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We have developed a nonperturbative treatment of bound-free lepton-pair production caused by the strong
and sharply pulsed electromagnetic fields generated by heavy ions in peripheral, relativistic collisions based on
the solution of the time-dependent Dirac equation using lattice techniques. In this paper, we discuss refine-
ments and extensions of our numerical methods for this problem and demonstrate convergent calculations, with
respect to the parameters of the lattice, for bound-free muon-pair production in collisions near grazing inci-
dence of238U9211238U921 and beam kinetic energies of 30 GeV per nucleon in the fixed-target frame.

PACS number~s!: 34.90.1q, 25.75.2q, 12.20.Ds, 02.70.Jn

I. INTRODUCTION

The new colliding-beam heavy-ion accelerators—most
notably the Relativistic Heavy-Ion Collider~RHIC! project
at Brookhaven National Laboratory~BNL!, designed to in-
vestigate nuclear matter at high temperatures and densities—
have motivated great interest concerning possible new elec-
tromagnetic phenomena@1#. The phenomena considered are
pervasive, having relevance for atomic, nuclear, and particle
physics, and the design of accelerators and detectors. One of
the most interesting of these processes, from the perspective
of both fundamental and practical importance, is the produc-
tion from the vacuum of lepton-antilepton pairs. Of particu-
lar interest is the process of bound-free electron-positron pro-
duction, also called electron capture from pair production, in
which the produced electron emerges from the collision
bound to a participant ion, as this is a principal beam-loss
mechanism for highly charged relativistic ions in a storage
ring @2#. This electron capture process is unique in relativistic
atomic collision physics in that its cross section increases
with the collision energy@3# and no real electrons need be
present in the initial state of the collision.

From a fundamental perspective, pair production in pe-
ripheral relativistic heavy-ion collisions provides an opportu-
nity to study nonperturbative quantum electrodynamics
~QED! in an entirely new and continuously varying energy
regime using an interaction which is completely known, due
to the combination of very high collision energies and elec-
tric charges. Low-order perturbative calculations for bound-
free electron-positron pair production have been used as in-
put into design models for RHIC@4,5#, and are consistent
with a 14-h beam lifetime for gold ions in a storage ring at
RHIC energies@6#, i.e., approximately 20 TeV per nucleon in
the fixed-target frame. Since significantly larger cross sec-
tions at these extreme energies would severely limit the
beam lifetime for very heavy ions, the size of nonperturba-
tive enhancements has been a matter of great interest. Recent
coupled-channel Dirac equation calculations predict nonper-
turbative effects to be less than 10% for very heavy ions at
RHIC energies@7,8#. However, the size of these enhance-

ments for the bound-free electron-positron pair cross section
at lower energies near 1–10 GeV per nucleon has been a
matter of some controversy@7,9–11#.

The first direct measurement of the bound-free electron-
positron pair production process was performed at Lawrence
Berkeley Laboratory’s Bevalac accelerator using238U921

beams at a kinetic energy of approximately 1 GeV per
nucleon on targets as heavy as gold@12#. Various perturba-
tive and nonperturbative predictions for the cross section are
within a factor of 2 or 3, but no published theoretical calcu-
lation reproduces these measurements more accurately@12#.
Recently, experiments have been performed using 160 GeV
per nucleon208Pb821 beams with gold targets at the Euro-
pean Organization for Nuclear Research~CERN! @13#. With
the results from new experiments at 10 GeV per nucleon
@14#, the measured cross sections will span more than two
orders of magnitude in the target-frame collision energy. As
such, a reasonable extrapolation of these measurements to
RHIC energies should be possible, due to the moderate en-
ergy dependence of the cross section in the high-energy re-
gime @15#.

Our goal of providing a calculable, nonperturbative de-
scription of bound-free lepton-pair production valid over a
wide energy range has been limited to varying degrees by the
available computer performance. To ease this constraint ini-
tially, we have applied our numerical techniques for the time-
dependent Dirac equation in three dimensions to the calcula-
tion of bound-free muon-antimuon pair production
probabilities, as the range of natural length scales for this
problem is smaller than for bound-free electron-positron pair
production@17,18#. Even so, varying the parameters of our
lattice to obtain numerically converged results was not prac-
tical in our previous work@17–19#.

