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Interpretation of data in multidimensional spaces and its application
to Coulomb-explosion imaging
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A solution is presented for the problem of interpreting measurements of data from many degrees of freedom
where binning is prohibitive. A binninglike procedure is introduced in which data and theory are represented by
a set of independent expectation values. A comparison between theory and experiment is then performed by a
conventional procedure together with an additional test of the independence of the expectation values. Asso-
ciated uncorrelated errors are derived as well. The application of this method to Coulomb-explosion imaging is
discussed. The method is illustrated by the analysis of the bending angle distribution of fher@kecule
from Coulomb-explosion imaging measurements.

PACS numbd(s): 33.15—e, 34.10+X

[. INTRODUCTION vised to overcome these problems with a disadvantage of
losing the independence of the content of each[#jB]. We
This paper deals with the methodology of comparing ex-have encountered such problems in the analysis of CEIl data
perimental values to a model or theory. For data sets witisee the next sectiorand present in this paper a general
few degrees of freedom the subject is so well digested thagolution to the problem. _
every aspect of it seems to be already documefite®, and The essence of the solution is to replace the conventional
references therelnYet, we find a lack of proper treatment Pinning by a minimal bins representatiGdBINS), which is
when dealing with data comprising a list of events that were? St of expectation values of carefully chosen orthonormal
measured in a multidimensional space. An optimal method of!nctions of the measured coordinates. Those functions can
comparing the experimental values to the theory is missing?€ chosen such that the MBINS are statistically independent
We hope that this paper will fill the gap and therefore the collection of MBINS replaces the histo-
The motivation for writing this paper is to formulate a gram, and a comparison with theory is simply performed as
methodical analysis of the data of Coulomb-explosion imag-m the conveonnaI methodology. As a feSP't the'error pro-
ing (CEI). The subject of CEI will be introduced in the next cess:ng, taking into account correlations, is carried out by
. i o simple and transparent means.
section. The method of analysis is general enough that the P P

reader who might be uninterested in CEI can skip that sec-
tion without losing insight. Il. CEI MEASUREMENTS

The conventional method of comparing experimentally CE| [5-7] is a relatively new method for direct determi-
measured events to theory is first to divide the space of thation of molecular structure, as well as the correlated den-
measured values into discrete cells, commonly called binssity of nuclei within the molecule. It provides a set of experi-
The histogram, which is the distribution of the events in themental values associated with all the nuclear coordinates of
bins, establishes the grounds for comparing independemach individually measured molecule. When a substantial
probabilities of measured events to the theory. For instanceyumber of molecules is collected one obtains a sample rep-
in the x? test[1,2] a comparison is made between the num-resenting the nuclear distribution function of the measured
ber of bins and the sum over the bins of squares of errorensemble. The general method presented in this paper is used
normalized differences between data and theory. In manfor retrieving this distribution from the raw data accompa-
experiments, the estimation of the theoretical probabilitynied by a reliable error estimate. The CEIl method for arriv-
within a given bin is indirect, namely, a Monte Carlo simu- ing at the correlated nuclear distribution function is unique in
lation of the experiment is performed and a simulated histothe sense that it directly extracts such distributions from the
gram is collected. A well-defined comparison can be madelata without using, possibly biaseal priori theoretical as-
only if the statistics of the simulated data is large enough tsumptions(e.g., adiabatic approximationsTherefore, the
allow an estimate of “theoretical” errors in each bin. rigorous procedure of extraction of information from the data

In general, such a procedure is prohibitive for events thaand the precise definition of errors is of importance. An il-
are measured in a multidimensional space of coordinatelsistrative one-dimensional example is given in Sec. VI,
(unless the distribution is separable within that spaEest, where the bending motion of GH is analyzed.
the multidimensional histogram is not useful because of its A full description of the CEl method and the experimental
immense number of bins within any reasonably chosen birsetup can be found in several previous publicatipfsl1].
size. Second, the table of coordinates of measured evenkor completeness we will outline the principle of the
cannot be directly compared with the table of coordinates ofnethod. Accelerated molecules are stripped of their binding
simulated events without specifying a common bin in spacelectrons in an extremely thin foil. The stripping process is
for each comparison. Interpolation methods have been ddast enough to justify the employment of the sudden approxi-
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mation of switching between the molecular Hamiltonian to R R - —

