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Electron-impact ionization of atomic hydrogen is studied by direct solution of a set of time-dependent
close-coupled partial differential equations. The close-coupled equations describe the propagation of a time-
evolving wave packet on a two-dimensional radial lattice. Following the collision, the wave packet is projected
onto stationary states of the target to obtain probabilities for elastic and inelastic scattering processes. Ioniza-
tion cross sections are calculated for variousLS partial waves and compared with previous theoretical meth-
ods.

PACS number~s!: 34.80.Dp

I. INTRODUCTION

The calculation of accurate electron-impact excitation and
ionization cross sections for atoms remains a long-standing
problem in atomic collision physics. One of the most pow-
erful theoretical approaches is based on the solution of a set
of time-independent close-coupled differential equations for
the scattering wave function@1–3#. For excitation of bound
states at low energies the close-coupling method can be ex-
tremely accurate. Recently, efforts have focused on the ex-
tension of the close-coupling method to excitation and ion-
ization of bound states at intermediate energies, notably the
coupled-channels optical potential method@4,5#, the interme-
diate energyR-matrix method@6,7#, the converged close-
coupling method@8,9#, the variationalT-matrix method@10#,
the convergedJ-matrix method@11#, and the eigenchannel
R-matrix method@12,13#. The recent methods all seek a bet-
ter representation of the continuum in the excitation process.

A second theoretical approach is based on the solution of
a set of time-independent close-coupled partial differential
equations for the scattering wave function@14#. The idea is
to include long-range correlation effects through the use of
two-dimensional radial wave functions for the excited and
scattered electrons. Recently, efforts have focused on the de-
velopment of numerical methods based on basis-set expan-
sions@15–17#, finite differences@18,19#, and finite elements
@20,21#. Despite progress on the asymptotic three-body prob-
lem @22–24#, the main limitation of this second close-
coupling method is matching to the boundary condition for
two free electrons.

A third theoretical approach is based on the solution of
time-dependent close-coupled partial differential equations
for the scattering wave function. As pointed out by Bottcher
@25#, time evolution of a wave packet localized in space ob-
viates the need for answers to questions about the asymptotic
form of the wave function in position space or its singulari-
ties in momentum space. Recently the wave-packet approach
has been applied to the calculation of two-electron atom en-
ergies@26#, atomic autoionization@27#, ands-wave electron
scattering from hydrogen@28#.

In this paper we formulate a completeLS partial wave

solution of the time-dependent close-coupled partial differ-
ential equations. The method is an extension of the recent
work of Wang and Callaway@18,19# to the time-dependent

FIG. 1. uP00
00(r 1 ,r 2 ,t50)u2 for s520.0 andw56.0: ~a! flat con-

tour map and~b! 3D projection.

PHYSICAL REVIEW A MARCH 1996VOLUME 53, NUMBER 3

531050-2947/96/53~3!/1525~12!/$10.00 1525 © 1996 The American Physical Society



domain. We then calculate variousLS partial wave cross
sections for the electron-impact ionization of hydrogen. For
1,3S scattering, restricted tos waves, we compare the cross-
section results with numerous other methods. For full1S,
3S, 1P, and 3P scattering, we compare the cross-section
results with those of the converged close-coupling method
@9#. Finally, we compare1,3S and 1,3P partial wave results
with ionization cross sections calculated in a first-order
distorted-wave approximation using prior@29# and post@30#

forms of the scattering potentials. It is important to under-
stand the limitations of first-order perturbation theories, since
they still remain the only viable theoretical approach for
many complex atoms and molecules.

II. THEORY

For electron scattering from a one-electron target atom,
the Hamiltonian~in atomic units! is given by

TABLE I. Electron-impact ionization cross sections for hydrogen in the1S Temkin-Poet model.

