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A numerical method for the solution of the time-dependent Dirac equation to describe atomic processes in
relativistic heavy-ion collisions is presented. Different from previous approaches found in the literature, we are
working entirely in momentum space to propagate the electron wave function in time. Due to the localization
of the electron in momentum space the wave function can be confined to a finite discretization volume without
the stringent violation of the boundary conditions which is encountered in configuration-space methods. From
the final state, we can extract probabilities on inner-shell ionization, excitation, electron transfer, and bound-
free pair production. Results are presented in the energy range from 0.24 to 10 GeV/nucleon. At 0.24 GeV/
nucleon we demonstrate that our formalism incorporates both the ionization and the transfer channel, which are
equally important at this energy. At higher energies from 0.93 to 10 GeV/nucleon we focus on ionization and
bound-free pair production. We find that the enhancement of bound-free pair production as compared to
perturbation theory is much smaller than reported previously by others.

PACS numbs(s): 34.90+4q, 34.70+e

I. INTRODUCTION interest in the recent yeaf40-20. Measurements of free-
free pair production using a highly relativistic sulfur beam
We present a theoretical study of atomic processes in reldiave been performed at CERR1].
tivistic heavy-ion collisions. The nuclear motion of the col-  Relativistic collisions of heavy ions are fundamentally
lision partners is treated classically and the interaction is addifferent from those involving light ions, because the cou-
sumed to be purely electromagnetic. The quantumypling constant of the perturbation can be largbx(0.6)
mechanical problem for the electronic motion is thenand the applicability of perturbation theory becomes ques-
governed by the time-dependent Dirac equation, which igionable. Therefore, the theory of relativistic heavy-ion col-
coupled to the classical electromagnetic fields of the nucleilisions may be regarded as a challenging testing ground for
The solution of this equation provides electron transition am-nonperturbative method$or a general overview of the field,
plitudes for all nonradiative processes, such as ionizatiorsee[22—24)).
excitation, and electron transfer. In addition to these conven- The perturbative approaches are based on the equivalent-
tional atomic physics processes electron-positron pair prophoton method[22] and, to the largest part, on time-
duction can be described as “ionization from the Dirac sea."dependent perturbation theory, using a set of atomic wave
An electron that initially occupies a state in the negativefunctions attached to the target ion as basis functions for the
continuum can either get excited into a bound state of one oélectron or positron statd25]. Using distorted waves in a
the ions or it may be emitted free. These processes are callgukrturbation theory framework, Deet al. included higher-
“bound-free pair production” and “free-free pair produc- order contributions of the Born seri€86—28. For simplic-
tion,” respectively. The produced vacancy in the Dirac seaty, most authors chose approximate Sommerfeld-Maue wave
describes the positron that escapes from the collision. functions for the continuum states and the corresponding
Since the number of heavy-ion facilities is quite limited, Darwin wave functions for the bound stat2?,26,29—-32

the amount of experimental work in this field is still rela- The exact Dirac wave functions have been used to describe
tively small. lonization, excitation, and charge transfer haveonization and pair production by Becker and co-workers
been investigated in a series of measurements by Anholfl1,33—33 and recently by Baltz, Rhoades-Brown, and Wen-
et al.[1-3] and Meyerhott al.[4,5] using heavy-ion beams eser[36]. Electron transfer in relativistic collisions has been
in the energy range of a few hundred MeV/nucleon. A fewstudied in a large variety of models, using both semirelativ-
further experiments have been performed by other authoristic and exact relativistic wave functiorisee[23,24).
[6,7]. While inner-shell ionization, excitation, and charge  While it is still believed that perturbation theory in lowest
transfer are well-known atomic physics processes, boundsrder with a set of atomic basis states located at the target
free pair production has been observed only very recently aatom provides a correct description for small projectile
the Bevalac at the Lawrence Berkeley Labora{@y@]. This  charge number&, even for the heaviest targets, it became
new “electron capture” from the Dirac sea is predicted to beclear that this is no longer true in collisions witp being
the dominant source of beam loss in relativistic heavy-iorlarge. For the case of ionization this became obvious from
colliders like the Relativistic Heavy lon Collider and Large perturbation theory results at small impact parameters that
Hadron Collider and, therefore, has attracted considerablexceed unity{37—-39. Also for free-free pair production in
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extremely relativistic heavy-ion collisions single-pair pro- boundaries, however, the values of the wave function have to
duction probabilities can exceed un(t®2,40,41. be set to zero. Therefore, the propagation in time has to be
The nonperturbative methods are based on a fully numeristopped, as soon as non-negligible components of the wave
cal solution of the time-dependent one-electron Dirac equafunction are beginning to “hit the wall.”
tion, so that the interaction with both nuclei ought to be In this paper, we will present a method that removes the
included to all orders. These methods can be divided intdoundary condition problems to the largest part. We are solv-
two groups: the coupled-channdbr “close-coupling” ing the Dirac equation on a grid within a finite volume in
methods, which are based on an expansion of the timghomentum space, where the b_ound states as wgll as the con-
dependent wave function in a discrete set of basis states, afjguum states are strongly localizEsb]. The same is true for
various grid methods, which tackle the Dirac equation b he time-evolved e'Iectro.nlwave function. If the volume in
discretization on a spatial lattice. Due to the inherent Iimita-momentum space is sufficiently large, the values of the wave

tion of the basis set, all coupled-channel calculations ar%nCtlon can, in a very good approximation, be set to zero at

highly dependent on the basis states being used in the expag‘_e boundaries of the grid. We are going to demonstrate that
[13

sion. However, they have been proven to be less numerica is formalism incorporates a description of inner-shell ion-

“delicate” and CPU-time intense than grid methods. There- ation, excitation, electron transfer, and bound-free pair pro-
: uction.

for led-channel calculations hav n xten- . . . -
ore, coupled-channel calculations have been used exte Common to all grid methods is the dilemma of finding a

sively with various choices for the basis functions, e, satisfactory treatment of the continuum. We are following the
two-center molecular statdg42| to describe ionization and o . g :
¢a2] majority of the authors in this fielf15,51,52 and use the

air production,(ii) two-center atomic basis states to de- ) . )
pair p (i) analytically known solutions of the “continuous” problem,

scribe transfer and excitatiot3—45, (iii) a set of one- . . . .
center atomic states of the target, using a set of discrete wa hE- the. _Cpulomb-Dlrac 'elgenfuncnons.. This a_lpproach has
een criticized because in a fully consistent grid calculation

ackets as an approximation for the continuum to describ . .
P bp one ought to solve the eigenvalue problem of the discrete

ionization, excitation, and bound-free pair production ) oo o
[17,38,46—48 and(iv) a set of free momentum space wave atomic Hamiltonian to compute a set of atomic eigenstates
pac,ket,s to describe free-free pair productjé8,5a [56—-58. However, such states have not been satisfactorily
Bound-free pair production has been the,major point Ofmp!emented yetin a complete scattering cal_cullat|c_>r_1. Qur
choice of the Coulomb-Dirac wave functions is justified if

interest of the work presented by Rumriehal. [12] and h culation i dinth that . t of
Baltz, Rhoades-Brown, and Wenegé7,18. The outcome € calculation IS converged in the sense that a refinement o
the grid will not critically affect the final results.

of a coupled-channel calculation by Rumriehal. exceeded . . > .
P y In the next section of this paper, we derive the time-

the perturbation theory result for bound-free pair productiond dent Di tion | " d di
by about 1-2 orders of magnitude at small impact param: ependent Dirac equation in momentum sSpace and dISCuss
eters. the numerical implementation on two different parallel com-