an almost pure Coulomb Hamiltonian of the residual atomic F(v)=2 [fdfu(0)=[F1f(v), 2
ion fragments. The Coulomb repulsion separates the ion

fragments, and the asymptotic velocities of all the moleculagyhere the symboff] is used for a row of coefficients ]

fragm(_ants are mefasured., one .molecule at a tlmg. Such aarhdf_(J) for a column of functions‘k(z;) (a bar symbolizes
event is recorded in a8 dimensional space, wheké is the a column “matrix” and a tilde symbolizes its transpose

number of atoms in t_he mole_cule. Th_|s space is closely re- Theoremif the exact physical probability function can be
lated to the asymptotic velocity coordinate space created b

the final-state interaction of pure Coulomb repulsion betweer%Xpand?d by the Sé_k(v)' thenF(v) [given _by Eq.(2)] is
the measured ion fragments. It will be referred to here as thgje optimal expansion n the sense that it approaches the
V space. exact expansion foN— o0,

The problem of extracting the optimal nuclear density (Proof. If G(v) is the exact physical probability function,
function in configuration spaceR(spacg from the measured then the theorem supposes
ensemble of events has been mentioned in previous publica-
tions of _CEI[12]. A Monte Carlo simulation of f[he Coulomb G(J) — 2 kak(lj),
trajectories has been developed that takes into account the
interaction of the molecules with the targé8]. When sepa-
rableV and R spaces are assumed, the problem reduces
finding the optimal set of one-dimensional densities. These
are treated by conventional methods of least-squares fit, Gk=j fk(J)G(J)dJ.
which include binning into histograms. As was mentioned
above, such methods are not suitable for nonseparable myl- = - . . L~
tidimensional conversion problems where proper binning i%]latsvg I?hi ii?t?;? I?r;itthti:(;(raé%tq probability functi@(v),
prohibitive. Previous attempts to overcome the general mul- y

t\Alhere

tidimensional conversion problem were partially successful 1 N
[4] but the complete solution became possible only by fur- lim — >, fk(lja):f f (v)G(v)dv
ther developments, which are described below. New Na=1

and[ f, ]— G, asN increase$1].)
lll. MINIMAL REPRESENTATION This approach accommodates itself to any number of di-
Assume that a table of measured events in a multidimenmensions without the need for defining multidimensional bin
sional space is given. The boundary of this space, outside &fize, cuts, projections, or histograms. This is especially im-
which no data exist, could be simply determined. Imagine @ortant in multidimensional problems where choosing a fine
complete set of orthonormal functions that are defined in thigesolution bin size is in conflict with having good statistics
space. The physical nature of the data limits the complexityvithin the bin.
of the relevant functions; for example, if the data contain The covariance matrix elements describing the average
events from an angular correlation of a cascade, then theorrelation of deviations of the coefficier{té,] are
possible multipolarities and the involved spins limit the va- - . .
riety of functions to a relatively small finite number. In CEl, covk,K)=[{fu(va) —[FdH k(v —[fil e, )
the number of nodes in the relevant functions is limited by i i i
the finite kinetic energy of the measured species. These rdlUS, the theoretical error matrix elements of ftfig] experi-
strictions on the orthonormal functions to be used for thgNental estimators are
description of the probability function of the measured A -
events has to come from general physical understanding of Er(k.k)=couk,k)/(N=P), )

the nature of the measured SVSte”? and the meas.u_ring_aplgﬁherep is the number of coefficients that are used to de-
ratus. As a general rule, the experimental probability distri.ihe the estimated probability function of the data. A rela-

bution is assumed to be described by a linear combination QVer small set of coefficientsf, ] portrays the “spectrum”

many functions, but their number is by far smaller than theOf the data in thef, representation, but, unlike histograms,

tnumtber (t)f appropriate bins in the conventional hIStOgramthere must still be correlations that are manifested by the
reatment. nondiagonal terms dE, . This can be rectified by an ortho-

Let {v,} (e=1,2,... N) be the ensemble of coordinates normal transformationT, which diagonalize€, and trans-

of N individually measured eventsv(space in CBf and forms the functionsf_(z;) and the coefficientsf] into a new

fi(v) are a chosen set of smooth orthonormal functions deset of orthonormal expansion functions and coefficients
fined in this space.

