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Convergence of a lattice calculation for bound-free muon-pair production
in peripheral relativistic heavy-ion collisions
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We have developed a nonperturbative treatment of bound-free lepton-pair production caused by the strong
and sharply pulsed electromagnetic fields generated by heavy ions in peripheral, relativistic collisions based on
the solution of the time-dependent Dirac equation using lattice techniques. In this paper, we discuss refine-
ments and extensions of our numerical methods for this problem and demonstrate convergent calculations, with
respect to the parameters of the lattice, for bound-free muon-pair production in collisions near grazing inci-
dence of23J%2" +238%2* and beam kinetic energies of 30 GeV per nucleon in the fixed-target frame.

PACS numbsdss): 34.90+q, 25.75--q, 12.20.Ds, 02.70.Jn

I. INTRODUCTION ments for the bound-free electron-positron pair cross section
at lower energies near 1-10 GeV per nucleon has been a
The new colliding-beam heavy-ion accelerators—mosimatter of some controvergy,9-11.

notably the Relativistic Heavy-lon CollidgRHIC) project The first direct measurement of the bound-free electron-
at Brookhaven National LaboratoBNL), designed to in- POSitron pair production process was performed at Lawrence
vestigate nuclear matter at high temperatures and densitiesBerkeley Laboratory’s Bevalac accelerator usifigu %=
have motivated great interest concerning possible new ele@€@ms at a kinetic energy of approximately 1 GeV per
tromagnetic phenomerfa]. The phenomena considered are NUCleon on targets as heavy as gpld]. Various perturba-

ervasive, having relevance for atomic, nuclear, and articlg_ ; . .
P g P thin a factor of 2 or 3, but no published theoretical calcu-

physics, and the design of accelerators and detectors. One :g\]ltion reproduces these measurements more accufamL
the most interesting of these processes, from the perspecti P Y

of both fundamental and practical importance, is the produc\-é?ecenﬂy’ experiments have been performed using 160 GeV

: ; . . “per nucleon?®Pp®?* peams with gold targets at the Euro-
tion from the vacuum of lepton-antilepton pairs. Of partlcu-p 9 9

. . ; ean Organization for Nuclear Reseaf@ERN) [13]. With
lar interest is the process of bound-free electron-positron prﬁ1e results from new experiments at 10 GeV per nucleon
duction, also called electron capture from pair production, i

- T r‘[14], the measured cross sections will span more than two
which the produced electron emerges from the collisiony,gers of magnitude in the target-frame collision energy. As
bound to a participant ion, as this is a principal beam-losgch, a reasonable extrapolation of these measurements to
mechanism for highly charged relativistic ions in a storagerH|C energies should be possible, due to the moderate en-
ring [2] This electron capture process is Unique in re'atiViStiCergy dependence of the cross section in the high-energy re-
atomic collision physics in that its cross section increasegjime[15].
with the collision energy3] and no real electrons need be  Our goal of providing a calculable, nonperturbative de-
present in the initial state of the collision. scription of bound-free lepton-pair production valid over a
From a fundamental perspective, pair production in pewide energy range has been limited to varying degrees by the
ripheral relativistic heavy-ion collisions provides an opportu-available computer performance. To ease this constraint ini-
nity to study nonperturbative quantum electrodynamicsially, we have applied our numerical techniques for the time-
(QED) in an entirely new and continuously varying energy dependent Dirac equation in three dimensions to the calcula-
regime using an interaction which is completely known, duetion of bound-free muon-antimuon pair production
to the combination of very high collision energies and elecprobabilities, as the range of natural length scales for this
tric charges. Low-order perturbative calculations for bound-problem is smaller than for bound-free electron-positron pair
free electron-positron pair production have been used as irproduction[17,18. Even so, varying the parameters of our
put into design models for RHIE4,5], and are consistent lattice to obtain numerically converged results was not prac-
with a 14-h beam lifetime for gold ions in a storage ring attical in our previous work17—-19.
RHIC energie$6], i.e., approximately 20 TeV per nucleonin ~ The main purpose of this paper is to present recent calcu-
the fixed-target frame. Since significantly larger cross seclations for bound-free muon-pair production at a single im-
tions at these extreme energies would severely limit thgpact parameter which are converged with respect to the pa-
beam lifetime for very heavy ions, the size of nonperturbarameters of the lattice used. That is, we demonstrate that the
tive enhancements has been a matter of great interest. Rec&imputed bound-free muon-pair probability does not change
coupled-channel Dirac equation calculations predict nonperappreciably as the lattice spacing is decreased and the com-
turbative effects to be less than 10% for very heavy ions aputational volume is increased. In accomplishing this, we
RHIC energieq7,8]. However, the size of these enhance-have made two important improvements in our methods. We
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now use high-order basis-spline or Fourier collocation repreThe stationary eigenstates of the Furry Hamiltonian,
sentationd 20,21 for the momentum operators, rather thanHg [Eg. (2.2)], are defined in configuration space by