However, these authors have been criticized for using puters. In Sec. Ill, this method is applied to collision systems
relatively small basis set by Baltz, Rhoades-Brown, and" the energy range from 0.24 to 10 GeV/nucleon. The tech-

Wenese([17,18, who claim that in a converged calculation nical details of the evaluation of the atomic states in momen-
this enhancement will get reduced to at most one order ofim space are described in the Appendix.
magnitude at moderate relativistic collision energies and that

it will not increase considerably the total cross section at Il. THEORY
ultrarelativistic energies. ) _
With the advance of computer technology, grid calcula- A. The Dirac equation

tions in relativistic atomic scattering theory have already be- | et us assume the collision of a fully stripped projectile
come feasible tOday. For example, the ﬁnite-diﬁ:erenceson with Chargezp on a target ion with Chargé_l_, which is
method and the finite-element method have been applied tgarrying only one electron in case we are considering ioniza-
the problem of ionization and pair production. Beckerl.  tion, excitation, or transfer or none in case of electron-
[37,51 used a two-dimensional finite-differences method topositron pair production. Furthermore assuming pointlike
compute ionizgtion in almost centr.al collisions and Thi?'charges and a straight line trajectdi¢t) = (b,0,pt) for the
etal. [15] applied the same formalism to bound-free pair rojectile with constant velocityyp the time-dependent

production. '_I'hey report that their results excee_:d prediction amiltonian for one electron can be written [23]
by perturbation theory by 1-2 orders of magnitude. A two-

dimensional finite-element code has been developed by Hp=Hgy+ Vp(l), (2.2
Miller [52]. Wells et al. [53] applied a three-dimensional
basis-spline collocation method to the problem of muonic . o .
bound-free pair production. Their results overshoot previoug"hereHO is the one-electron Hamiltonian corresponding to
predictions in perturbation theory for comparable coIIisionthe target
systemg54] by several orders of magnitude.

A common problem of these grid methods, which are all L Z.€?
formulated in configuration space, is the fact that the electron Ho=—la-V+p—-——. 2.2
density in configuration space dissolves during the collision
[15,37] because of continuum components of the wave func- .
tion that are arising due to the ionization and transfer reacHere, @« and 8 are the Dirac matrice§59]. Vp(t) is the
tion and “spread” over the whole configuration space. At thetime-dependent perturbation by the projectile
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due to the assumption of a straight line projectile trajectory
—— - (2.3)  [46]. This enables us to comput®,,, and Py, by only
V(X=0)?+y?+ y*(z—vpt) propagating the d state. Projection of the final state onto the
positive and negative continuum states will yield the prob-
abilities for ionization and bound-free pair production, re-
pectively.

- —Zp€%y(l—vpa
Vp(F t)= pe~Y( P;)

Natural units are used throughout the paperMm=c=1);
i.e., length will be measured in units of the reduced Compto
wavelengthh=#/mc=386 fm and momentunp=7#Kk is
measured in units oi/\. vp denotes the projectile velocity
and y= 1/\/1—0,23 is the Lorentz factor. This expression for
Vp(t) can be derived from coupling the lrard-Wiechert In this section, we will derive a time-dependent integral
potential of a moving point chargé0] to the Dirac equa- equation for the Dirac equation in momentum space. We de-
tion. To the atomic Hamiltoniakl, belongs to a complete set fine the Fourier transformation of the time-dependent spinor

of stationary hydrogenlike relativistic eigenstatéjséF) with l/f(F,t) as

B. The transformation to momentum space

. - A 1 L
Hooj(r)=E;¢;(r). 2.4 ¢(r,t)sz d3ky(k,t)ek ", (2.9

In the somewhat naive picture of Dirac’s hole theory, we _ _ . _ S
have to think of the initial state as being given by thelnsertion into the Dirac equatio2.5), multiplication by

K-shell electron together with the initially fully occupied [1/(27)%¥%exp(~ik’r) and integration over yields
negative continuung“Dirac sea”) in the case of ionization,

or of the fully occupied negative continuum only, in the case i;/,(lz t)= —i P ek

of pair production(for a formulation in terms of quantum ot ' (2m)3

electrodynamics, sgd6] and[53]). We are going to neglect e

the electron-electron two-body interaction. Under this as- X[Ho+Vp(H)1e® Ty(k’,1). (2.10

sumption, each electron state will evolve in time indepen- _ _ o
dently from all the otherg61,62 according to the one- The three-dimensional Fourier integral over the Coulomb po-

electron Dirac equation tential is known as the Bethe integf&5,63,74:
. d -> - 3 Iq*ljl 4
'El//j(r,t):[H0+Vp(t)]¢/](r,t), (2.9 dre g (2.1
with the initial condition Making use of this equation we can perform thimtegral in
) i Eqg. (2.10 and obtain the following integral equation for the
lim ¢=¢;e "=, (2.6)  Dirac equation in momentum space:
t— —oo

d~ - . ~ —i
while orthogonality and completeness are preserved during — y(k,t)=—i[a-k+ B8]y(k,t)+ —zf d3k’
the collision. We still have to deal with an infinite number of 7t 2

electrons. After introducing a wave packet approximation for z.€?]. . —j

both continua, one can in fact propagate each state and com- X| = —— (K" ,t)+ —Zf d3k’

pute any desired many-particle transition amplitude, as has q 2m

been done for correlated one-pair electron-positron pair pro- —Zpe2(1—vpa,)e @ rap] |
duction [14,49. The many-particle amplitudes can be ex- [ — z T }l/l(k’,t),
pressed in terms of one-electron amplitudes. In case we are (q+ay+az/y?)

interested only in théotal probabilities for ionization or pair (2.12
production, these very complicated expressions can be re-

duced to simple incoherent sums of the one-electron transivhereq=k’ —k denotes the momentum transfer. This equa-
tion probabilities[46,53. For example, the total probability tion of motion has to be solved with the initial condition:

to observe an electron from bound-free pair production is

given by lim P(K,t)= (K 1). (2.13
t——x

— 2
Pbipp= . > , [{ p1s| he(>)) (27 The expressions for the initial state are derived in the Appen-
=7 Mot dix. In the next section we will describe how E@.12 is

and the probability to observe K-shell vacancy from (reated numerically.

K-shell ionization is
C. Numerical treatment of the time evolution

and computational details
Pionz= 2 Kdelas(=)P. (2.9

E>mgc The numerical method to perform the time integration of

(2.12 is based on the following idea: First, we enclose the

To simplify the calculation oPyy,, we make use of the time- system in a finite volume in momentum space. In momentum
reversal ruIequiIlﬂj(w)>|2=|<¢j|¢i(°°)>|2, which is fulfiled  space, we expect the wave function to be well localized for
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all times during the collision, so that the values at the surfacgjere, w; and k; stand for the weights and abscissas of a
of the volume can be set to zero or to some small constanhee-dimensional quadrature over the whislspace. Note

value for all times during the collision. The assumption thatinat the right-hand side of the system of differential equa-
the wave function will be well localized has to be checked at; o (2.18 is nonlinear. Note further that as many momen-

all times during the collision. In the next step, we discretize, - . :
. . A Y tum space integrals have to be solved as we have grid points
the problem by introducing a grid within this volume. The P g grap

grid has been defined in spherical and—in another version olp momentum space. There are o characteristics of the