Define thekth estimatof f, ] by §(J)=T?(J), [s]=T[f]. (5)
. 1 N R The uncorrelated errors are given by
[F=[fvale=5 2 f(va) (1) .
ot TE T=07 (6)

and an expansion function whereo? is a diagonal matrix of positive elements.
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We have reached an estimated probability function givermatrix and the expectation valués(s)] (all above 1 and
by a vector of parameteifs, |, . .. [Sp] and associated er- with a unit standard deviatiorfor a theory that is consistent
rorsoq, . .. ,0p Which are statistically equivalent to the mea- with the measurement.
sured ensemblév,}. The multidimensional coordinates list ~ This test is accomplished by the evaluation of a new ma-
of events are now represented by MBINS and associatettix:
errors.

V(=[S W) - [SITHS (0~ [S7 M.
IV. EXPERIMENTAL VERIFICATION (12)
OF A PARAMETERLESS THEORY

gotice that the abov@ test elements are evaluated by using

such a theory. If the theory is correct, then the results of thgr;semple averages of the (rsr;easured data.L The S|mllar|w toa
measurement are predictable within the experimentally imX " (€St is quite clear. ThES,”] are theoretical expectations

posed accuracy. The verification is performed by negation: f¥ith @ unit standard deviation and therefore the diagonal
the simulation is inconsistent with the results of the measure€/éments are the conventional normalizetitests. The ap-
ment, then the theorfor the experimentis rejected within ~ Preciation of the confidence level of the theory of such dis-
some statistical confidence level. Thus, initially, the theory igifibutions are well documented. There is an additional re-
assumed to be correct. Normally, it is easier to collect simuguirement that the absolute value of the off-diagonal
lated data than experimental data. Therefore, a better pictu@iéments of¥ are much smaller than 1 which, if reached,

of the minimal representation is obtained by using a largétSsures that the MBINS are independent of each other.

simulated samplds )} (8=1,2 N and followin This ¥ test is not limited to the restricted MBINS func-
Plavp’s el . 9 tions but can be extended to more functions from the com-
the procedure outlined in the preceding section to obtain the S) it o . L .
MBINS representation of the data as predicted by the theor)PIEte setS'® with either theoretical or statistical expectation
The experimental error matrix, defined byevents, can values that are equal to zero. Of course, such an extension

be derived from the simulation as follows. The simulatedWOUId compris_e a more stringent test of th_e theory and can
covariance matrix elements are be useful for finding features of the experimental data that

are not explained by the theory. An obvious case like this
occurs when the MBINS defined by the measured (aes.

R lIl) contain more significant expectation values than the
MBINS defined by the theoretically simulated data.

To summarize;” independeni? tests are suggested for
examining the consistency of the theory with the measured
EES)(k,ﬁ) =c0\/s)(k,ﬁ)/(N— P). (8) array of eveqts without the need of binnin_g or histograms. A

check of the independence of those tests is suggested as well.

This matrix depends on the number of experimental evdnts

rather thanN(®. V. THEORY WITH ADJUSTABLE PARAMETERS
This can be employed by the experimentalist for a judg- ,

ment of the finesse of the test of the theory by the given, Ve consider two types of parameter dependence of theo-

statistics of the measurements in the following way. Thefl€S: linear and nonlinear. We start with the linearly-
(N dependentsensitivity of the measurement p,] is es- erendent theories aqd later generalize to cases where linear
iterations are converging.

Assume that a well-planned experiment is designed to te

cov¥(k, k) =[{f ()~ [H I (o)~ 11,715

Thus, the estimate for the experimental error matrix is

timated by , ) - ,
Most of the measurements in physics are indirect in the
[S(ks)] sense that the space where the experimental values are re-
[Sﬁ]: Gl (9) corded through the experimental apparatus is not the space
Ok where the fundamental physics occurs. For example: the

= o N structure of molecules is measured by spectroscopic mea-
If [S’]<1, then the measurement is insensitive to the funcyyrements of electromagnetic radiation; or the interaction of
tion s(ks)(v). This suggests a congruent transformation to thenuclear multipoles with lattice fields may be measured by the
coefficients|s'®] and the functions®(v) as follows: angular correlation of different radiations.
Call R space the space of the interesting physios CEI
[S9]=0® 5], S9u)=c®59y). (10 thisis the configuration space of the molecules under study
and assume that the theory of the underlying physics can be
In the spirit of the verification by negation we have selectedexpressed as a density function in this space, which is given
only the theoretically meaningful set of functions by @ linear combination of orthonormal functions. Let

