series expansion of the spherical
Bessel functions@64,70#:

j l~z!5
1

2z (
n50

l
~ l1n!!

n! ~ l2n!!

1

~2z!n
~ i n2 l21eiz1 i l112ne2 iz!.

~A9!

This leads to the following expression for the radial integral
I k :

I k~k!5
1

2k (
n50

l
~ l1n!!

n! ~ l2n!!

1

~2k!n
@ i n2 l21I A~k!

1 i l112nI B~k!#. ~A10!

The integralsI A(k) and I B(k) are given by

I A~k!5E
0

`

e2 i ~k02k!r r s2n
1F1~s111 ih,2s11,i2k0r !dr,

I B~k!5E
0

`

e2 i ~k01k!r r s2n
1F1~s111 ih,2s11,i2k0r !dr.

~A11!

Now we apply Kummer’s transformation@64,68#:

e2 ik0r
1F1~11s1 ih,2s11,2ik0r !5eik0r1F1~s2 ih,2s11,

22ik0r )
~A12!

to I A to obtain

I A~k!5F E
0

`

e2 i ~k01k!r r s2n
1F1~s1 ih,2s11,i2k0r !drG* ,

~A13!

where the* stands for ‘‘complex conjugate.’’ With the fol-
lowing integral representation of the hypergeometric2F1
functions@71,72#,

E
0

`

dxxme2nx
1F1~a,b,cx!

5G~m11!n2~m11!
2F1~m11,a,b,c/n!, ~A14!

we finally find the expressions

I A~k!5G~s2n11!F @ i ~k01k!#2~s2n11!

32F1S s2n11,s1 ih,2s11,
2k0
k01kD G* ,

I B~k!5G~s2n11!@ i ~k01k!#2~s2n11!

32F1S s2n11,s111 ih,2s11,
2k0
k01kD .

~A15!

Depending on the parameter values of the2F1 functions,
a singularity may occur at the argument value

x52k0 /(k01k)51. We defined a small area around the sin-
gular point with a radius of typically 0.2. Outside this area,
the 2F1 functions could be evaluated with the Gaussian se-
ries expansions and its analytical continuations@see, e.g.,
Eqs. ~15.1.1!, ~15.3.3!–~15.3.9! in @64# or Eqs. ~9.100!,
~9.131!, and ~9.132! in @71##. To obtain the values in the
vicinity of the singularityx51 with sufficiently high preci-
sion, we solve the hypergeometric differential equation
@~15.5.1! in @64## by direct numerical integration using the
predictor-corrector codeDE by Shampine and Gordon@73#.
Therefore, the hypergeometric differential equation had to be
rewritten as a first-order equation, using the differentiation
formula of the Gaussian series@~15.2.1! in @64## for the start-
ing values of the first derivative. The initial values were
taken from the series expansions outside the area around the
singularity. With this procedure, we could integrate as close
as 10210 towards the singularity atx51. The properties of
the radial wave functions shall not be reviewed here; they are
fully explained in@55#. In this paper, the authors evaluated
the 2F1 functions by direct numerical evaluation of the
contour-integral representation~15.3.1! in @64# using a
Simpson-quadrature formula. Therefore, they had to intro-
duce a ‘‘convergence factor’’ exp(2ek0r) in the integrand of
Eq. ~A11! to make the quadrature feasible. Note that it was
not yet necessary for us to introduce this convergence factor.
The expressions in Eq.~A15! can be evaluated as they are.
However, to make the numerical projection of the final state
on these continuum functions possible~i.e., to compute the
overlap!, it turned out that we have to adopt the same tech-
nique. The reason lies in the peculiarities of the continuum
functions in momentum space. They exhibit a singularity at
k/k051. In the vicinity of this singular point the radial wave
functions are having an infinite number of oscillations, while
they are smooth outside this area. The convergence factor
exp(2ek0r) smoothens these wild oscillations and gives the
radial density of the continuum wave functions a certain
e-dependent width. To account for the convergence factor
exp(2ek0r) in Eq. ~A15!, only the denominatork01k of the
argumentx has to be modified to@k0(12 i e)1k#. e is usu-
ally set to 1023. We checked that the actual value ofe does
not essentially affect the values of the projections if it is
chosen to be in the range from 1022 to 1024. The projection
is performed with a 3D Gauss-Legendre quadrature formula
in spherical coordinates. To account for the singularity at
k/k051, the area around this point has to be integrated with
very high accuracy.

b. Bound-state wave functions

The radial bound-state functions are given by@70#

gn,k~r !5Ne2br r s21 (
m50

n8

ci ,m
1 rm,

f n,k~r !5Ne2br r s21 (
m50

n8

ci ,m
2 rm, ~A16!

with
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N5
bs11/22s

G~2s11! S G~2s1n811!