the code—in cylindrical coordinates, as we will describemtegral kernelF, that make the numerical quadrature quite

later in more detail. The wave function itself is representedUMPersome, namelii) a quadratic singularity aj=0 and
within the whole volume by defining a global three- (i) oscillations of the projectile term alorig=(b,0,vt).
dimensional3D) interpolating function on the grid. Thisin- ~ We solved the momentum space integral by slicing the
terpolating function is constructed from a two-dimensionalintegration volume into cells, which were adjusted to the
cubic spline ink and 6, (in the case of spherical coordinates, behavior of the integrand. The integration is performed cell
or ki=\/Px+_k§ andk, in case of cylindrical coordinatgs by cell using three-dimensional Gaussian quadrature tech-
which is followed by a quadratic Lagrangian interpolation niques. In more detail, the way we slice momentum space in
[64] in the azimuthal angleb, . This is supposed to be less cells depends on the underlying hardware being used for the
accurate than a fully three-dimensional spline function, bucomputation. We used two different kinds of parallel ma-
requires less CPU time and memory and has been found hines, which required totally different programming and in-
work well. Before the interpolation is carried out, the wavetegration techniques. First, we have run our computer code
function is multiplied by a weight functiom(q) given by on a cluster ofup to ten SUN Sparc 10 workstationgro-
_ (E1et2) viding a peak performance of 170 Mflgpsunning the soft-
w(q)=1+[1—exp(—7aq)]q=="", (214 \are packag@vm (parallel virtual maching which allows

which behaves reciprocal to the asymptotic of the initigl 1 2" eventually heterogeneous computer network to be used as

state and converges to one fgr+0. The parameter; has a virtual parallel computer with distributed memory. Our

been set to 0.75. This choice of the weight function substanSOMPuter code is organized according to the master-slave

tially improves the quality of the interpolation. model. The “master” contains input and output, bookkeep-

Once the interpolating function is provided, we can evalu4ng, and the time-integration routine and is running on one of
ate the momentum space integral in E2.12 by means of the processorgos), while the “slave” contains the momen-
Gaussian quadrature, as we will explain later in more detailtum space quadrature code and is running as identical copies

Let us first have a closer look at what the discretizationon all the other processo(sodes. Pvm allows for the mes-
does. We rewrite the Dirac equation in momentum space isage passing between the host process and all the node pro-

the following general way: cesses, especially copying the vecfzq(t) from the host to
each node and returning the values of the derivative vector
ifp(g t)zpl(g)l”mz t)+f dsk’Fz(ﬁ t)fp(l?’ t) dtfpj(t) in small packages from the hosts to the node. The
ot ’ ’ Y integration volume itself is defined to be a large sphere with

(219 a radius of typically 100L/\]. This volume encloses about
: 99.9% of the norm of the initial wave function and has been
whereF_l denotes_ the_ term in E¢2.12) that comes from the found to be sufficiently large in a collision energy range from
free Dirac Hamiltonian an(_jiz stands fof both of the 0.24 to 10 GeV/nucleon. Within this sphere, we defined a
q—d'ependent. kernelg of the integral terms in @12), de- grid in spherical coordinatesk(6,,¢,) with (13X 7x10)
scribing the interaction of the electron field with the target oints, respectively, using a logarithmic distributionkimnd
and the projectile, respectively. Discretization means that the, | eqL,Jidistant spac’:ing in the angles. The 2D spline interpo-

continuous variablé’ goes over into a set of grid points in |ation is defined on the 10k(6,) planes, while we use qua-

spherical(cylindrical) coordinates: dratic interpolation ing, to calculate the values in between.
o L, . Since these processors provide a sufficient amount of
kK'=kj=(kj.6j,¢;), j=1(1).N, (2.16  memory, we can perform the whole momentum space inte-

) ) ] ] ] gral on each processor. In order to perform the integral over
whereN is »the maximum number of grid points. A spinor {he sphere, we embed the whole sphere in a cylindrical inte-
function (k’,t) with 8 real components is attached to eachgration volume. This cylindrical volume is sliced into
point IZJ-’: smaller cells with a given thickness ik, and Ak, and

angular segmeni ¢,.. The thickness iik, is adjusted to the
(K’ t)— g(K! ,t)::fﬁj(t). (2.17  time-dependent wavelength of the oscillation given by
F3=(b,0,vpt). The cells that are neighboring the singularity
The continuous equation of motion in momentum spacesre integrated with higher accuracy than the rest. Since the
(2.19 now goes over into a set of coupled differential equa-integration volume is larger than the sphere that contains the

tions of the general form time-dependent wave function, we have set the values of the
q wave function outside the sphere equal to the values of the
N (BN Cr DD 1s ground-state wave function, just to give it some well-
—=F(Ki) i (1) + Fo(ki — ki ,t) (k' ,t)w;. ; NN .
at Yi= Fakp e Z 2(ki =k Dok Ow, defined nonzero values. This is an assumption that has been

(2.18 found to work well.
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Thus, we are provided with a method to compute theprocesses as the energy varies. The energy of 0.24 GeV/
right-hand side of the system of differential equati¢248). nucleon has been chosen to highlight the transfer process. At
In the next step, we have to perform the time integrationthis energy, the projectile velocity corresponds to the classi-
which is done on the host. We use a fourth-order Zonneveldeal velocity of a bound electron in th€ shell of the target
Adams-Moulton predictor corrector methgih the PECE ion (“matching energy”[23]), so that charge transfer is ex-
schemg which uses a Runge-Kutta-type formu{Zonn-  pected to be large. At higher energies, ranging from 0.93 to
eveld formula for the start calculatiof65]. This routine is 10 GeV/nucleon, transfer is small and we will concentrate on
run with fixed step size of typically 0.05, in order to have athe behavior of the ionization and the bound-free pair pro-
good estimate of the CPU-time requirements. The CPU timeluction process. Most of these examples have been per-
for one time integration at a given impact parameter runningormed with the MasPar using the “fine” grid at zero impact
PVM was up to several hundred hours. parameter. To show the effect of nonzero impact parameters,