S9(), ... s9(0). Now, we further reduce the set to indi- () be an initial guess for thR-space density
ces for which[ S®¥1>1 because of the finite statistics of the
experiment. We also rename the indices to be from 1 to an=3 [gq]gq(F):[@]ﬁ(F), (12

Z’<P. The estimated error matrix in this minimal represen-

tation of orthogonal function§® is a unit matrix with rank

2. We expect that looking at the data with this MBINS of Wheregq(F) are a set of assumed orthonormal functions with
the functionsS® should statistically reproduce the unit error assumed coefficienfgyy].
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Giveniy’/(F), events inR space can be simulated. Assum- K- 1=RA"1V. (18
ing that[g] are the correct coefficients then the MBINS are
realized by theS® (v) functions and S®] coefficients. The
direction of simulation calculations is always frofg] to
[S®)]. Symbolically

When K1 is used to solve Eq(15) then very smallA;
amplify small components iV space, which are parallel to
V;, into large components iR space, which are parallel to
R;. The significance of such components can be evaluated
[g]= simulationss[S'¥]. (13 by propagating the unit error matrix of 18(v) represen-
B tation (the orthogonal transformatiod does not alter the
Finally, the vector S] is calculated from the experimental Unit matriy) into anR-space representation. Specifically, the
data with the aid of th&® () representation, and we define G(r)=Rg(r) orthonormal representation has the? diag-
a difference vector, onal error matrix anfiG]=R[g] expansion coefficients. The
L nature of the experimental apparatus and the final statistics
s[S]=[S]-[S®]. (14)  do not allow an accurate determination of parameters when
_ [Gk]<A[l. Thus, the expansion iR space is reduced to
If indeed the coefficient$g,] are optimal, thens[S] ele- £ functions in which the expansion coefficients are signifi-
ments approach zero such that their absolute value is legsantly different from zero, i.e[G,]>A,*. The iteration
than the unit standard deviation. If this is not the case, thelprocedure is stopped when all the linear corrections to the
the aim is to minimize this difference by changing the initial significant parameters are within the one standard deviation
linear combination inR space, namely, by changirfi@].  limit, namely,8[G4]<A*. Finally theR-space distribution
This should.be' done ina least-squares fashion, remembering represented by’ orthogonal functionﬁq(F) as
that the statistical weight of the componentsspg, ] are the
same. It can be performed uniquely only if the number of . & _
parameters is smaller than or equalo— the number of L=, [GalGy(N) (19
components of S®®]. For simplicity and without loosing =t
generality we start by choosing parameters in th&-space  ith the corresponding independent errors for the coeffi-

y

repres.enta.tion. . ' B ' cients[G],
A linearized matrixK connectingd[S] to a correction
8[g] can be calculated by varying the paramefeysone at A7 A (20)
a time and recalculating simulated events, keeping the repre- )
Semaﬂongs)(,;) intact: As was mentioned above, we expect the numbeof final
significant parameters iR space to be less or equal to the
5[§]ZK5[§]_ (15) number of the significant parameters of the data inV

space. The final test of the results is performed by a direct
The remaining task for the next iteration is to “invef in ~ comparison of the data to the simulated distributionVin
Eqg. (15). This will enable the evaluation of the correction space by thel test, as described in Sec. Ill, EG.1).
8 g] as well as the transformation of the error matrix fréfm

space tcR space as required. For truly linezi(r) there are VI. ILLUSTRATIVE EXAMPLE
no further iterations and this step gives the optidfd] in

the least-squares sense. This t?Sk belongs to the gene[ﬁlljstrate the analysis procedure. This enables the illustration
methodology of the linear extraction of measured paramete(gf

| f data. Th vsis bel loselv foll th different features by the aid of graphs and histograms
vajues from data. the analysis below closely T0llows €, nich s difficult in the multidimensional cases.
methods developed by Monah§3].