the lower order and factored basis-spline-collocation repre-

sentations used previousfit6—18. This results in a more Hex(1) = Exw(r). (2.4
accurate representation of the kinetic-energy operator and an

improved treatment for the lattice fermion-doubling problemThe Furry states are proper in and out states for asymptotic
[20]. Second, we have implemented our numerical methodgmes |t|— o, where the interactioi p(t) is zero, and thus

on very powerful parallel computef&2], enabling the use of serve as the initial states for the time evolution
much larger lattice sizes for performing convergence tests.

Following an outline of the theory of bound-free lepton-pair lim &;(rf t)HX-(F)exq—iE-t). (2.5
production in Sec. II, this paper gives an overview of lattice e ! !

methods for the solution of the time-dependent Dirac equa-

tion in Sec. llI. In Sec. IV, we briefly discuss our previous |n Ref.[18], the inclusive time-dependent probability for

bound-free muon-pair production calculations and presenfacuum production of leptons with capture into a bound
results from our present calculations at an impact parametejtate,p, is determined by computing the expectation value of
qf 8x, for a coII|S|Qn (_)f fully stripped uranium ions at a the lepton number operataﬁpEaTa, for the bound state
fixed-target frame kinetic energy of 30 GeV per nucleon. Weyiith respect to the time-evolved QED vacuui(t)), i.e.,
provide a summary and discussion of this work in Sec. V.
Pp(1)=(@o(t)[Np| Po(1))
Il. THEORETICAL APPROACH

— ()] (=) 2
A semiclassical approximation is appropriate for the pair ;F [Kxp I (D)5, p>F, (2.9

production problem assuming a classical electromagnetic
field generated by the heavy ions, and neglecting leptonwhere F denotes the Fermi surface of the initial QED
lepton interaction$23]. In this formalism, strong-field quan- vacuum state. From Ed2.6), it is clear that to compute
tum electrodynamics is reduced to solving the time-probabilities for lepton-pair production, one could first
dependent Dirac equation coupled to a classicaproject time-evolved single-particle states from the negative-
electromagnetic field while maintaining the quantum-field-energy continuum onto static Furry states, i.e., compute the
theoretic description, which is the correct language for exsquares of single-particle transition amplitudes from all
pressing particle productiofi8]. We use natural units, i.e., statesr <F to the statep. Alternatively, one may apply the
fi=c=m,=1, throughout this discussion. These definitionstime-reversal invariance of the Dirac equation to obtain an
imply that energies are measured in units of the muon’s resgxpression where only one time-dependent solution of the
mass,m#c2= 105.7 MeV, and length and time in units of the Dirac equation is requirefl8],

muon’s Compton wavelengthy ,=#%/m,c=1.87 fm, and
Compton time,r, =X, /c=6.2x 10 ?* sec, respectively.