The main purpose of this paper is to present recent calcu-
lations for bound-free muon-pair production at a single im-
pact parameter which are converged with respect to the pa-
rameters of the lattice used. That is, we demonstrate that the
computed bound-free muon-pair probability does not change
appreciably as the lattice spacing is decreased and the com-
putational volume is increased. In accomplishing this, we
have made two important improvements in our methods. We
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now use high-order basis-spline or Fourier collocation repre-
sentations@20,21# for the momentum operators, rather than
the lower order and factored basis-spline-collocation repre-
sentations used previously@16–18#. This results in a more
accurate representation of the kinetic-energy operator and an
improved treatment for the lattice fermion-doubling problem
@20#. Second, we have implemented our numerical methods
on very powerful parallel computers@22#, enabling the use of
much larger lattice sizes for performing convergence tests.
Following an outline of the theory of bound-free lepton-pair
production in Sec. II, this paper gives an overview of lattice
methods for the solution of the time-dependent Dirac equa-
tion in Sec. III. In Sec. IV, we briefly discuss our previous
bound-free muon-pair production calculations and present
results from our present calculations at an impact parameter
of 8|m for a collision of fully stripped uranium ions at a
fixed-target frame kinetic energy of 30 GeV per nucleon. We
provide a summary and discussion of this work in Sec. V.

II. THEORETICAL APPROACH

A semiclassical approximation is appropriate for the pair
production problem assuming a classical electromagnetic
field generated by the heavy ions, and neglecting lepton-
lepton interactions@23#. In this formalism, strong-field quan-
tum electrodynamics is reduced to solving the time-
dependent Dirac equation coupled to a classical
electromagnetic field while maintaining the quantum-field-
theoretic description, which is the correct language for ex-
pressing particle production@18#. We use natural units, i.e.,
\5c5mm51, throughout this discussion. These definitions
imply that energies are measured in units of the muon’s rest
mass,mmc

25105.7 MeV, and length and time in units of the
muon’s Compton wavelength,|m5\/mmc51.87 fm, and
Compton time,tm5|m /c56.2310224 sec, respectively.

A. Dirac equation

We study the electromagnetic production of bound-free
lepton pairs in a reference frame in which one of the nuclei,
i.e., the target, is at rest, since recoil may be neglected. The
target nucleus and the lepton interact via the static Coulomb
field, AT

0 . The time-dependent interaction,AP
m(t), arises

from the classical motion of the projectile. Splitting the
Dirac Hamiltonian into static and time-dependent parts, we
write the Dirac equation for a lepton described by a spinor
f(rW,t) coupled to an external, time-dependent electromag-
netic field

@HF1HP~ t !#f~rW,t !5 i
]

]t
f~rW,t !, ~2.1!

where the static Furry Hamiltonian,HF , is given by

HF52 iaW •¹W 1b2eAT
0 , ~2.2!

and the time-dependent interaction of the lepton with the
projectile is

HP~ t !5eaW •AW P~ t !2eAP
0 ~ t !. ~2.3!

The stationary eigenstates of the Furry Hamiltonian,
HF @Eq. ~2.2!#, are defined in configuration space by

HFxk~rW !5Ekxk~rW !. ~2.4!

The Furry states are proper in and out states for asymptotic
times utu→`, where the interactionHP(t) is zero, and thus
serve as the initial states for the time evolution

lim
t→2`

f j~rW,t !→x j~rW !exp~2 iE j t !. ~2.5!

In Ref. @18#, the inclusive time-dependent probability for
vacuum production of leptons with capture into a bound
state,p, is determined by computing the expectation value of
the lepton number operator,n̂p[â†â, for the bound state
with respect to the time-evolved QED vacuum,uF0(t)&, i.e.,

Pp~ t !5^F0~ t !un̂puF0~ t !&

5 (
r,F

z^xp
~1 !uf r

~2 !~ t !& z2, p.F, ~2.6!

where F denotes the Fermi surface of the initial QED
vacuum state. From Eq.~2.6!, it is clear that to compute
probabilities for lepton-pair production, one could first
project time-evolved single-particle states from the negative-
energy continuum onto static Furry states, i.e., compute the
squares of single-particle transition amplitudes from all
statesr,F to the statep. Alternatively, one may apply the
time-reversal invariance of the Dirac equation to obtain an
expression where only one time-dependent solution of the
Dirac equation is required@18#,

Pp~ t !5 (
r,F

z^x r
~2 !ufp

~1 !~ t !& z2, p.F, ~2.7!

and it is this more economical expression which we directly
compute. Written in this way, bound-free pair production has
the form of an ionization process to negative-energy final
states.