Time-dependent method Time-independent method@8,34#
Energy~eV! Cross sections (10218 cm2) Cross sections (10218 cm2)

20.0 1.18 1.36
25.0 1.76 1.85
30.0 1.93 2.01
35.0 1.91 1.88
40.0 1.79 1.78
45.0 1.63 1.58
50.0 1.48 1.41

FIG. 2. uP00
00(r 1 ,r 2 ,t525)u2 for E530 eV in the Temkin-Poet

model: ~a! flat contour map and~b! 3D projection.
FIG. 3. uP00

01(r 1 ,r 2 ,t525)u2 for E530 eV in the Temkin-Poet
model: ~a! flat contour map and~b! 3D projection.
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TABLE II. Electron-impact ionization cross sections for hydrogen in the3S Temkin-Poet model.

Time-dependent method Time-dependent method@8,34#
Energy~eV! Cross sections (10218 cm2) Cross sections (10218 cm2)

20.0 0.03 0.02
25.0 0.08 0.07
30.0 0.14 0.12
35.0 0.20 0.18
40.0 0.24 0.22
45.0 0.28 0.25
50.0 0.30 0.27

FIG. 4. uPl 1l 2
00 (r 1 ,r 2 ,t525)u2 for E530 eV for a three-channel close-coupling calculation:~a! l 15l 250, ~b! l 15l 251, and~c!

l 15l 252.
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where therW1 andrW2 are the coordinates of the two electrons
andZ is the atomic number. The total wave function may be
expanded in coupled spherical harmonics

CLS~rW1 ,rW2 ,t !5 (
l 1 ,l 2

Pl 1l 2
LS ~r 1 ,r 2 ,t !

r 1r 2
Wl 1l 2

L ~ r̂ 1 , r̂ 2!, ~2!

where

Wl 1l 2

L ~ r̂ 1 , r̂ 2!5 (
m1 ,m2

Cm1m2 0
l 1l 2L Yl 1m1

~ r̂ 1 !Yl 2m2
~ r̂ 2 !, ~3!

L andS are the total orbital and spin angular momentum of
the system,Yl m( r̂ ) is a spherical harmonic, andCm1m2 0

l 1l 2l 3 is a

Clebsch-Gordan coefficient. From projection onto the time-
dependent Schrodinger equation

E Wl 1l 2

L* ~ r̂ 1 , r̂ 2!SH2 i
]

]t DCLS~rW1 ,rW2 ,t !dr̂1dr̂250,

~4!

we obtain the following set of time-dependent close-coupled
partial differential equations for eachLS symmetry:

FIG. 5. uPl 1l 2
01 (r 1 ,r 2 ,t525)u2 for E530 eV for a three-channel close-coupling calculation:~a! l 15l 250, ~b! l 15l 251, and~c!

l 15l 252.
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and the coupling operator is given by@19#

V
l 1l 2 ,l 18l 28
L

~r 1 ,r 2!5~21!L1l 21l 28A~2l 111!~2l 1811!~2l 211!~2l 2811!

3(
l
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D H L l 28 l 18

l l 1 l 2
J . ~7!

We solve the time-dependent close-coupled equations us-
ing lattice techniques to obtain a discrete representation of
the radial wave functions and all operators on a two-
dimensional grid. When finite-difference methods are em-
ployed, local operators become diagonal matrices and de-
rivative operators, such as the kinetic energy, have lattice
representations in terms of banded matrices. For simplicity,
all calculations discussed here implement uniform mesh
spacing.

Stationary states of the one-electron target atom are con-
structed by diagonalization of the matrix representation of
the radial single-particle Hamiltonian

h52
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l ~ l 11!

2r 2
2
Z

r
. ~8!

For 200 uniform grid points over the range 0–40, there are
generally bound radial orbitals up ton55 for each orbital
angular momentuml . The remaining orbitals have positive
energy and represent the continuum. Only the low-n orbitals
are spectroscopic, i.e., compare well in energy and form with
the known hydrogenic solutions.

The total wave function at timet50 is constructed as the
antisymmetrized product of an incoming radial wave packet
for one electron and the lowest-energy bound stationary state
of the other electron@25#. For L50, then

P00
0S~r 1 ,r 2 ,t50!5A1

2
@gks~r 1!P1s~r 2!