Po)=23 [~ )P, p>F, (27
A. Dirac equation

We study the electromagnetic production of bound-free@nd it is this more ecqnomical expression vyhich we Qirectly
lepton pairs in a reference frame in which one of the nuclejCOmMpute. Written in this way, bound-free pair production has
i.e., the target, is at rest, since recoil may be neglected. ThH'® form of an ionization process to negative-energy final
target nucleus and the lepton interact via the static CoulomBtates.
field, A$. The time-dependent interactiolg(t), arises
from the classical motion of the projectile. Splitting the B. Electromagnetic interaction

Difac Hami_ltonian intp static and time-depgndent parts,_ W€ The physics of lepton-pair production is defined by the
write the Dirac equation for a lepton described by a spinOfgeciromagnetic fields of two charged particles in relative
¢(r,t) coupled to an external, time-dependent electromagmotion, and these fields enter the Hamiltonian via the dimen-
netic field sionless interaction energgi“= —eA*, between the lepton
P and the colliding nuclei in Eqg2.2) and(2.3). For simplic-
[He+Hp(t)]o(r,t) =i — (1 1), (2.1 ity of discussion, we assume a pointlike charge for both the
ot projectile and the target. However, finite-size effects are im-
portant when considering heavy leptons, and are included in
where the static Furry Hamiltoniak{g, is given by our muon-pair production calculations by considering the nu-
clei to be uniformly charged spherdg48]. In the target
He=—ia- V*Jrﬁ_eAg, (2.20  frame, we choose the projectile to move with constant speed,
Bs, in the z direction, neglecting recoil, and the reaction to
and the time-dependent interaction of the lepton with thedceur in they-z plane W'th Impact _parametekr. The tlme.- .
projectile is dependent electromagnetic potentials between the projectile
and the lepton can be generated by a Lorentz-boost of the

. 0 static Coulomb field. This gives the following Lorentz-gauge
Hp(t)=ea-Ap(t)—eAp(t). (2.3 interaction:
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- —Zpay; resulting from a lack of spatial symmetry is the fact that
Ap(r' (D)= —7— accurate calculations depend on the interaction being well
r'(t) i )
represented over multiple physical length scales. For bound-
K%, :;g -0, (2.9 free electron—pgir production, th_e relevant length scales are
the nuclear radius of the heavy ioR{,~8 fm), the Comp-
AL (1)=BAS(r (1)), ton wavelength of the electrork =400 fm), the spatial ex-

tent of the bound electron’s probability density L), and
where Z, is the atomic number of the projectile; is the  the width of the electromagnetic pulse generated by the pro-

fine-structure constant, and jectile, b/ ys .
Largely in response to these numerical challenges, basis-
r'(t)=Vx%+(y—b)?+ y#(z— Bst)? (2.9  spline-collocation methods have been developed as accurate,

stable, and flexible methods for solving partial-differential

is the distance between the projectile and the lepton observesfjuationg 16,20,27, and applied to the solution of the time-
in the rest frame of the target. dependent Dirac equatidri6,18. More recently, we have

For large projectile velocities, i.e3;—1, large cancella- also implemented the similar, but more widely used, Fourier-
tions occur between scalar and vector amplitudes arisingollocation, i.e., pseudospectral, meth¢as]. In such grid-
from the time and spatial components, respectively, of théased methods, one represents an approximate solution to a
Lorentz-gauge interactiof24], which are troublesome for differential equation with a basis of functions complete in a
many numerical approachgss,18. To avoid this difficulty,  finite-dimensional space. A set of linear equations for the
we have explored the use of noncovariant gauges, as haexpansion coefficients are defined by an application of the
other authorg7,15]. We have found that the axial gauge collocation method to the residual of the differential equa-
avoids these severe cancellations and, in addition, other difion. One eliminates the expansion coefficients from the lin-
ficulties associated with the use of the sharply peakecear equations in favor of the approximate solution evaluated
Lorentz-gauge interaction with lattice techniqyés]. Spe- at the collocation points. We note that the memory require-
cifically, in the axial-gauge interaction, we require theom-  ment of many large three-dimensional problems is domi-