B. Electromagnetic interaction

The physics of lepton-pair production is defined by the
electromagnetic fields of two charged particles in relative
motion, and these fields enter the Hamiltonian via the dimen-
sionless interaction energy,Ām[2eAm, between the lepton
and the colliding nuclei in Eqs.~2.2! and~2.3!. For simplic-
ity of discussion, we assume a pointlike charge for both the
projectile and the target. However, finite-size effects are im-
portant when considering heavy leptons, and are included in
our muon-pair production calculations by considering the nu-
clei to be uniformly charged spheres@18#. In the target
frame, we choose the projectile to move with constant speed,
b f , in the z direction, neglecting recoil, and the reaction to
occur in they-z plane with impact parameterb. The time-
dependent electromagnetic potentials between the projectile
and the lepton can be generated by a Lorentz-boost of the
static Coulomb field. This gives the following Lorentz-gauge
interaction:
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ĀP
0
„r 8~ t !…5

2ZPag f

r 8~ t !
,

ĀP
15ĀP

250, ~2.8!

ĀP
3
„r 8~ t !…5b f ĀP

0
„r 8~ t !…,

whereZP is the atomic number of the projectile,a is the
fine-structure constant, and

r 8~ t !5Ax21~y2b!21g f
2~z2b f t !

2 ~2.9!

is the distance between the projectile and the lepton observed
in the rest frame of the target.

For large projectile velocities, i.e.,b f→1, large cancella-
tions occur between scalar and vector amplitudes arising
from the time and spatial components, respectively, of the
Lorentz-gauge interaction@24#, which are troublesome for
many numerical approaches@15,18#. To avoid this difficulty,
we have explored the use of noncovariant gauges, as have
other authors@7,15#. We have found that the axial gauge
avoids these severe cancellations and, in addition, other dif-
ficulties associated with the use of the sharply peaked
Lorentz-gauge interaction with lattice techniques@18#. Spe-
cifically, in the axial-gauge interaction, we require thez com-
ponent of the interaction to be zero, i.e.,

ĀP
3
„r 8~ t !…→ÃP

3
„r 8~ t !…5ĀP

3
„r 8~ t !…1]zL„r 8~ t !…[0.

~2.10!

Integrating this equation to obtain the axial-gauge function
for pointlike interactions, one obtains

L„r 8~ t !;z0…5Zab f ln
z~ t !1Az2~ t !1r82

z0~ t !1Az0
2~ t !1r82

, ~2.11!

wherez0 is an arbitrary integration constant typically set to
zero in practice,z(t)[g f(z2b f t), z0(t)[g f(z02b f t), and
r825x21(y2b)2. One obtains the axial-gauge interaction
for a pointlike projectile by performing a gauge transforma-
tion on the Lorentz-gauge interaction in Eq.~2.8! using the
gauge function in Eq.~2.11!.

III. NUMERICAL SOLUTION

The solution of the Dirac equation coupled to such an
external field is a difficult numerical task. In heavy-ion col-
lisions with relative velocities up to approximately 0.3c, it is
reasonable to expand the projectile and target interactions
with the lepton about some point on the internuclear axis and
retain only the monopole term, since pair production is
dominated by the rapid collapse of theK shell when the
nuclei are very close@25#. However, for extreme relativistic
velocities, the retarded electromagnetic interaction breaks the
approximate monopole symmetry and indeed all symmetries
of three-dimensional space. As a result, multipole expansions
of the time-dependent interaction converge slowly. However,
progress has been made with the coupled-channels approach
by considering the high-energy limit of the multipole com-
ponents of the interaction represented in a noncovariant
gauge @8,26#. Compounding the computational difficulties

resulting from a lack of spatial symmetry is the fact that
accurate calculations depend on the interaction being well
represented over multiple physical length scales. For bound-
free electron-pair production, the relevant length scales are
the nuclear radius of the heavy ion (Rnuc'8 fm), the Comp-
ton wavelength of the electron (|e'400 fm!, the spatial ex-
tent of the bound electron’s probability density (10|e), and
the width of the electromagnetic pulse generated by the pro-
jectile, b/g f .