1~21!SP1s~r 1!gks~r 2!#, ~9!

TABLE III. Convergence of the close-coupling method for1,3S electron ionization of hydrogen at 30 eV
incident energy.

l 1l 2 pairs
1S cross sections (10218 cm2) 3S cross sections (10218 cm2)

s2 1.93 0.14
s21p2 2.82 0.31
s21p21d2 2.90 0.33

TABLE IV. Electron-impact ionization cross sections for1S scattering from hydrogen.

Time-dependent method Time-independent method@9,35#
Energy~eV! Cross sections (10218 cm2) Cross sections (10218 cm2)

20.0 2.17 2.72
25.0 2.89 3.00
30.0 2.90 2.91
35.0 2.79 2.73
40.0 2.57 2.53
45.0 2.29 2.23
50.0 2.08 1.94
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and forLÞ0 andl 5L,

Pl 0
LS~r 1 ,r 2 ,t50!5A1

2 gkl ~r 1!P1s~r 2!,

P0l
LS~r 1 ,r 2 ,t50!5~21!SA1

2 P1s~r 1!gkl ~r 2!, ~10!

where

gkl ~r !5
1

~w2p!1/4
e2 ~r2s!2/2w2hl

2~kr !, ~11!

k is the linear momentum,s is the localization radius of the
wave packet,w is the width of the wave packet, and
hl

2(kr) is an asymptotic Hankel function, i.e.,
hl

2(kr)5e2 ikreipl /2.
For a given LS symmetry, the time evolution of the

coupled equations is given by

S P1~ t1Dt !

P2~ t1Dt !

A

PN~ t1Dt !

D 5exp5 2 i S T111V11 V12 ••• V1N

V21 T221V22 ••• A

A A � A
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D Dt6 S P1~ t !P2~ t !

A

PN~ t !

D , ~12!

where Dt is a small time step andN is the number of
l 1l 2 pairs. The dimension ofPi is equal to the number of
points on a two-dimensional latticeN̄ and the dimension of
the matricesT i i and V i i is equal to N̄3N̄. Typically

TABLE V. Electron-impact ionization cross sections for3S scattering from hydrogen.

Time-dependent method Time-independent method@9,35#
Energy~eV! Cross sections (10218 cm2) Cross sections (10218 cm2)

20.0 0.09 0.06
25.0 0.22 0.22
30.0 0.33 0.33
35.0 0.44 0.45
40.0 0.53 0.50
45.0 0.57 0.53
50.0 0.61 0.55

FIG. 6. Electron-impact ionization of hydrogen in the1S sym-
metry. Solid curve, distorted-wave method, prior form; dashed
curve, distorted-wave method, post form; cross marks: time-
dependent close-coupling method.

FIG. 7. Electron-impact ionization of hydrogen in the3S sym-
metry. Solid curve: distorted-wave method, prior form; dashed
curve: distorted-wave method, post form; cross marks, time-
dependent close-coupling method.
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N̄540 000. We approximate the exponential operator by a
Taylor-series expansion, generally retaining 10–20 terms de-
pending on the time step. The Taylor series is not explicitly
unitary, but in practice, the norm of the wave function can be
conserved to high precision.

The spin-averaged electron-impact ionization cross sec-
tion is given by@28#

s ion5
p

4k2(L,S ~2L11!~2S11!` ion
LS , ~13!

where

` ion
LS512 (

n,l ,m
`n,l ,m
LS

2 (
n,l ,m

(
n8,l 8,m8

3 z^CLS~rW1 ,rW2 ,t !ufn8l 8m8~r
W
1!fnl m~rW2!& z2. ~14!

In the above equations,̀ion
LS is the probability for ionization

and`nl m
LS is the probability of finding only one electron in a

bound statefnl m(rW) and the other electron in the continuum.