ponent of the interaction to be zero, i.e., nated by storage for the solution vector, not the Hamiltonian
_ . _ matrix, because of the separability of the kinetic-energy op-
Ag(r’(t))—>A§,(r’(t))erF’,(r’(t))JrazA(r’(t))EO. erator represented in orthogonal coordinates. Therefore,

(2.10 high-order methods, with their improved accuracy, which re-
_ _ ) ) _ _duce the total number of lattice points required have an ad-
Integrating this equation to obtain the axial-gauge function,antage when memory capacity is a constraint, as is the case

for pointlike interactions, one obtains for these calculations of bound-free lepton-pair production.
As a result of representing the Dirac operator on a
2 12 X . . .
L)+ () +p configuration-space lattice, one must manage the fermion-

A(r'(t);zp)=ZapBsln (2.11

Zo(t)+\/§§(t)+l)’2' doubl?ng,_or sp_ectral-doubling, problef28,30. _Fermipn
doubling is manifested by energy-momentum dispersion re-

wherez, is an arbitrary integration constant typically set to lations for which, as a function of increasing momentum, the
zero in practice (t) = y¢(z— Bit), {o(t)=7s(zo— Bst), and  €energy decreases associating low-energy eigenvalues with
p’2:X2+(y—b)2_ One obtains the axia|_gauge interaction Iarge momenta[16]. For a lattice with an even number of
for a point"ke project”e by performing a gauge transforma-pOintS, one has the extreme situation of a degenerate Zero
tion on the Lorentz-gauge interaction in E@.8) using the kinetic-energy state associated with the maximum momen-
gauge function in Eq(2.19). tum k= K= 7/ AX, whereAx is the lattice spacinfR0]. In
dynamical problems, this spectral doubling causes unphysi-
cal, high-momentum components to dominate the evolution
[16].

The solution of the Dirac equation coupled to such an One method for avoiding the doubling is to represent the
external field is a difficult numerical task. In heavy-ion col- upper- and lower-Dirac components using two distinct grids,
lisions with relative velocities up to approximately 6,3tis  shifted with respect to each otheg9]. For the case of finite-
reasonable to expand the projectile and target interactiordifference operators, these shifted grids are equivalent to the
with the lepton about some point on the internuclear axis andise of two-point forward and backward derivatives to dis-
retain only the monopole term, since pair production iscretize the lower and upper components of the Dirac spinor,
dominated by the rapid collapse of the shell when the respectively. This idea was generalized to the lattice-
nuclei are very closg25]. However, for extreme relativistic collocation method by factoring the second derivative matrix
velocities, the retarded electromagnetic interaction breaks theith Cholesky decomposition to obtain upper- and lower-
approximate monopole symmetry and indeed all symmetriefriangular representations of the first-order derivafi¢6).
of three-dimensional space. As a result, multipole expansiondowever, we discovered that, when used in the context of a
of the time-dependent interaction converge slowly. Howeverlarge three-dimensional solution, this generalization intro-
progress has been made with the coupled-channels approadticed errors into the imposed boundary conditions which
by considering the high-energy limit of the multipole com- were too significant to overcome by simply increasing the
ponents of the interaction represented in a noncovariargize and extent of the numerical latticE7,18. These errors
gauge[8,26]. Compounding the computational difficulties were especially troublesome for the bound-free pair produc-