Largely in response to these numerical challenges, basis-
spline-collocation methods have been developed as accurate,
stable, and flexible methods for solving partial-differential
equations@16,20,27#, and applied to the solution of the time-
dependent Dirac equation@16,18#. More recently, we have
also implemented the similar, but more widely used, Fourier-
collocation, i.e., pseudospectral, methods@21#. In such grid-
based methods, one represents an approximate solution to a
differential equation with a basis of functions complete in a
finite-dimensional space. A set of linear equations for the
expansion coefficients are defined by an application of the
collocation method to the residual of the differential equa-
tion. One eliminates the expansion coefficients from the lin-
ear equations in favor of the approximate solution evaluated
at the collocation points. We note that the memory require-
ment of many large three-dimensional problems is domi-
nated by storage for the solution vector, not the Hamiltonian
matrix, because of the separability of the kinetic-energy op-
erator represented in orthogonal coordinates. Therefore,
high-order methods, with their improved accuracy, which re-
duce the total number of lattice points required have an ad-
vantage when memory capacity is a constraint, as is the case
for these calculations of bound-free lepton-pair production.

As a result of representing the Dirac operator on a
configuration-space lattice, one must manage the fermion-
doubling, or spectral-doubling, problem@28,30#. Fermion
doubling is manifested by energy-momentum dispersion re-
lations for which, as a function of increasing momentum, the
energy decreases associating low-energy eigenvalues with
large momenta@16#. For a lattice with an even number of
points, one has the extreme situation of a degenerate zero
kinetic-energy state associated with the maximum momen-
tum k5kmax5p/Dx, whereDx is the lattice spacing@20#. In
dynamical problems, this spectral doubling causes unphysi-
cal, high-momentum components to dominate the evolution
@16#.

One method for avoiding the doubling is to represent the
upper- and lower-Dirac components using two distinct grids,
shifted with respect to each other@29#. For the case of finite-
difference operators, these shifted grids are equivalent to the
use of two-point forward and backward derivatives to dis-
cretize the lower and upper components of the Dirac spinor,
respectively. This idea was generalized to the lattice-
collocation method by factoring the second derivative matrix
with Cholesky decomposition to obtain upper- and lower-
triangular representations of the first-order derivative@16#.
However, we discovered that, when used in the context of a
large three-dimensional solution, this generalization intro-
duced errors into the imposed boundary conditions which
were too significant to overcome by simply increasing the
size and extent of the numerical lattice@17,18#. These errors
were especially troublesome for the bound-free pair produc-

1500 53WELLS, OBERACKER, STRAYER, AND UMAR



tion problem as it is the small, negative-energy-continuum
components of the Dirac spinor which are of interest.

Therefore, we have abandoned the use of the upper- and
lower-triangular representations of the first-derivative opera-
tor in favor of an~anti!symmetric representation of the first
derivative using Fourier or very high-order basis-spline col-
location representations@20,30#. Figure 1 demonstrates for
the case of the one-dimensional free Dirac equation that
these representations avoid the doubled energy spectrum for
a finite, but odd, number of lattice points. The Fourier de-
rivative provides a completely accurate energy dispersion re-
lation up to the maximum energy contained on the lattice.
Using the maximal-order spline representation, only the en-
ergy states with the largest wave number have an appreciable
error, and this error does not constitute a complete doubling
of the spectra, but does reduce by approximately 20% the
range of wave numbers for which a physical dispersion rela-
tion is well represented@20#.

Once the lattice representation of the Dirac Hamiltonian is
obtained, the solution of the time-dependent Dirac equation
proceeds in three general steps:~i! partial eigensolution for
the initial state,~ii ! evolution of this state in time, and~iii !
spectral analysis, i.e., projection, of the time-evolved solu-
tion to obtain the probabilities. Efficient algorithms used in
our present work for each of these three steps are described
in detail in Refs.@18,22#. These algorithms are iterative in
nature and reduce to a series of generalized matrix-matrix
operations which may be implemented efficiently using vec-
tor or parallel computers. Current calculations for this paper
were performed on the Intel Paragon-MP distributed memory
computer achieving a sustained floating-point performance
of 12 Gflop/s on 256 nodes.

IV. THREE-DIMENSIONAL CALCULATIONS

Because of the muon’s comparatively large mass, its
Compton wavelength and the nuclear radius are of similar

size, i.e.,Rnuc'4|m . As a result, the spatial extent of the
K-shell muon’s probability density is very compact, being on
the order of 10|m , with a significant probability for the
muon to be found inside the nucleus. As a result, accurately
representing the Coulomb cusp in the atomic wave function,
which is an issue for the electron-pair production problem, is
not a concern for the muon production problem. Moreover,
the range of length scales found in the muon-pair production
problem is smaller than that found in the electron-positron
pair production problem. For these reasons, our nonperturba-
tive, three-dimensional calculations for bound-free pair pro-
duction have been performed to date only for muon pairs as
this calculation is expected to be less difficult.