FIG. 8. uPl 1l 2
10 (r 1 ,r 2 ,t525)u2 for E530 eV for a six-channel close-coupling calculation:~a! l 150,l 251; ~b! l 151,l 252; and~c!

l 152,l 253.
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The third term on the right-hand side of Eq.~14! is the prob-
ability to find both electrons in bound states. The bound-state
probabilities are given by

`nl m
LS 5E drW1z^CLS~rW1 ,rW2 ,t !ufnl m~rW2!& z2

2 (
n8,l 8,m8

z^CLS~rW1 ,rW2 ,t !ufn8l 8m8~r
W
1!fnl m~rW2!& z2

1E drW2z^CLS~rW1 ,rW2 ,t !ufnl m~rW1!& z2

2 (
n8,l 8,m8

z^CLS~rW1 ,rW2 ,t !ufnl m~rW1!fn8l 8m8~r
W
2!& z2.

~15!

Angular reduction of the overlap integrals found in the above
equations is straightforward:

(
m

E drW1z^CLS~rW1 ,rW2 ,t !ufnl m~rW2!& z2

5(
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0
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dr1F E
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dr2Pl 1l
LS ~r 1 ,r 2 ,t !Pnl ~r 2!G2

~16!
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FIG. 9. uPl 1l 2
11 (r 1 ,r 2 ,t525)u2 for E530 eV for a six-channel close-coupling calculation:~a! l 150,l 251; ~b! l 151,l 252; and~c!

l 152,l 253.
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whered(l 1l 2l 3) indicates an algebraic triangle relation.

III. TEMKIN-POET MODEL RESULTS

If we consider onlyL50 and restrict the sum over
l 1l 2 pairs in Eq.~5! to just l 15l 250, we obtain the time-
dependent partial differential equation

i
]P00

0S~r 1 ,r 2 ,t !

]t
5@T00~r 1 ,r 2!1V00,00

0 ~r 1 ,r 2!#P00
0S~r 1 ,r 2 ,t !,

~18!

where the operatorV has the simple form

V00,00
0 ~r 1 ,r 2!5

1

r.
. ~19!

The time-independent version of the above equations was
first proposed by Temkin@14# and subsequently solved by
Poet @31–33#. Since that time most new theoretical ap-
proaches to electron-atom scattering have found their first
tests on what is now called the Temkin-Poet model.

A three-point finite-difference method was employed to
solve Eq.~18! on a 2003200 lattice. Each radial direction
from 0–40 was spanned by a uniform mesh with spacing of
0.20. Due to the coarse grid spacing near the origin, the
bound-state energy for the 1s state in a potential of21/r is
213.5 eV. Of course, a much larger lattice size has the effect
of correcting the bound-state energy spectrum. We are look-
ing forward, however, to solving Eq.~5! with as many as six
coupled channels and a large lattice becomes computation-
ally expensive. The Temkin-Poet model serves as a good test
for determining minimum lattice sizes.

At time t50 the wave packet was given a localization
radius of 20.0 and a width of 6.0. The absolute value squared
of the initial radial wave function of Eq.~9! is shown in Fig.
1. The two large mounds are due to the antisymmetrized
product wave function. The shape of each mound is deter-
mined by the wave-packet width in one direction and the 1s
bound-state orbital width in the other direction. As time in-

creases the wave packet first collapses to the origin and then
rebounds outwards. At timet525.0 and 500 time steps, the
absolute value squared of a radial wave function withS50
and E530 eV is shown in Fig. 2, while the radial wave-
function density withS51 andE530 eV is shown in Fig. 3.
The surviving mounds along each axis represent elastic scat-
tering and excitation to low-lying bound excited states. The
wave-packet density in the vicinity of ther 15r 2 ridge rep-
resents ionization. At every 20 time steps the bound and
continuum state probabilities of Eqs.~14! and~15! are com-
puted. By the timet525.0 all the probabilities have settled
down to their final steady-state values and cross sections may
be calculated.

Electron-impact ionization cross sections for hydrogen in
the Temkin-Poet model are presented in Tables I and II for a
number of incident energies. In Tables I and II the1,3S sym-
metry time-dependent results are compared with the time-
independent converged close-coupling results of Bray and
Stelbovics@8,34#. The 1S and 3S ionization cross sections
presented in the tables are also in good agreement with other
recent Temkin-Poet model calculations@13,15,17,28#.