2n8!K~K2k! D
1/2

ci ,m
6 5~16E!1/22mS ~2n8!m@m2n86~K2k!#

m! ~2s11!m
Dbm

~A17!

and

s5@k22~ZTe
2!2#1/2, n85n2uku, ~A18!

K5@n222n8~ uku2s!#1/2,

b5
ZTe

2

K
, E5F11S ZTe2n81sD

2G21/2

.

The spherical Bessel functions are related to the Bessel func-
tions of fractional order by@60#

j l~x!5Ap

2x
Jl11/2~x!. ~A19!

According to@71#, we have

E
0

`

e2axJn~bx!xm21dx5
~b/2!nG~n1m!

~a21b2!~n1m!/2G~n11! 2F1S n1m

2
,
12m1n

2
,n11,

b2

a21b2D . ~A20!

Putting it all together, we find

g̃n,k~k!5
N

Ak (
m50

n8

ci ,m
1 I m,l ,

f̃ n,k~k!5
N

Ak (
m50

n8

ci ,m
2 I m, l̄ , ~A21!

where

I m,l5
~k/2! l11/2G~s1m1 l12!

~b21k2!~s1m1 l12!/2G~ l13/2! 2F1S s1m1 l12

2
,
l2s2m

2
,l1

3

2
,

k2

k21b2D . ~A22!

For the evaluation of these expressions we are basically us-
ing the same computer code as for the continuum wave func-
tions. The bound states are much simpler to evaluate though,
since we need to cover only the argument range from 0 to 1
for the 2F1 functions and they have only a finite number of
nodes. Therefore, also the ‘‘convergence factor’’ can be omit-
ted. The important feature of the radial bound-state wave
functions in momentum space is that they are regular at the
origin, while their counterparts in configuration space exhibit
the well-known singularity proportional tor s21.

3. Projectile wave functions

An electron in an eigenstatef j of the projectile is de-
scribed in configuration space coordinates of the target as
@see Eqs.~2.18! and ~5.2! in @23##

fP, j~rW,t !5S21f j~rW8!e2 iE j t8. ~A23!

The relation between the target frame coordinates (rW,t) and
the projectile frame coordinates (rW8,t8) is given by the Lor-
entz transformation

~rW,t !5~x,y,z,t !,

~rW8,t8!5„x2b,y,g~z2vPt !,g~ t2vPz!…, ~A24!

andS is the Lorentz-boost operator@74#

S215S g11

2 D 1/2~11daz!, d5Fg21

g11G1/2. ~A25!

The Fourier transformf̃ j (kW8) of f j (rW8) in momentum
space coordinates of theprojectile-frame kW8 is

f̃ j~kW8!5
1

~2p!3/2
E d3r 8e2 ikW8•rW8f j~rW8!. ~A26!

Now we define the Fourier transform offP, j (rW) in target-
framemomentum space coordinates:

f̃P, j~kW ,t !5
1

~2p!3/2
E d3re2 ikW•rWfP, j~rW,t !

5
1

~2p!3/2
E d3rS21f j~rW8!e2 iE j t8e2 ikW•rW

5
1

~2p!3
E E d3rd3k8S21f̃ j~kW8!

3eik
W8•rW82 ikW•rWe2 iE j t8. ~A27!

With x85x2b andy85y we can perform the integral over
x andy and obtain with the substitutiongkz85z,
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1

2pgE E dzdzS21f̃ j~kx ,ky ,z/g!

3ei @~z2kz1gEjvp!z2kxb2~zvP1gEj !t#. ~A28!

The z integration yields

S21

g
f̃ j S kx ,ky , kzg 2vPEj Dei @~2zvP2gEj !t2kxb#, ~A29!

with z5kz2gvPEj . Finally, we arrive at

f̃P, j~kW ,t !5
S21

g
f̃ j S kx ,ky , kzg 2vPEj De2 i @~kzvP1Ej /g!t1kxb#.