The duration of the projectile’s electromagnetic pulse in
the fixed-target frame,Dt'b/g fc, determines the maximum
equivalent-photon frequency present in the projectile-lepton
interaction, i.e.,Emax'g f\c/b. To produce a lepton pair, the
maximum photon energy must be at least two lepton-mass
units, i.e., g f\c/b*2m0c

2, or equivalently,b/g f&|c /2.
That is, the width of the electromagnetic pulse must be at
least one-half of the lepton’s Compton wavelength for the
pair production process to be above threshold. For muon-pair
production, this means thatb/g f&0.5|m'1 fm, i.e., the
width of the pulse determines the minimum length scale for
collision energies above threshold. The smallest peripheral
impact parameter is approximatelybmin'2Rnuc'8|m for a
heavy nucleus.~Pair production in peripheral, i.e., noncen-
tral, collisions may be distinguished experimentally by de-
tecting a positron in time coincidence with full-energy pro-
jectile ions which have not undergone hard nuclear
collisions.! We estimate the threshold target-frame Lorentz
factor for muon-pair production at this impact parameter to
be g f*4Rnuc/|m'16, or a target-frame kinetic energy of
approximately 15 GeV per nucleon. In the collider frame,
this corresponds to a Lorentz factor ofgc'3, or a kinetic
energy of 2 GeV per nucleon.

A. Previous calculations

Our initial three-dimensional calculations were designed
to demonstrate the feasibility of our numerical methods for
the Dirac equation by performing a schematic study of
bound-free muon-pair production into theK-shell in relativ-
istic heavy-ion collisions@17#. We considered collisions of
197Au7911197Au791 at collider energies up to 2 GeV per
nucleon using 203 lattice points, i.e., 20 points in each of the
three Cartesian directions@17#. We chose the collision energy
to be near threshold to minimize the overall range of length
scales in the calculation, and to perform calculations in a
regime in which low-order perturbation theory would apply.
Because of the limited computational resources, the calcula-
tions reported in Ref.@17# were performed using a model,
screened Lorentz-boosted Coulomb interaction. These initial
calculations resulted in very large bound-free muon-pair
probabilities on the order of 1022, given the fact that the
chosen collision energy is relatively low.

We improved our numerical approach by successfully in-
corporating the realistic electromagnetic interaction into the
lattice solution through the use of the noncovariant axial
gauge@18#. However, our calculations were still limited to
relatively small grid sizes. Using a lattice of 163 points and a

FIG. 1. The positive branch of the Dirac energy spectrum for a
free particle in one dimension versus the eigenvalue index using~a!
the Fourier-collocation method with 57 points, and the basis-spline-
collocation method with~b! 57th-order splines and 57 points,~c!
55th-order splines and 55 points,~d! 55th-order splines and 56
points, and~e! 5th-order splines and 55 points. The energy spec-
trum in example~a! reproduces the physical dispersion relation,
while all other examples given show some departure from the
physical relation. The spectra in examples~b! and ~c! show a de-
parture from the physical relation at large energy, while the spectra
in examples~d! and ~e! show very significant errors.
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lattice spacing of 2.5|m , we performed calculations for
bound-free muon-pair production into theK-shell in colli-
sions of 197Au7911197Au791 near the grazing impact pa-
rameter at collider kinetic energies of 2 GeV per nucleon,
resulting again in large probabilities of order 1022.

Both the calculations in Refs.@17,18# were far from being
converged partially due to the course grid spacing of 2.0–
2.5|m , as our new calculations will demonstrate. However,
difficulties persisted in subsequent calculations which were
not resolved by increasing the size of the lattice within prac-
tical limits. The most obvious point of concern was that the
calculated bound-free pair production probabilities were very
large considering the relatively small collision energy, and
did not easily converge to smaller numbers with increasing
lattice size as anticipated. This effect was especially notice-
able for large impact parameters for which the collision en-
ergy was below threshold for producing muon pairs. The
major source of these problems was identified as numerical
error resulting from the use of upper- and lower-triangular
derivative matrices in the kinetic-energy operator in avoiding
the fermion-doubling problem as discussed in Sec. III.