[lI. NUMERICAL SOLUTION
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5.0 : . . . , size, i.e.,Ry~44,. As a result, the spatial extent of the
K-shell muon’s probability density is very compact, being on
the order of 1@,, with a significant probability for the
muon to be found inside the nucleus. As a result, accurately
representing the Coulomb cusp in the atomic wave function,
which is an issue for the electron-pair production problem, is
not a concern for the muon production problem. Moreover,

the range of length scales found in the muon-pair production

r

e ————
! N

2ol / problem is smaller than that found in the electron-positron
;’ pair production problem. For these reasons, our nonperturba-
i tive, three-dimensional calculations for bound-free pair pro-
1.0 o Sgedf. : duction have been performed to date only for muon pairs as
130 120 110 0 10 20

(O3]
o

this calculation is expected to be less difficult.
The duration of the projectile’s electromagnetic pulse in
the fixed-target framedt~b/y;c, determines the maximum
FIG. 1. The positive branch of the Dirac energy spectrum for agquivalent-photon frequency present in the projectile-lepton
free particle in one dimension versus the eigenvalue index wang interaction, i.e.F ,a~ ys#¢/b. To produce a lepton pair, the
the Fourier-collocation method with 57 points, and the basis-splinep, aximum photon energy must be at least two lepton-mass
collocation method with(b) 57th-order splines and 57 pointi) units. i.e., ‘yfﬁC/bEZmOCz, or equivalently, b/ y;=<x./2.

55th-order splines and 55 pointéd) S5th-order splines and 56 1 a4'is the width of the electromagnetic pulse must be at
points, and(e) 5th-order splines and 55 points. The energy spec- ’

. : . i .~~~ least one-half of the lepton’s Compton wavelength for the

trum in example(a) reproduces the physical dispersion relation, . - .

) . air production process to be above threshold. For muon-pair
while all other examples given show some departure from th

physical relation. The spectra in examplés and () show a de- production, this means thdi/y;=<0.5x,~1 fm, i.e., the

parture from the physical relation at large energy, while the spectrg\’idf[h, of the pullse determines the minimum length SC?"e for
in examples(d) and (e) show very significant errors. collision energies above threshold. The smallest peripheral

impact parameter is approximatety,,~2R,,~8%, for a
tion problem as it is the small, negative-energy-continuumheavy nucleus(Pair production in peripheral, i.e., noncen-
components of the Dirac spinor which are of interest. tral, collisions may be distinguished experimentally by de-

Therefore, we have abandoned the use of the upper- angdcting a positron in time coincidence with full-energy pro-
lower-triangular representations of the first-derivative operajectile jons which have not undergone hard nuclear
tor in favor of an(ant)symmetric representation of the first ¢q|lisions) We estimate the threshold target-frame Lorentz

derivative using Fourier or very high-order basis-spline COlt5ctor for muon-pair production at this impact parameter to
location representation®0,30. Figure 1 demonstrates for e y=4Rc/X,~16, or a target-frame Kinetic energy of

the case of the _one-d|m(_an5|0nal free Dirac equation th Pproximately 15 GeV per nucleon. In the collider frame,
these representations avoid the doubled energy spectrum fﬁ’]' I
is corresponds to a Lorentz factor gf~3, or a kinetic

a finite, but odd, number of lattice points. The Fourier de-
rivative provides a completely accurate energy dispersion reEnergy of 2 GeV per nucleon.
lation up to the maximum energy contained on the lattice.
Using the maximal-order spline representation, only the en-
ergy states with the largest wave number have an appreciable o ] ] ) )
error, and this error does not constitute a complete doubling Our initial three-dimensional calculations were designed
of the spectra, but does reduce by approximately 20% th& demonstrate the feasibility of our numerical methods for
range of wave numbers for which a physical dispersion relathe Dirac equation by performing a schematic study of
tion is well representef20]. bound-free muon-pair production into tkeshell in relativ-
Once the lattice representation of the Dirac Hamiltonian isistic heavy-ion collisiond17]. We considered collisions of
obtained, the solution of the time-dependent Dirac equatiort®’Au "t +1%7Au"®* at collider energies up to 2 GeV per
proceeds in three general stefi$:partial eigensolution for nucleon using 2Dlattice points, i.e., 20 points in each of the
the initial state (i) evolution of this state in time, an@i)  three Cartesian directiofi$7]. We chose the collision energy
spectral analysis, i.e., projection, of the time-evolved solutg pe near threshold to minimize the overall range of length
our present work for each of these three steps are describegdyime in which low-order perturbation theory would apply.
in detail in Refs.[18,23. These algorithms are iterative in gacayse of the limited computational resources, the calcula-