~A30!

The projectile states are shifted forward by the momentum
gvPEj and ‘‘stretched’’ by the factorg. The numerical
evaluation can be done basically with the same methods as in
the case of the target states that we explained in the previous
sections.

We want to illustrate with a typical example that a projec-
tile bound state predominantly overlaps with the positive
continuum of the target, while the overlap with the negative
continuum is small, but not necessarily negligible. The col-
lision system is gold on uranium atElab5 0.93 GeV/nucleon
(g52). We have set the impact parameter to zero, which
helps to speed up the computation considerably since we
only have to integrate numerically over thekx-kz plane. In
Fig. 14 we plotted the density of the projectile 1s state in

a window of thekx-kz plane ranging from23 to 3 in both
coordinates. The time has been set tot510. The projectile is
traveling in coordinate space along thez axis, meaning that
the momentum of the projectile is pointing into the positive
kz direction. We find the maximum of the wave function
aroundkz5gE1svP51.415@see Eq.~A30!#. It is also obvi-
ous in this picture that the projectile wave function is
stretched inkz direction by the Lorentz factorg. In the next
step we projected this wave function by projection onto the
target wave functions out of the positive and negative con-
tinua. For the projection, the analytical representation of both
states has been used and not their grid representation. The
angular momentum summation has been extended up to
uku510. In Fig. 15 we display the projection of the projectile
1s state onto the positive and negative continua of the target.
The energy integration yields a value of 81.9% for the posi-
tive continuum and 1.8% for the negative continuum. The
projection onto the bound states of the target up to theM
shell was found to be less than 131023. About 16% are
missing due to the restriction of the angular momenta in the
continuum states touku<10. The maximum of the projection
on the positive continuum is found aroundE51.7, which
corresponds to a momentum ofkz5AE22151.375 and
agrees very well with the maximum found in Fig. 14.

@1# R. Anholt, W. E. Meyerhof, Ch. Stoller, E. Morenzoni, S. A.
Adriamonje, J. D. Molitoris, O. K. Baker, D. H. H. Hoffmann,
H. Bowman, J.-S. Xu, Z.-Z. Xu, K. Frankel, D. Murphy, K.
Crowe, and J. O. Rasmussen, Phys. Rev. A30, 2234~1984!.

@2# R. Anholt, W. E. Meyerhof, H. Gould, Ch. Munger, J. Alonso,
P. Thieberger, and H. E. Wegener, Phys. Rev. A32, 3302
~1985!.

@3# R. Anholt, W. E. Meyerhof, X.-Y. Xu, H. Gould, B. Feinberg,
R. J. McDonald, H. E. Wegener, and P. Thieberger, Phys. Rev.
A 36, 1586~1987!.

@4# W. E. Meyerhof, R. Anholt, J. Eichler, H. Gould, Ch. Munger,
J. Alonso, P. Thieberger, and H. E. Wegener, Phys. Rev. A32,
3291 ~1985!.

@5# W. E. Meyerhof, R. Anholt, X.-Y. Xu, H. Gould, B. Feinberg,

FIG. 14. Momentum space density of the 1s state of the Au
projectile atElab50.93 GeV/nucleon, timet5110 and impact pa-
rameter zero. The density has a maximum atkz50.76 and is
stretched along thekz axis by the value ofg52.

FIG. 15. Projections of the 1s state of a Au projectile at
Elab50.93 GeV/nucleon and timet5110 onto the positive and
negative continuum states of the target. The projections are shown
as a function of the continuum energy.

1620 53K. MOMBERGER, A. BELKACEM, AND A. H. SO”RENSEN



R. J. McDonald, H. E. Wegner, and P. Thieberger, Phys. Rev. A
35, 1967~1987!.

@6# H. Berg, R. Dörner, C. Kelbch, S. Kelbch, J. Ullrich, S. Hag-
mann, P. Richard, H. Schmidt-Bo¨cking, A. S. Schlachter, M.
Prior, H. J. Crawford, J. M. Engelage, I. Flores, D. H. Loyd, J.
Pedersen, and R. E. Olson, J. Phys. B21, 3929~1988!.

@7# H. Berg, O. Jagutzki, R. Do¨rner, R. D. DuBois, C. Kelbch, H.
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