On a later stage of this project, we moved our code to dhis section also includes an impact parameter study for the
MasPar MP2, which is a massively parallel computer beingollision system at 0.93 GeV/nucleon and values for total
equipped with 4096 processors that provides a peak perfocross sections. Results for ionization and bound-free pair
mance of 1.6 Gflops. However, the MasPar system architegproduction will be compared with predictions in first-order
ture imposes some severe restraints on the code structurgerturbation theory, which have been obtained using the per-
Memory on the MasPar MP2 is limited to 64 kbyte for eachturbation theory codes provided by BecKd6].
processor, so that it is impossible to store the spline coeffi-
cients for the whole wave function in each processor. There- A study of a “low’-energy collision at 0.24 GeV/nucleon
fore, we had to redesign the momentum space integration
routine. First, we decided to get rid of the spherical grid and
define a cylindrical volume that contains the time-dependent In Fig. 1 we display the time evolution of the electron
wave function on a grid in cylindrical variables density in momentum spac;‘ﬁ(k) fp(k) for a collision at
(ki k2, ), so that the volume in which the time-dependentg 24 GeV/nucleon ¢=1.259) and impact parametér=0.
wave function is defined and the integration volume are idenThijs is a result of a MasPar run with the “fine” grid of
tical. As before, we split this volume into smaller cells, 128x 32 points ink, andk, . The density is shown on a
where the corners of these cells are given by the points of thgnear scale in a square region of the-k, plane, ranging
grid, i.e., the cells are defined independently of time nowfrom —3 to +3 in both coordinatenote that the calculation
This allows for a one-to-one mapping between each cell ofyas actually performed within a cylindrical volume with a
the momentum space and each processor of the MasPar pligngth and diameter of 20 unjtdn configuration space, the
cessor element array. Each processor has to store only thgsiectile is traveling along the axis. As is obvious from
spline coefficients for one of the cells in memory. To obtainiys figure, the electron density remains localized nearby the
the result of a whole momentum space integral, we simplysrigin at all times. Different from the situation in configura-
have to perform a summation over the MasPar processqon space, we do not observe a “spread” of the wave func-
element array. We have to perform as many such integrajon over the whole grid and the change of the wave function
tions, as we have grid points i space. In order to match gt the poundaries remains negligible. The time propagation
approximately the dimensions of the %84 processor ele- nhas peen performed from= — 30 to +20. The wave func-
ment array, we have chosen a grid of K124x 14) pointsin  tjon is displayed at time¢=—5, 0, 5, 10, 15, and 20. At
cylindrical coordinatesk ,k;,¢y) with a logarithmic spac-  |arger negative times, the changes of the wave function are
ing ink, andk,. The MasPar allows us to perform a whole not very drastic. At= —5 it is still very close to the density
time integration within a minimum of 30 h with a much finer of the initial 1s state, however, we find it to be slightly
grid compared to thevm runs. A further important advan- ghifted in the direction of the incoming projectile, which
tage of the MasPar overvm is the much better reliability means that the electron gets accelerated towards the projec-
and stability of the system. ~tile. Aroundt=0 the electron density looks as if it is strongly

In yet another version of the computer code, we restricteqocalized around the center, meaning that the electron has
ourselves to almost central collisiofhe impact parameter yeacted to the combined charge of the projectile and target.
is actually set to zefoso that we can assume rotational sym- ¢ positive times, we can observe strong excitation and ion-
metry of the collision system. In this case, the time evolved,ation processes coming up. For5 we notice that the
state will maintain the trivial$, dependence of the initial aximum of the electron density is localized around
1s state, so that we can reduce the grid to two dimensionﬁzzo_76_ This value of the momentum corresponds to the
k, andk, with (32X 128) points. The quality of the numeri- momentum of a free electron moving with the samealue
cal results in this 2D calculation clearly excels the 3D re-55 the projectile ion. We observe circular continuum waves
sults. This indicates that in future work the 3D calculationsinat are centered around the momentum of the projectile.
should be further refined. These waves can be interpreted as continuum states in the
projectile frame, describing “capture to the continuum of the
projectile.”

The wave function at= + 20 has been projected onto the

We illustrate different features of our method by studyingtarget states and the projectile bound states. We found only
collision systems at various projectile energies in the rang8.5% in the target 4 state and 7.3% in the higher target
from 0.24 up to 10 GeV/nucleon for a gold projectile and abound states. By projection onto the projectile bound states,
uranium target. We will focus our discussion on differentwe found about 31.4% for the projectiles tate and 3.3%

1. Time evolution in momentum space

Ill. APPLICATIONS AND RESULTS
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FIG. 1. Time evolution of the
momentum space density in the
z collision system Au + U at
::: E.o= 0.24 GeV/nucleon and im-
=3 pact parameter zero.
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for the L shell. For the projection onto the continuum statesthe contributions from the projectile bound states. We are
we followed the procedure outlined in the Appendix. Thedoing this by subtracting the projectile bound states coher-
angular momentum summation has been extended to up ntly, weighted by their amplitudes, from the time-evolved
|x|=10, while the energy integration was typically extendedstate. After subtraction of th&- andL-shell projectile states
over the interval fromE|=1.05 to 5.05 for both the positive we obtain a corrected value for ionization of 55% and a
and negative continuum. The projection on the negative congajue of 2x 10 * for bound-free pair production. The latter
tinuum amounts to about>210"°. The overlap with the yalue exceeds perturbation theory by one order of magni-
positive continuum states of the target amounts to more thag,qe.

89%. These values are to be compared to the perturbation The time evolution of the projections on the tate, the
theory pr_esdlctlons of 94'.4% for _the positive co_ntmuum andhigher target bound statéap to theN shel)), the positive
1.95¢<10"* for the negative continuum, respeciively. continuum (corrected for K-shell transfey, and for the

Special care has to be taken in the interpretation of thesR_SheII transfer are shown in Fig. 2. Only the asymptotic

rojections. In any case, the projection on the positive con- ) . . .
brol y brol P values for timet—o are physically meaningful, since the

tinuum can be interpreted as the probability for electron re- = 7=~ .
moval from the target ion. However, since the projectileprolectlon on the target states cannot be interpreted as tran-

bound states are nonorthogonal to the complete set of targglion Probabilities while the projectile field is still present.
states, we are counting the components found in the projed-N€ time evolution is shown here, because this allows for a
tile bound states twice, once as transfer probability and oncgomparison with the previous calculations in the coupled
as probability for a transition within the set of target stateschannel and finite-differences method. Apparently, the trans-
so that we end up with a total transition probability largerfer probability is perfectly converged, while ionization and
than 100%. As shown in the AppendiSec. 2 b, the inner-  the target & state are still slightly increasing and the excita-
shell states of the projectile are at larger times predominantl$ion is decreasing. For reasons of CPU-time limitations, the
overlapping with the positive continuum states of the targetfime propagation has been stopped here.

while the overlap with the negative continuum is small and To illustrate the subtraction procedure we show in Fig. 3
the overlap with the bound states of the target is practicallya) the density of the projectile bound states of tkeand
negligible. That means that in particular the projections orL shells taken at timé= + 20 (being summed up coherently
the positive and negative continua have to be corrected fowith the amplitudes that have been found in the projegtion
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states and continuum components traveling with the speed of

o eimn . o Jonization ] the projectile.
Transfer

..............................

L 2. Fast Fourier transformation to configuration space
_____ Excitation |

Te——y In order to support the interpretations of the results for the
1s-State various processes that have been presented in the previous
i section, we performed a fast Fourier transformatieRT) of
H #(Kk,t) to obtain y(r,t) in configuration space, using the
A i MATHEMATICA environment(for details about FFT, see, e.g.,

r - [66] and[67]). For the FFT we have chosen a Cartesian grid
4 in k, andk,, ranging from—3 to +3 in each variable with
0001 | 3 a step size of 0.1. This grid ik space corresponds to a
i reciprocal lattice in configuration space. The boundaries of
the reciprocal lattice are related to the grid knspace by
Zimax= 2l Ak, andAz= /K4 In OUr case, this means that
20 -10 0 10 20 the grid in configuration space extends from10m to
+ 107 in x andz with a step size ofr/3. The time evolution
of the density inconfigurationspace is displayed in Fig. 4 on
a logarithmic scale. At timé= 20 the density distribution has
its global maximum around the position of the projectie

01 ¢ A

Probabilities

0.0001

Time (units of A/c)

FIG. 2. Time evolution of the occupation probabilities for the

collision system Au+ U at E|;,= 0.24 GeV/nucleon obtained by > . -
projection on the various sets of target and projectile states. Thgpt_0'60755< 20=12.15) and is surrounded by a large well

ionization probability has been corrected for transfer by subtractioﬁ:.nc continuum W.aves, \.Nh'(?h have partially p.assgd the projec-

of the K- andL-shell projectile states, as explained in the text. tile and ar'e malrjly going into the fO"W"?‘“?' direction. Anpther
local maximum is found around the origin, corresponding to

the target bound states. The final statetat+20 is high-

and(b) the state obtained by subtraction(af from the state J=t : . :
displayed in Fig. 2 at timé= + 20. lighted in Fig. 5 on a linear scale, in order to emphasize that