IV. 1,3S PARTIAL-WAVE RESULTS

We now considerL50 and begin with the close-coupled
set of partial differential equations given by

i
]P00

0S~r 1 ,r 2 ,t !

]t
5@T00~r 1 ,r 2!1V00,00

0 ~r 1 ,r 2!#P00
0S~r 1 ,r 2 ,t !

1V00,11
0 ~r 1 ,r 2!P11

0S~r 1 ,r 2 ,t !

1V00,22
0 ~r 1 ,r 2!P22

0S~r 1 ,r 2 ,t !,

i
]P11

0S~r 1 ,r 2 ,t !

]t
5@T11~r 1 ,r 2!1V11,11

0 ~r 1 ,r 2!#P11
0S~r 1 ,r 2 ,t !

1V11,00
0 ~r 1 ,r 2!P00

0S~r 1 ,r 2 ,t !

1V11,22
0 ~r 1 ,r 2!P22

0S~r 1 ,r 2 ,t !,

TABLE VI. Convergence of the close-coupling method for1,3P electron ionization of hydrogen at 30 eV
incident energy.

l 1l 2 pairs
1P cross sections (10218 cm2) 3P cross sections (10218 cm2)

sp1ps 3.02 1.22
sp1ps1pd1dp 4.02 1.52
sp1ps1pd1dp1d f1 f d 4.07 1.56

TABLE VII. Electron-impact ionization cross sections for1P scattering from hydrogen.

Time-dependent method Time-independent method@9,35#
Energy~eV! Cross sections (10218 cm2) Cross sections (10218 cm2)

30.0 4.07 5.04
40.0 3.94 4.41
50.0 3.35 3.74
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Using the general forms found in Eqs.~5!–~7!, the above
coupled equations can be extended to include not only the
s2, p2, andd2 contributions, but higherl 2 contributions.

The same 2003200 lattice used in Sec. III for the
Temkin-Poet model was employed to solve Eq.~20!. At time
t50 the initial radial wave function is given by Eq.~9! and
shown in Fig. 1. We note thatP11

0S(r 1 ,r 2 ,t50)
5P22

0S(r 1 ,r 2 ,t50)50. At time t525.0 and 2500 time steps,
the absolute value of a radial wave function withS50 and
E530 eV is shown in Fig. 4, while the radial wave-function
density withS51 andE530 eV is shown in Fig. 5. The
frames in both figures are for thes2, p2, andd2 radial wave
functions.

Electron-impact ionization cross sections for1,3S scatter-
ing from hydrogen are presented in Tables III–V. In Table III
convergence is demonstrated as a function of the number of
close-coupled equations for the1,3S partial-wave cross sec-
tions at 30 eV incident energy. The rapid convergence in
terms of l 1l 2 pairs is not unexpected. In first-order
distorted-wave calculations for the ionization cross section,
the number of ejected energy partial waves is generally small
for all energies. Of course, in both the close-coupling and
distorted-wave methods, the number of totalLS partial
waves increases with higher incident energies. In Tables IV
and V the three-channel close-coupling calculations are com-
pared with the time-independent converged close-coupling
results of Bray and Stelbovics@9,35# at several incident en-
ergies.

The time-dependent close-coupling cross sections for the
1,3S symmetries are compared with distorted-wave calcula-
tions in Figs. 6 and 7. The distorted-wave cross sections are

TABLE VIII. Electron-impact ionization cross sections for3P scattering from hydrogen.

Time-dependent method Time-independent method@9,35#
Energy~eV! Cross sections (10218 cm2) Cross sections (10218 cm2)

30.0 1.56 1.65
40.0 1.46 1.51
50.0 1.34 1.44

FIG. 10. Electron-impact ionization of hydrogen in the1P sym-
metry. Solid curve, distorted-wave method, prior form; dashed
curve, distorted-wave method, post form; cross marks, time-
dependent close-coupling method.