We implemented our current treatment of the fermion-
doubling problem using the Fourier-collocation method in
the calculations reported in Ref.@19# once again for our test
system of197Au7911197Au791 at collider kinetic energies of
2 GeV per nucleon. Using a single processor of a Cray-C90
computer, we performed convergence tests in a computa-
tional volume of (40|m)

3 using lattice sizes ranging in six
steps from 173 points to 813 points. The computed bound-
free muon-pair probabilities were observed to decrease
readily with increasing lattice size, but did not reach a con-
verged value. Still larger lattice sizes were required for con-
vergence. For the 813 lattice, we computed bound-free muon
probabilities which were much smaller than our previous cal-
culations, being approximately 631025.

In performing this work, we were able to identify the
major source of the error remaining in these calculations as
an under-representation on the lattice of the width of the
electromagnetic pulse resulting from too few lattice points in
the beam direction. The error from this effect was large com-
pared to the size of the bound-free muon probabilities, but
was negligible for the calculation of other observables, such
as the ionization probability. We were able to confirm this
idea by performing calculations in the same computational
volume, but using 292381 lattice points. This calculation
gave total bound-free probabilities approximately the same
as the 813 calculations since the same numerical error which
dominated both calculations, i.e.,Dz, was too large. Further
exploratory calculations performed using 2923161 lattice
points resulted in decreasing this error to a point where it no
longer dominated the bound-free probabilities@19#.

B. Convergence tests

Now that the quality of our calculations has substantially
improved, another significant difficulty in performing these
bound-free lepton-pair production calculations becomes
more apparent. These bound-free probabilities are orders of
magnitude smaller than other observables, and very accurate
numerical methods are required to compute bound-free prob-
abilities on the order of 1025 or 1026 where, in comparison,

the ionization probability is on the order of 0.1. Therefore, to
facilitate our convergence tests, we have considered a differ-
ent collision system with larger charge and collision energy
for which the bound-free pair probabilities are expected to be
larger, i.e., 238U9211238U921 at beam kinetic energies of
30 GeV per nucleon in the fixed-target frame. The larger
collision energy will decrease the width of the electromag-
netic pulse,b/g f , and thus the necessary lattice spacing in
the beam direction, by a factor of 2.

In performing the calculations for the convergence tests,
we varied the size of the initial time step to insure the insen-
sitivity of the results to this parameter of the calculation. In
addition, the time step size was varied inversely to the abso-
lute magnitude of the extremum of the electromagnetic inter-
action during the calculation to improve the accuracy of the
evolution near the distance of closest approach in the colli-
sion @18#. We first fixed the volume of the numerical box to
be (32|m)

3, and the lattice spacing for each of the three
dimensions to be 0.5|m , i.e., two points per muon Compton
wavelength. Experience shows this spacing to be adequate
for the transverse grid in computing the total bound-free
muon-pair production probability. However, as we have
mentioned, we expect the beam direction to require
Dz'b/2g f'0.13|m . Using up to 128 nodes of an Intel
Paragon-MP computer, we performed calculations with suc-
cessively smallerDz, until the total bound-free probability
does not change more than about 1% asDz is increased.
Calculations were performed using grids ranging in size
from 633 to 6323319. A calculation performed with
Dz50.125, i.e., with 6323255 lattice points, is sufficient for
convergence with respect to the lattice spacing in a volume
of (32|m)

3, and results in a calculated asymptotic bound-
free probability of approximately 431026.

We present these convergence tests for the bound-free
muon-pair probabilities in Fig. 2. This figure shows that tran-
sient probabilities on the order of 1023 are reached in these
collisions near the distance of closest approach for the pro-
jectile before the probabilities relax to much smaller values
at asymptotic times. The sharp local minimum occurring at
t50 is a characteristic feature of performing these calcula-
tions in the axial gauge enforcing only asymptotic gauge
invariance@10#. From experience, we attribute the fluctua-
tions observed in the small asymptotic values of the larger
runs in Fig. 2 to errors resulting from a numerical volume
which is too small. We note that the two largest runs pre-
sented in Fig. 2 give practically identical results.