nature and reduce to a series of generalized matrix-matnﬁOns reported in Ref[17] were performed using a model
operations which may be implemented efficiently using vec-, '

. X screened Lorentz-boosted Coulomb interaction. These initial
tor or parallel computers. Current calculations for this papefg i jations resulted in very large bound-free muon-pair
were performed on the Intel Paragon-MP distributed memor

computer achieving a sustained floating-point performanc robabilities on the order of 16, given the fact that the
) hosen collision energy is relatively low.
of 12 Gflop/s on 256 nodes. 9y y

We improved our numerical approach by successfully in-
IV. THREE-DIMENSIONAL CALCULATIONS corporatmg .the realistic electromagnetic mteracnop into the
lattice solution through the use of the noncovariant axial
Because of the muon’s comparatively large mass, itgauge[18]. However, our calculations were still limited to
Compton wavelength and the nuclear radius are of similarelatively small grid sizes. Using a lattice of*lpoints and a

A. Previous calculations
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lattice spacing of 2%,, we performed calculations for the ionization probability is on the order of 0.1. Therefore, to
bound-free muon-pair production into theshell in colli-  facilitate our convergence tests, we have considered a differ-
sions of YAu"®" +197Au®" near the grazing impact pa- ent collision system with larger charge and collision energy
rameter at collider kinetic energies of 2 GeV per nucleonfor which the bound-free pair probabilities are expected to be
resulting again in large probabilities of order £0 larger, i.e., 228092 + 23892+ 3t beam kinetic energies of
Both the calculations in Ref§17,18 were far from being 30 GeV per nucleon in the fixed-target frame. The larger
converged partially due to the course grid spacing of zlo_coll_ision energy will decrease the width of th_e eIectro_mag-
2.5, as our new calculations will demonstrate. However,Netic pulseb/yy, and thus the necessary lattice spacing in
difficulties persisted in subsequent calculations which werdhe beam direction, by a factor of 2.
not resolved by increasing the size of the lattice within prac- N performing the calculations for the convergence tests,
tical limits. The most obvious point of concern was that thee varied the size of the initial time step to insure the insen-

calculated bound-free pair production probabilities were ver)?'é'(\j’_'tty of ttr?etresult? to t_h|s parame_te(rj (.)f the CFICtUI?;'On'bm
large considering the relatively small collision energy, andﬁjtelri?;'nits d(lemo?‘ tshgpeiltf;m/ﬁ \é??r?e é?;’;:ifné %eti?: ﬁ]tgg—
did not easily converge to smaller numbers with increasin Y 9

lattice size as anticipated. This effect was especiall noticé<12l ction during the calculation to improve the accuracy of the
able for larae im ath) araimeters for which th?a colligion er1_evo|ution near the distance of closest approach in the colli-
9 pact p sion[18]. We first fixed the volume of the numerical box to

ergy was below threshold for produglng muon pairs. Th e (32 )3, and the lattice spacing for each of the three
major source of these problems was identified as numerica. H ; .
imensions to be 08, , i.e., two points per muon Compton

error resulting from the use of upper- and Iower-tnangularwavelength_ Experience shows this spacing to be adequate

derivative matrices in the kinetic-energy operator in avoidingfor the transverse grid in computing the total bound-free

the fermion-doubling problem as discussed in Sec. Ill. . . .
. . muon-pair production probability. However, as we have
We implemented our current treatment of the fermion- ; AR X
mentioned, we expect the beam direction to require

doubling problem using the Fourier-collocation method mAZQbIny%O.l?i(M. Using up to 128 nodes of an Intel

the calculations reported in Réfl9] once again for our test Paragon-MP computer, we performed calculations with suc-

system of*%Au " +3%/Au ™" at collider Kinetic energies of 6‘essively smalleiAz, until the total bound-free probability
2 GeV per nucleon. Using a single processor of 8 Cray_ngoes not change more than about 1%Aasis increased.