FIG. 11. Electron-impact ionization of hydrogen in the3P sym-
metry. Solid curve, distorted-wave method, prior form; dashed
curve, distorted-wave method, post form; cross marks, time-
dependent close-coupling method.
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based on a triple partial-wave expansion of the first-order
scattering amplitude, including both direct and exchange
terms. The prior form of the scattering amplitude@29# re-
quires the incident and scattered electrons to be calculated in
a VN potential, while the bound and ejected electrons are
calculated in aVN21 potential. A post form of the scattering
amplitude@30# may also be formulated in which all electrons
are calculated in aVN21 potential. ForL50 scattering, the
post-form choice of distorted-wave method is in better agree-
ment with the more exact close-coupling method.

V. 1,3P PARTIAL-WAVE RESULTS

The same 2003200 lattice used for the1,3S partial-wave
results was employed to solve Eqs.~5!–~7! for L51. At time
t50 the initial radial wave function is given by Eq.~10! with
l 51. At time t525.0 and 2500 time steps, the absolute
value of a radial wave function withS50 andE530 eV is
shown in Fig. 8, while the radial wave-function density with
S51 andE530 eV is shown in Fig. 9. Both are six-channel
close-coupling calculations, includingsp, ps, pd, dp, d f ,
and f d contributions. The frames in both figures are for the
sp, pd, andd f radial wave functions. Theps, dp, and f d
radial wave functions are the mirror images of thesp, pd,
andd f functions, respectively, the inversion axis being the
r 15r 2 line.

Electron-impact ionization cross sections for1,3P scatter-
ing from hydrogen are presented in Tables VI–VIII. In Table
VI convergence is demonstrated as a function of the number
of close-coupled equations for the partial wave cross sections
at 30 eV incident energy. Again the convergence is found to
be rapid in terms ofl 1l 2 pairs. In Tables VII and VIII the
six-channel close-coupling calculations are compared with
the time-independent converged close-coupling results of
Bray and Stelbovics@9,35# at several incident energies.

The time-dependent close-coupling cross sections for the
1,3P symmetries are compared with distorted-wave calcula-
tions in Figs. 10 and 11. ForL51 scattering, the post-form
choice of the distorted-wave method is in better agreement
with the more exact close-coupling method. We caution
against a choice for the best lowest-order distorted-wave
method, however, since there remain large contributions to
the total ionization cross section from higher partial waves.
In fact, as shown in Fig. 12, the best agreement with the
experimental measurements@36# of the total ionization cross
section for hydrogen is found with the prior form of the
distorted-wave method.

VI. SUMMARY

Based on the calculations presented in the previous sec-
tions, the time-dependent close-coupling method does quite
well in describing the dynamics found in electron scattering
from hydrogen. The method has its strength in a simple for-
mulation and a freedom from matching to boundary condi-
tions. The time evolution of the wave packet on the lattice
provides a detailed picture of the short-time scattering dy-
namics. By projecting the wave packet onto stationary states
of the target, a variety of inelastic scattering cross sections
may be obtained. The ionization cross sections for various
LS partial waves are in reasonable agreement with the cur-
rent best theoretical results.

We regard the calculations presented here as preliminary
in regard to numerical procedures. To better support one-
electron bound states a variable mesh spacing could be em-
ployed. Half the lattice points could be eliminated by re-
stricting the time propagation to the triangular region
r 1<r 2 . The Taylor-series propagator could be replaced by a
more efficient method.

Finally, the time-dependent close-coupling calculations
are essentially numerical experiments on simple systems.
The types of systems could be extended through the use of
core potentials and a single active electron approximation. It
is important, however, to compare these numerical experi-
ments with perturbation theory calculations to determine the
dominant scattering mechanisms. Perturbation theory calcu-
lations still remain the only viable theoretical approach for
many complex atoms and molecules.
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FIG. 12. Total electron-impact ionization cross section for hy-
drogen. Solid curve, distorted-wave method, prior form; dashed
curve, distorted-wave method, post form; solid circles, experimental
measurements@36#.
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