In testing the convergence with respect to the volume of
the numerical box, we maintain the lattice spacing which
produced converged calculations for the (32|m)

3 volume,
i.e., Dx5Dy50.5|m , andDz50.125|m , and increase this
volume in two steps to (40|m)

3 and (48|m)
3. These two

calculations, requiring 7923319 and 9523383 lattice points,
respectively, agree with one another within 5%. The bound-
free probabilities as a function of time are presented in Fig.
3. With the improved accuracy of these larger calculations,
we notice a long-range, slowly relaxing tail for the time-
dependent probabilities which we attribute to the small lon-
gitudinal component of the projectile-muon interaction.

As a final test, we perform a very large calculation in a
rectangular volume of size 48|m372|m348|m , allowing
more space in the reaction plane. For this calculation, we use
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a lattice of 9531433479 points, resulting is a lattice spacing
of Dx5Dy50.5|m andDz50.10|m . We allowed this cal-
culation to proceed much longer in time until the probability
decreases less than 1.5% within the last five muon Compton
time units to obtain an asymptotic probability of
1.431026. Results from this calculation, presented in Fig. 3,
agree well with the previous two calculations, and so we
conclude that the extra space provided for the reaction plane
was unnecessary.

V. SUMMARY AND DISCUSSION

In summary, we have demonstrated convergence of a lat-
tice calculation, with respect to the refinement of the lattice

parameters, for bound-free muon-pair production probabili-
ties into theK-shell in collisions of 238U9211238U921 at
beam kinetic energies of 30 GeV per nucleon in the fixed-
target frame with an impact parameter of 8|m . Our calcula-
tions require large lattice sizes, and converge slowly to a
value ofPcapt51.431026. We observe that the convergence
of our calculation is very sensitive to the faithful representa-
tion on the lattice of the width of the electromagnetic pulse
generated by the projectile, which is the smallest physical
length scale which plays a role in this problem. Other ob-
servables, such as target excitation and ionization, which can
be calculated given the time-evolved spinor, converge much
more easily than the bound-free pair probability primarily
because other larger length scales characterize these pro-
cesses.

Our previous bound-free muon-pair calculations were pre-
liminary in nature and designed primarily to explore the fea-
sibility of performing three-dimensional lattice calculations
for bound-free pair production. These initial calculations
were typically performed using only 163 or 203 lattice points
and gave bound-free probabilities near grazing impact on the
order of 1022. The reasons for the large change in these
preliminary values and the results of our current calculations
are numerical in nature. Specifically, current lattice sizes are
orders of magnitude larger than previously used and allow
the performance of convergence tests, and our current lattice
representation of the Dirac Hamiltonian is much improved
with respect to accuracy as compared to that used in our
previous work.

A remaining aspect of improving the present calculations
is the improvement of the method for projecting the time-
evolved spinor onto the negative-energy continuum states.
We currently approximate these continuum states by requir-
ing negative-energy eigenstates of the lattice representation
of the free Dirac Hamiltonian to be orthogonal to the initial
state of the system, and thereby approximately include Cou-
lomb distortion effects@18#. One can improve this computa-
tionally convenient representation of the lattice Dirac con-
tinuum states by forcing orthogonalization to higher-lying
bound states of the target. We are also working to relax this
approximation altogether by extending the so-called
continuum-filtertechniques used with lattice representations
of the Schro¨dinger equation to the Dirac equation to effi-
ciently project onto exact eigenstates of the lattice represen-
tation of the Furry Hamiltonian@31,32#.
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FIG. 2. Depicted are time-dependent bound-free muon-pair
probabilities into the atomicK shell,Pcapt, calculated for 30 GeV
per nucleon fixed-target frame collision of238U1921197U192 at
b58|m for various lattice sizes ranging from 633 to 6323319.
Convergence is achieved when the lattice spacing in the beam di-
rection,Dz, is sufficiently small compared to the width of the elec-
tromagnetic pulse. Calculations are performed for~a! Dz50.51, ~b!
Dz50.34, ~c! Dz50.25, ~d! Dz50.125, and~e! Dz50.10.

FIG. 3. Plotted are calculations of the bound-free muon-pair
probabilities, as in Fig. 2, testing convergence of the lattice calcu-
lation with respect to the volume of the numerical box used. Cal-
culations are presented for the following lattice parameters:~a! a
volume of (32|m)

3 using 6323255 points, ~b! a volume of
(40|m)

3 using 7923319 points,~c! a volume of (48|m)
3 using

9523383 points, and~d! a volume of 48|m372|m348|m using
9531433479 points.
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