computer, we performgd convergence tests in a C.OmPUtaéaIcuIations were performed using grids ranging in size
tional volume?of (4a,) ufsmg.lattlce SIz€s ranging In SIX- ¢ o 63 to 6%x319. A calculation performed with
steps from 17 points to 81 points. The computed bound- éz:o.125, i.e., with 63x 255 lattice points, is sufficient for

free muon-pair probabilities were observed to decreas nvergence with r t to the latti ing in a volum
readily with increasing lattice size, but did not reach a con-c? 327(96 3ce d eslpec_: 0 el al cedspac gmn ab N ude
verged value. Still larger lattice sizes were required for COI’]-]? ( /B) E)'I{':m fresu ts n a cla (;1%?6 asymptotic bound-
vergence. For the 8lattice, we computed bound-free muon ree probability of approximately :

probabilities which were much smaller than our previous cal- We present th_e_s_e convergence tests for the bound-free
culations, being approximately>610~° muon-pair probabilities in Fig. 2. This figure shows that tran-

In performing this work, we were able to identify the sient probabilities on the order of 18 are reached in these

. : llisions near the distan f cl r h for the pro-
major source of the error remaining in these calculations aSoIsIons nea the distance of closest approach for the pro

an under-representation on the lattice of the width of thé:tcglse r?]eft%;iect;‘;go?%z”g'ﬁ; rellgéaﬁomrinnl:;hu;m(igr;iluzst
electromagnetic pulse resulting from too few lattice points in ymp ) P 9

the beam direction. The error from this effect was large com:[.:0 IS a charaptenshc feature qf performing thesg calcula-
ions in the axial gauge enforcing only asymptotic gauge

pared to the size of the bound-free muon probabilities, bu{nvariance[lO] From experience. we attribute the fluctua.
was negligible for the calculation of other observables, suct - P ’ .

as the ionization probability. We were able to confirm thistlons .obsgrved in the small asymptotic values pf the larger
idea by performing calculations in the same computationafun.S in Fig. 2 to errors resulting from a numerical volume
volume, but using 28<81 lattice points. This calculation which IS too smal.l. We note that thg two largest runs pre-
gave total bound-free probabilities approximately the SaméeT;e'?e;TinFlgt.hi ?:I(\)/r?vziag[rlwiaelI?//viliegﬁaelzgte?gI:ﬁé volume of
as the 8% calculations since the same numerical error which 9 gence w Pec : i
dominated both calculations, i.é\z, was too large. Further the numerical box, we mamtgm the lattice spacing which
exploratory calculations performed using?29161 lattice produced converged calculations for the @f volume,

! : . . . . ie., Ax=Ay=0.5x,, andAz=0.125(,, and increase this
points resulted in decreasing this error to a point where it ng®: . oy 3 mr 3

. g i volume in two steps to (40,)° and (48(,)°. These two

longer dominated the bound-free probabilitjds]. calculations, requiring 7% 319 and 95x 383 lattice points,

respectively, agree with one another within 5%. The bound-
free probabilities as a function of time are presented in Fig.
Now that the quality of our calculations has substantially3. With the improved accuracy of these larger calculations,
improved, another significant difficulty in performing these we notice a long-range, slowly relaxing tail for the time-
bound-free lepton-pair production calculations becomeslependent probabilities which we attribute to the small lon-
more apparent. These bound-free probabilities are orders gfitudinal component of the projectile-muon interaction.
magnitude smaller than other observables, and very accurate As a final test, we perform a very large calculation in a
numerical methods are required to compute bound-free probectangular volume of size 48Xx72x,x48x,, allowing
abilities on the order of 10° or 10" where, in comparison, more space in the reaction plane. For this calculation, we use