After the subtraction we find the maximum of the density IS Structure in configuration space is strongly peaked, while
distribution at the origin. The relative maxima around it is smooth in momentum space._Thls |s_due t_o the fact that
k,=—0.2 andk,=+0.3 that can be observed in Fig. 1 at the bound-state wave functions in configuration space are
ti?ne t¥20 ha\je dis.appeared. A small peak reméins a§ingular around the origin, while they are regular in momen-

_ : : . P fum spacegsee Appendix, Sec. 2b
k,=0.76, which we ascribe to even higher projectile bound This figure demonstrates clearly that the configuration-

space wave function spreads proportionally to the timmad
therefore a much larger volume would be necessary to fully
enclose the wave function within a given time range, as com-
pared to momentum space. Additionally, the sharp peak
structures around the target and the projectile are very hard
to describe on a mesh in configuration space.

Time = 20, b=0

B. Study of higher energetic collisions
at (0.93-10) GeV/nucleon

In this section, we will move to higher energies and focus
our discussion on the behavior of ionization and bound-free
pair production. In particular, we will put a strong emphasis
on a comparison of our data for bound-free pair production
to the results in perturbation theory and comment on the
“nonperturbative enhancement effect” that has been claimed
by several authorgl2,14,17,18

Density

1. Time evolution of the collision system at 0.93 GeV/nucleon

Let us investigate first the collision system Au U at
E 12b=0.93 GeV/nucleon ¢=2), which is shown at several
time steps ranging from-5 to + 20. For Fig. 6, we have also
chosen impact parametér=0, which has been run on the
MasPar with the “fine” grid. Although the general features at
FIG. 3. Coherent sum of thi- and L-shell projectile states Negative times are quite similar to the previous example, the
(weighted with their complex amplitudesa) and the distribution ~ Situation is remarkably different at positive times. The trans-

obtained by subtraction of these states from the wave function dier peak, which at this energy should be locatell,at1.4, is
time t=+ 20 shown in Fig. (b). not visible anymore. Unlike the previous example, where

Density
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Coo-Space, Time = -5 Coo-Space, Time =0

Logl 0 (Density)

Coo-Space, Time = +10

FIG. 4. Time evolution of the
configuration space density on a
logarithmic scale corresponding to
the collision system shown in Fig.
1, obtained by FFT.

Log,, (Density)

Coo-Space, Time = +15

Log,, (Density)

transfer was dominant, we find the global maximum of themum at the center of the coordinate system, surrounded by a
density at the center of the coordinate system. We obserweery broad distribution of continuum components that are
circular continuum waves of higher momentum centeredraveling outward. About 30° from the forward direction a
around the origin. Note that the grid lines are rectangular irsharp ridge sitting on the broad background of continuum
thek,-k, plane and that no grid related structures are visiblestates can be observed, which is traveling with about the
For a further comparison with the previous example, wesame speed as the transfer peak. At this collision energy, the
performed the FFT with the same method and grid parametdransfer peak is not passed by continuum waves, as had been
settings as before. In Fig. 7 we display the configurationfound in Fig. 4, since its velocity is close to the speed of
space density of this collision system taken at tire+20  light.
on a logarithmic scale. We find a strongly dominant maxi- In the next step, we analyzed the time evolved states from
Fig. 6 by projection onto the various sets of target states to
obtain the probabilities for inner-shell ionization, excitation,
and bound-free pair production. Results are displayed in Fig.
8. The figure shows the probabilities for the initiad 4tate
(which is starting at 1009 K-shell ionization, excitation,
and bound-free pair production. We find that the initial 1
state gets strongly depleted arourrel0 and converges rap-
idly to a final value of about 29.5%. The final value for
excitation to higher bound states amounts to 9.8%. We find
that the final excitation probabilities for the higher shells
exhibit a 1h*® behavior. The final value foK-shell transfer,
which is not displayed in this figure, amounts to 2.5%.
The projection onto the positive continuum reaches a
z maximum value of about 61% at tinte= +10 and is going
down at larger times to about 54.3%. For the bound-free pair
FIG. 5. Configuration-space density for the collision system inproduction we find the typical behavior, which is already
Fig. 4 taken at timé= 20 on a linear scale. well known from coupled channel calculations, that it even-

Coo-Space, Time = +20
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Time = -5 Time=0
Z
‘B
=
L
=
Time = +5 Time = +10
FIG. 6. Time evolution of the
momentum space density shown
Z in the collision system Aut U at
§ 0.93 GeV/nucleon and impact pa-
a rameter zero.

Time = +15 Time = +20

Density

tually reaches very high values of the order of several per9 we show the energy distributions obtained by the projec-
cent around =0 and drops by orders of magnitude at largertions on the positive and negative continua in comparison to
positive times. Here, it converges to a final value ofthe perturbation theory results. This figure shows that the
3.9x 10 4, which is about 4.4 times larger than the pertur-enhancement of bound-free pair production comes mainly
bation theory value of 0.8910 *. The correction of this from positrons with a kinetic energy less than 14nc

value with respect to the overlap of the projectile dtate The result for bound-free pair production contradicts the
(charge transferdeads to a further reduction of this value by predictions of a strong “nonperturbative enhancement of
about 10%. We do not consider this correction as significanbound-free pair production” of typically more than an order

and, therefore, it has not been included in this figure. In Figof magnitude being found in coupled-channel calculations
for similar collision systemg12]. Although all the arguments

about the nonapplicability of perturbation theory given in
[12] and[39], in first place the violation of unitarity in per-

0 turbation theory, still hold, we suspect that this enhancement
effect has been overestimated due to the restricted atomic

Coo-Space, Time = 20

_— 0 X
%’ 20 basis sets being used in these calculations.
g o
2 2 2. Time evolution of the collision system at 10 GeV/nucleon
<
%E‘ -4 To demonstrate that this formalism can be extended to
- -6 higher y values, we finally present results for the system
-8 Au+U at E ;=10 GeV/nucleon =11.7) and impact pa-

rameterb=0 using the two-dimensional “fine grid” on the
MasPar. The time integration has been performed from
t=—20 to + 20. The time evolution of the momentum space

FIG. 7. Configuration-space density obtained by FFT for thedensity is shown in Fig. 10 at timés- -5, 0, 5, 10, 15, and

collision system shown in Fig. 6 at time=20 on a logarithmic  20. At time t=0 we notice a stronger excitation of high
scale. momentum components in the negatkyedirection as com-

=20 0 20
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FIG. 8. Time evolution of the occupation probabilities for the  FIG. 9. Results of the projections of the time evolved state taken
collision system shown in Fig. 6 obtained by projection on theat timet=20 onto the positive and negative continuum as a func-
various sets of target states. The corrections with respect to thigon of the absolute value of the energy. The dashed lines show the
overlap of the projectile states with the target states have not beegprresponding perturbation theory results for ionization and bound-

included here, sinc&-shell transfer amounts only to 2.5%. free pair production.

Time =-§ Time =0

=z
w
=
L
=}
Time = +§ Time = +10
FIG. 10. Time evolution of the
momentum space density in the
= collision system Au + U at
2 E\.,=10 GeV/nucleon and impact
2 parameter zero.
kZ ‘ kZ
Time = +15 Time = +20
2 I
Z
=
2
a

>
~
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pared to the results ag=2. Aroundk,=0 the momentum
space density looks as if it is being “pinched” by the Time = +20, b = 0
Lorentz-contracted field of the projectile. At larger positive
times, the wave function appears tolbssperturbed as com-
pared to Fig. 6, especially since we observe fewer high mo-
mentum components going in the forward direction. Corre-
spondingly, we found the probability for ionization going
down from 54% aty=2 to 30.4% aty=11.7, whereas it has
been predicted by perturbation theory to saturate to a value
of about 51% above =2 [46]. Running the 3D version of
the MasPar code, we find that the suppression of the ioniza-
tion becomes less pronounced with increasing impact param-
eter. In particular, our results merge into perturbation theory
for impact parameters larger tham 2

The probability for inner-shell excitation has been found

to be remarkablyy independent and amounts to about i 0o 1 2
12.8%. 15¢ P
For bound-free pair production we find a value of >, //{.{02‘}\
3.3X10 *. The energy integration has been extended up to Z ;%s\\\
E|=10 and the angular momentum summation up to 0.5 ZNR
e g b 7

|k|=10. This value for theotal probability agrees within 0
our accuracy with the perturbation theory prediction of )
4x 104 However, it has to be pointed out that it would be

deceiving to speak of “agreement with perturbation theory,”

since the energy and angular momentum distributions ob- 2

tained in both calculations are quite different in detail. This

result is important, as it indicates that we cannot confirm any |G, 11. Comparison of the momentum space density at two
“nonperturbative enhancement” for bound-free pair produc-gjfferent impact parameters, namely,(a) b=0 and (b) b=4\.

tion at this collision energy. In contrast, an enhancement byrhe collision system is Au- U at 0.93 GeV/nucleon, the time is
1-2 orders of magnitude has been reported previously for &= +20. The zero impact parameter has been run with a 2D grid of
comparable collision system, using the finite-differenceg32x128) inp andz and the impact parametbr=4 has been run
method[15]. with a grid of (12x 24X 14) points in p,z, ¢).

77 >
LK

3. Impact parameter study and total cross sections 0.5\ (193 fm). The excitation probabilities up to thep3d,
state are shown in Fig. 13. Both the excitation probabilities
r the 2, and the 3, have their global maxima around
.5\, while the probabilities of the states extend over a

large impact parameter range.

Next, we give an example of a collision at a large impact
parameter that has been run on the MasPar using the 3D gr,
with  (12X24X14) points in cylindrical coordinates
(k;, k,, andg,) for the system Ad-U at 0.93 GeV/
nucleon. In Fig. 11 we display the momentum space density
in a collision with an impact parameter of\4at timet=20 1.0
in comparison to a collision at zero impact parameter. This
figure demonstrates that the wave function gets distorted by a
transversal momentum transfer, but the perturbation is in
general much weaker than at zero impact parameter. For ex-
ample, the ionization probability goes down from 54% at
impact parameter 0 to 6.55% at impact parameter 4.

Since the grid dimensions in this calculation are deter-
mined by the MasPar machine size, we have not performed a
systematic convergence check for the 3D calculation yet.
Judging from a comparison of the 3D results obtained with
the MasPar to those obtained withim on an even “coarser”
grid, the MasPar results for the dominant processes, namely,
ionization and excitation, appear to be converged within an
accuracy of a few percent. Therefore, we are able to present
impact parameter dependences and total cross sections for 0.0+ : : . .
ionization and excitation, The impact parameter dependences 0 o1 2 3 4
of the probabilities for the initial 4 state, excitation, and Impact parameter (units of A)
ionization are shown in Fig. 12. The impact parameter ranges
from O to 4. lonization has a global maximum at zero impact FIG. 12. Impact parameter dependences for thestate, total
parameter and drops continuously with growing impact paexcitation, and ionization for the collision system AuU at 0.93
rameters, while excitation has its global maximum aroundGeV/nucleon.

0 1s-state
A Excitation

O lonization

Probability
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04 (12x24x 14 pointg with the 2D grid on the MasPar
(32%x 128 points. Again, we are considering the system Au
+ U at 0.93 GeV/nucleon. It turned out that further refine-
ment of the grid yields values for bound-free pair production
that are closer to the perturbation theory result, while ioniza-
001l tion remains basically unaffected. For example, the result
obtained withPvm on the coarser grid explained above yields
S a final probability for bound-free pair production of about
103 for this collision system:; i.e., the refinement of the grid
¢ ' on the MasPar reduced the probability by a factor of 2. A
2 further refinement has not been performed yet.
2p1/2 The normalization of the time evolved wave function has
gg?g been found to be remarkably stable, although we do not en-
3p1/2 force normalization by any means. For example, in the col-
lision system considered here, we find a norm of 0.999 30 at
0.0001 : : : time t=—25 and 0.9955 at= +10. Beyond+20, however,
o 1 2 3 4 the normalization dropped to reach a value of about 94% at
impact parameter (units of 1) t=+30. The projections for bound-free pair production, ex-
citation, and the 4 state remained practically unaffected by
FIG. 13. Impact parameter dependences for various inner-shefhis loss of normalization, whereas the projection onto the
states ranging from thesg), up to the 3, state for the collision ~ Positive continuum decreased. This indicates that the loss of
system Au+ U at 0.93 GeV/nucleon. normalization is due to positive continuum waves that have
reached the boundaries of the volume at larger times and that

From the curves in Fig. 12 total excitation and ionizationthese waves are not reflected completely.

probabilities have been calculated. To estimate the contribu- A fu_rther test of our accuracy is the summation of our
tion from impact parametes=4\ to « an exponential ex- projections on the complete set of target states. In case of the

= . . . 0
trapolation has been employed. We obtained an ionizatior(%OIIISIOn system aty .2’ we typically arrive at 98% of the_
cross section of 14.4 kb, which practically agrees with thetotal_norm or bettg r, if we extgnd the projections to energies
value in perturbation theory of 14.7 kb. For excitation, the®® high a$E|=8 in both continua.

total cross section amounts to 8.26 kb. Theg,2and 3,

states contribute to the excitation cross section with 1.37 and IV. SUMMARY

0.25 kb, respectively. . .

For the case of bound-free pair production, we encoun- The one-electron Dirac equation that governs the electron
tered the problem that the probabilities as a function of imehavior in relativistic heavy-ion co!lisions has been trans-
pact parameter do not drop below a value of the order oformed to momentum space, where it has the form of a time-
10-%. The “coarse” grid on the MasPar does not provide dependent integral equation. By discretization on a grid in
sufficient accuracy to describe probabilities below40At ~ Momentum space, this integral equation goes over into a sys-
the present stage we can only give a crude estimate of tHEM of coupled dlﬁerentlal equations. '_I'he wave functlon is
total cross section by assuming a constant, impact parametigPresented on the grid by a global 3D interpolation function,
independent background, which we subtract for all impactvhich is constructed from a 2D spline function and a qua-
parameters. Doing so, we obtained probabilities for bounddratic interpolation. The time propagation is performed with
free pair production, which drop reasonably fast on the im-2 standard predictor-corrector routine. The right-hand side of
pact parameter range from O ta 2For larger impact param- f[hls system of differential equations is g|v§r_1_by a numerical
eters we extrapolated with the perturbation theory result§ntegral over momentum space. Probabilities can be ex-
With this procedure, we obtain a cross section of 2.33 ptracted for inner-shell ionization, excitation, transfer to the
which overshoots the cross section in perturbation theory dproiectile, and bound-free pair production. Calculations have
0.96 b by only a factor of 2.4 and furthermore agrees wellP€€n performed in the energy range fréip,=0.24 to 10
with the experimental cross section of 2.2the latter in- G€V/nucleon. At 0.24 GeV/nucleon we have shown that our
cluding capture to all bound states, which typically accounformalism implements a closed-form description of the
for about 20% of the total cross sectjomVle admit that the ~charge transfer as well as the ionization process. We found
assumptions to extract this cross section are rather crude affet the transfer process is rapidly going down with increas-
we regard the agreement as accidental. Future work with B9 collision energy. At higher collision energies, we concen-