B. Convergence tests
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- y y ' y parameters, for bound-free muon-pair production probabili-
ties into theK-shell in collisions of 238y 92* + 23§92+ 5t
beam kinetic energies of 30 GeV per nucleon in the fixed-
target frame with an impact parameter of 8. Our calcula-
tions require large lattice sizes, and converge slowly to a
value of P qp=1.4X 1078, We observe that the convergence
of our calculation is very sensitive to the faithful representa-
tion on the lattice of the width of the electromagnetic pulse
generated by the projectile, which is the smallest physical
length scale which plays a role in this problem. Other ob-
servables, such as target excitation and ionization, which can
» . ) . . . be calculated given the time-evolved spinor, converge much
20 -10 0 10 20 more easily than the bound-free pair probability primarily
Bt (%) because other larger length scales characterize these pro-
cesses.
FIG. 2. Depicted are time-dependent bound-free muon-pair Our previous bound-free muon-pair calculations were pre-

probabilities into the atomi& shell, Py, calculated for 30 Gev liminary in nature and designed primarily to explore the fea-
per nucleon fixed-target frame collision GF8U*92+197y+92 5t sibility of performing three-dimensional lattice calculations

b=8x, for various lattice sizes ranging from $30 63x319.  for bound-free pair production. These initial calculations
Convergence is achieved when the lattice spacing in the beam dwere typically performed using only ®r 2C° lattice points
rection,Az, is sufficiently small compared to the width of the elec- and gave bound-free probabilities near grazing impact on the
tromagnetic pulse. Calculations are performed®mz=0.51,(b)  order of 102. The reasons for the large change in these
Az=0.34,(c) Az=0.25, (d) Az=0.125, ande) Az=0.10. preliminary values and the results of our current calculations
are numerical in nature. Specifically, current lattice sizes are
orders of magnitude larger than previously used and allow

culation to proceed much longer in time until the probabilitythe performance of convergence tests, and our current lattice

decreases less than 1.5% within the last five muon Compto _presentation of the Dirac Hamiltonian is much imprpved
time units to obtain an asymptotic probability of with respect to accuracy as compared to that used in our

1.4x 10 ©. Results from this calculation, presented in Fig. 3,Previous vyo_rk. : . .
agree well with the previous two calculations, and so we, A remaining aspect of improving the present calculations

conclude that the extra space provided for the reaction plan'é trlle (ljmprpvement ththe met_hod for prOJectmg the time-
was unnecessary. evolved spinor onto the negative-energy continuum states.

We currently approximate these continuum states by requir-
V. SUMMARY AND DISCUSSION ing negative-energy eigenstates of the lattice representation
of the free Dirac Hamiltonian to be orthogonal to the initial
~ In summary, we have demonstrated convergence of a lakiate of the system, and thereby approximately include Cou-
tice calculation, with respect to the refinement of the latticegmp distortion effect§18]. One can improve this computa-
tionally convenient representation of the lattice Dirac con-
10° et tinuum states by forcing orthogonalization to higher-lying

Pcapt(b= 8)

a lattice of 95< 143X 479 points, resulting is a lattice spacing
of Ax=Ay=0.5x, andAz=0.10x ,. We allowed this cal-

bound states of the target. We are also working to relax this
107 approximation altogether by extending the so-called
continuum-filtertechniques used with lattice representations
B of the Schrdinger equation to the Dirac equation to effi-
% 10 ciently project onto exact eigenstates of the lattice represen-
< tation of the Furry Hamiltoniaf31,32.
ma 10
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