refined 3D grid will be necessary to predict cross sections fofratéd on ionization and bound-free pair production. Bound-
bound-free pair production reliably. free pair production has been predicted by previous coupled-

channel calculations to exceed the results of perturbation
theory of first order by typically more than one order of
magnitude in this collision energy range. At a collision en-
To get an estimate of the convergence of our calculationergy of 0.93 GeV/nucleon and impact parameter zero we
we compared results at zero impact parameter obtained wittound an enhancement of merely about a factor of 4—-5 com-
the grid used forvm (13X 7X 10 points and the “coarse” pared to perturbation theory. This enhancement effect has
grid used for the 3D calculation on the MasParbeen found to go down with increasing collision energy. We

Probability

0.001

PDmoen

4. Remarks on convergence and accuracy
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conclude that the previously published coupled-channel cal- . i
culations overestimate bound-free pair production due to th&'’= _21/2 (Luw=—m,12mlj, w) Y~ "(0,¢) ém, (A2)
truncation of the atomic basis set being used. me=

The ionization rate has been found to decrease with in\'/vhere< ) denotes a Clebsh-Gordan coefficierif’ a spheri-

pregsing coIIis?on energy. This is an astounding (esult, SinCEal harmonic, and:,, a Pauli spin eigenfunction. The trans-
'(;igt'i‘i’)iggeeé’a\;:;[thhe(;;Lérgg_t; gvflr;ec;rza bwuér?elsgg?\/\félh wﬁopre'formation to momentum space is performed according to Eq.
. y ' o e (2.9. Using the series expansion of the exponertdl
claim thatall processes are going to becoméndependent.
Therefore, the energy dependence of the ionization process o |
will be subject to future investigations at much higher colli- eik-f:4772 2 i'j.(kr)YP*(ek,dbk)Y[”( 0,¢) (A3)
sion energies. =0 m=-I
As a further visualization of the scattering process, we . ) . . .
computed the electron density in configuration space usin}/® &rive at the following representation for the Dirac spinor
FFT. This gave us useful information on the angular distri-T" Momentum spacgsg]:
bution of the ionization process and clearly demonstrated the K “
inclusion of the transfer channel in our formalism. ;{)(E):ifl g(k) X (B b (A4)
Most of the results in this paper have been presented at —sgnk)f(k) x*. (6, d0))
zero impact parameter, which allowed reduction of the cal-
culation to two dimensions. For a reasonably accurate 30'he radial integrals are defined as
calculation a further refinement of the grid will be necessary.
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a. Continuum wave functions

APPENDIX: ATOMIC WAVE FUNCTIONS E>1:
IN MOMENTUM SPACE

r
Our method for computing the atomic wave functions in 9u(1) =Nrs1x
—(E-1)Y4m

momentum space is based on the work bireBeen and f«(r)
Belkacem[55]. We are going to review some of their equa-
tions, and discuss some important properties of the con-
tinuum wave functions and the differences in our numerical (A6)
technique compared to theirs. In addition[&b], we derive )

expressions for bound projectile states that are needed for the?” E<—1 the factors in braces have to be replaced by
description of the electron transfer. (|E|-1)"?and + (|E[+1)" The parameters are

s=[k*~(Z:€)%]"%  ko=(E*~1)'% p=Ze’Elk,,

(E+1)Y%Re ]

x[e ko'el¥(s+iny) Fi(1+s+in25+1,2iker)].

1. The Dirac spinor in momentum space

The standard representation of the relativistic Dirac spinor e20=(— k+inlE)l(s+i7n), (A7)
in a spherical symmetric field {€8]

el (s+ip)|2%Kk5

> M 0 ¢)
A SY(T) g(r)x (6, N= o
M= =it e . (AD 7 T(2s+1)
¢ <¢I(r) If(r)X_K(0,¢)
We have to solve the following radial integral:

Here,g(r) andf(r) are the radial components of the upper
anpl lower compopents, .respectively. TRE(H, P) are the = | ji(kr)rstle Kot F (s+1+i7,25+ 1, 2kqr)dr.
spin-angular functions with good angular momentjirand 0
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Now we make use of a series expansion of the spherical=2k,/(ky+k)=1. We defined a small area around the sin-

Bessel function$64,7Q:

1 (+nr 1

(D=5, 2, st @

(In Ifleiz+i|+lfne7iZ).

(A9)

gular point with a radius of typically 0.2. Outside this area,
the ,F; functions could be evaluated with the Gaussian se-
ries expansions and its analytical continuatijsee, e.g.,
Egs. (15.1.0, (15.3.3—(15.3.9 in [64] or Egs. (9.100,
(9.132), and (9.132 in [71]]. To obtain the values in the
vicinity of the singularityx=1 with sufficiently high preci-

This leads to the following expression for the radial integralsion, we solve the hypergeometric differential equation

K"

14 (+m! 1
(0= 5 2 Srmmr @ionl 1A
+i' (k). (A10)

The integrald (k) andlg(k) are given by

(k)—f “iko=krysTn B (s+1+i 9,25+ 1,i 2kor )dr,

lg(k)= Fe—i<ko+k>frs—“1|:1(s+ 1+i7,25+ 1, 2kor )dr.
i (A11)
Now we apply Kummer’s transformatidit4,68:
e o F (1+s+i9,25+1,2kor) =€ Fi(s—in,25+1,

—2ikor)
(A12)

to I, to obtain

*

f e koIS E (s +in,25+ 1) 2k0r)dr} :
0
(A13)

La(k)=

where thex stands for “complex conjugate.” With the fol-
lowing integral representation of the hypergeometsle;
functions[71,72,

f dxx“e”"*;Fi(a,b,cx)
0

=T(u+1)v *V,F (n+1la,b,clv), (Ald)

we finally find the expressions

Ia(K)=T(s—n+1)|[i(kg+k)] "D
o 2ky \ |*
XoF1l s—n+1s+in, +1k K|

Ig(k)=T(s—n+1)[i(ko+ k)]~ s+

XoFq1ls—n+1s+1+in,2s+1—-+

Ko +k

(A15)

Depending on the parameter values of titg functions,
a singularity may occur at the argument

[(15.5.0 in [64]] by direct numerical integration using the
predictor-corrector codee by Shampine and Gorddr73].
Therefore, the hypergeometric differential equation had to be
rewritten as a first-order equation, using the differentiation
formula of the Gaussian serifd5.2.1 in [64]] for the start-

ing values of the first derivative. The initial values were
taken from the series expansions outside the area around the
singularity. With this procedure, we could integrate as close
as 1019 towards the singularity at=1. The properties of
the radial wave functions shall not be reviewed here; they are
fully explained in[55]. In this paper, the authors evaluated
the ,F; functions by direct numerical evaluation of the
contour-integral representatiofil5.3.) in [64] using a
Simpson-quadrature formula. Therefore, they had to intro-
duce a “convergence factor” exp{ekor) in the integrand of
Eq. (All) to make the quadrature feasible. Note that it was
not yet necessary for us to introduce this convergence factor.
The expressions in EqA15) can be evaluated as they are.
However, to make the numerical projection of the final state
on these continuum functions possilfles., to compute the
overlap, it turned out that we have to adopt the same tech-
nigue. The reason lies in the peculiarities of the continuum
functions in momentum space. They exhibit a singularity at
k/ko=1. In the vicinity of this singular point the radial wave
functions are having an infinite number of oscillations, while
they are smooth outside this area. The convergence factor
exp(—ekgr) smoothens these wild oscillations and gives the
radial density of the continuum wave functions a certain
e-dependent width. To account for the convergence factor
exp(—ekgr) in Eq. (A15), only the denominatok,+ k of the
argumentx has to be modified tpko(1—ie€) +k]. € is usu-

ally set to 10 3. We checked that the actual value eotloes

not essentially affect the values of the projections if it is
chosen to be in the range from 19to 10 4. The projection

is performed with a 3D Gauss-Legendre quadrature formula
in spherical coordinates. To account for the singularity at
k/ko=1, the area around this point has to be integrated with
very high accuracy.

b. Bound-state wave functions

The radial bound-state functions are given[Bg]

n’

gn,x(r)z Ne Arrs—1 2 Ci+mrm1
m=0 '

n’

fo(r)=Ne Frrs-1 EO Cimf™ (A16)
m=

value with
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BS+1/225 F(25+n,+1) 1/2 ZTeZ ZTEZ 21-1/2
N= ; B= , E=l14| =
I'(2s+1)\2n"!K(K—«) K n+s
¢t =(1+E)Y2m (=n)mm—n"£(K-x)]} The spherical Bessel functions are related to the Bessel func-
hm m!(2s+1), tions of fractional order by60]
(A17)
and . ™
Ji(x)= Z‘]Hllz(x)- (A19)
s=[k?>—(Z+e*?1*2, n'=n—|k|, (A18)
K=[n2—2n"(|«|—s)]*?, According to[71], we have
|
o (BI2)'T(v+pu) vtu l—ut+v B?
—ax u—1 — - - [ —
fo e” I (BX)x* ™ dx (24 BT (1 1) 21T T2 vt 1’a2+,82 . (A20)
Putting it all together, we find
N O
gn,x(k) = ﬁ i, CiJTmI m,l s
N O
fn,K(k) = ﬁ o Cii,mI ml s (A21)
where
(k)Y (s+m+1+2) - s+m+l+2 |-s—m I 3 K o
mI = (g7 4 k) S MR (1 1 3/2) 2 L > T +§'P+_/32 . (A22)
|
For the evaluation of these expressions we are basically ugndS is the Lorentz-boost operatpr4]
ing the same computer code as for the continuum wave func- 1o 1
tions. The bound states are much simpler to evaluate though, —1_ y+1 (1+6a,). o= y—1 (A25)
since we need to cover only the argument range from 0 to 1 2 z y+1

for the ,F, functions and they have only a finite number of . R

nodes. Therefore, also the “convergence factor” can be omit- The Fourier transformp;(k’) of ¢;(r’) in momentum
ted. The important feature of the radial bound-state wavepace coordinates of theojectile-frame k is

functions in momentum space is that they are regular at the

origin, while their counterparts in configuration space exhibit ~ 1 3 iR,
the well-known singularity proportional to>~*. $i(k')= (2m)"? d°r'e $i(r').  (A26)
3. Projectile wave functions Now we define the Fourier transform dfpyl-(r») in target-

. . Lo frame momentum space coordinates:
An electron in an eigenstatg; of the projectile is de- P

scribed in configuration space coordinates of the target as | 1 . .
[see Eqs(2.18 and (5.2 in [23]] opj(kt)= mj d3re"k'r¢p,j(r,t)
¢pj(F,)=S""g;(r")e i, (A23)

1 - T
= _:(277) j d3rS—1¢j(r/)e—|Ejt e—|k~r
The relation between the target frame coordinafes) (and
the projectile frame coordinateg’(t’) is given by the Lor- _ 1 3f f d3rd3kls—l(~bj(|2/)
entz transformation (2m)
R iK1 =ik T o iEt’
()= (xy.2.1), Xe e it (A27)
R With x’=x—b andy’=y we can perform the integral over
(r't")=(x=b,y,y(z—vpt),y(t—vpz)), (A24) x andy and obtain with the substitutiopk,= ¢,
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FIG. 14. Momentum space density of the 4tate of the Au 0.0 OGO 6—0—6—0-E5-5-5-5

projectile atE,,=0.93 GeV/nucleon, tim¢= + 10 and impact pa-
rameter zero. The density has a maximumkat0.76 and is
stretched along thk, axis by the value ofy=2.

| Energy | (units of mc2)

1 FIG. 15. Projections of the slstate of a Au projectile at
-17 E.p=0.93 GeV/nucleon and timé=+10 onto the positive and
- Z . k k lab
277'yJ j dzdgs d)J( Xy 41y negative continuum states of the target. The projections are shown
as a function of the continuum energy.
X el ({~ ket YEjup)z-kb—(Lop+ 9D (A28)

a window of thek,-k, plane ranging from-3 to 3 in both
coordinates. The time has been set+dl0. The projectile is
st k, i[(= Lo yE ) t—k.b] traveling in coordinate space along thexis, meaning that
7‘751' I‘x’ky'7_UPEi e PTYEITEOL (A29) the momentum of the projectile is pointing into the positive
k, direction. We find the maximum of the wave function
with {=k,— yvpE;. Finally, we arrive at aroundk,= yE,p=1.415[see Eq.A30)]. It is also obvi-
K ous in this picture that the projectile wave function is
(k Ky, _Z_UPEj)ei[(kzvp+Ej Iy)t+kyb], stretched irk, direction by the Lorentz factoy. In the next
step we projected this wave function by projection onto the
(A30) target wave functions out of the positive and negative con-
The projectile states are shifted forward by the momentuntinua. For the projection, the analytic;al rgpresentation pf both
yupE; and “stretched” by the factory. The numerical states has been used and not their grid representation. The
evaluation can be done basically with the same methods as @'gular momentum summation has been extended up to
the case of the target states that we explained in the previols| = 10. In Fig. 15 we display the projection of the projectile
sections. 1s state onto the positive and negative continua of the target.
We want to illustrate with a typical example that a projec- The energy integration yields a value of 81.9% for the posi-
tile bound state predominantly overlaps with the positivetive continuum and 1.8% for the negative continuum. The
continuum of the target, while the overlap with the negativeprojection onto the bound states of the target up toNhe
continuum is small, but not necessarily negligible. The col-shell was found to be less tharnx1L0 3. About 16% are
lision system is gold on uranium H,,= 0.93 GeV/nucleon missing due to the restriction of the angular momenta in the
(y=2). We have set the impact parameter to zero, whictcontinuum states the|<10. The maximum of the projection
helps to speed up the computation considerably since wen the positive continuum is found arouro=1.7, which
only have to integrate numerically over the-k, plane. In  corresponds to a momentum &= E?—1=1.375 and
Fig. 14 we plotted the density of the projectile §tate in  agrees very well with the maximum found in Fig. 14.

The z integration yields

-1

&P,j('zvt)ZT;bj
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