The symmetric matriceKK and KK have common and
positive eigenvalued?, ... A2,

A one-dimensional example is outlined here in order to

A. CEl of cold CH,*

The CEI measurement of the GHmolecule has been
VKKV=RKKR=AZ, (16)  reported earlier and the reader is referred to REZ] for a
detailed description of the experimental setup and the results.

whereA? is a diagonal matrix. Yet, the diagonalizing matri- A short review is given below and is followed by a one-
ces,V andR respectively, are not only different, but are built dimensional analysis of the bending mode of a vibrationally
from eigenvectors out of the spacéiS] and 5[g], respec- cold CH,". It is given as a simple and easily visualized ex-
tively (notice thatk has meaningful left operations on the ample of the general method presented above.

V-space vectod[ S] and meaningful right operations on the _ Cold CH," ions were accelerated to 3.9 MeV by the 5MV
R-space vectos[ g]). The sign of the eigenvectors Rand ~ Dynamitron at Argonne National Laboratory. The fast ions

V can be chosen such that entered a scattering chamber where they were stripped of
their valence electrons by a Qu&y/cm? Formvar target. This
KR=VA, (17)  fast stripping(less than 1016 seq initiated an energetic
Coulomb repulsion between the atomic fragment ions. The
whereA is the positive square root of?. ions emerging from the target were directed towards

With this choice oV andR the ordinary inverse d can  position- and time-sensitive detectors. From the position
be expressed as (x,y) and time ) coordinates provided by these detectors,
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TABLE |. Uncorrelated-error representation d-space data
with P=4.
1200
n [sln On [sln/on

1000 1 0.912 0.000 508 1795
ﬁ 2 0.527 0.003 95 133.5
= 800 | 3 -0.348 0.008 24 -42.3
% 4 0.0158 0.009 51 1.7
a
O 600
o
a such convenience of a histogram and display of statistical

400 errors of data stored in bins is not practicable for multidi-

mensional problems.
200
B. Characterization of the CEIl data
0 IS SRS S B Bl . W8 S N A Gaussian fit to the histogram of Fig. 1 suggested the use
-1-08-06-04-02 0 02 04 06 08 1 of Gaussian weighted functions of the form
cos ¥,
f(x,)=P(x )exp(—r(x”_xg)2> 21)

FIG. 1. Angular distribution of the C}I molecule inV space is e e 207, ’

represented bya) the conventional histogram representation and

(b) a smooth function given by a combination of four orthogonal wherex,=cosj, . The choice(8= —1 was made for illustra-

functions with coefficients and errors listed in Table I. The functiontive purposes and, was derived directly from the data. The

is plotted within error limits. polynomialsP,(x,) were derived by a Graham-Schmidt or-

thogonalization of the sdtl x,x?,... x"}, such tha{14]

masses, charge states, and final velocities were extracted for

each fragment, thus yielding a nine-component vector de- 1

scribing each molecule in the beam. The velocity vectors f_lfi(xv)fj(xv)dxv:%- (22)

v 1 ansz of the two protons that were measured relative to

the carbon were extracted and &-Space bond angleb, The angular distribution was expanded by a finite set of

was defined as the angle between these two velocity vectorfunctionsf(x,) by means of Egs(l) and (2). We used an
This V-space angle, is closely related to the more fa- expansion up to the third power B, (four expansion func-

miliar internal coordinate bond anglé, (see Ref.[12]). tiong and checked by inspection that additional terms did

Since the bending of CH1 was found to be uncorrelated to not modify the solutiorF(x,) within its experimental error.

the other modes of internal motion it could be treated sepa©f course, the last step is impossible for the multidimen-

rately as a one-dimensional problem. The distribution ofsional cases. We looked for the statistically significant coef-

cos(,) is shown in Fig. 1 in a histogram form with statistical ficients in the uncorrelated error representatir,) [Egs.

errors. This is the raw data where target effedsch as (5) and(6)]. Table | lists all the coefficientks,] with their

multiple scattering and charge exchahtigt cause smearing associated errors. The table shows that all the coefficients are

of the data are present. It is important to reemphasize thaignificantly different from zero and their number cannot be

TABLE Il. Uncorrelated-error representation of the reconstru®expace. The results of three iterations
are listed. For each iteration the coefficients of the nondiagonal representgli@nd parameter, are

quoted.
Iteration n [G]. 8 G]n otCl

1 1 0.186 0.125 0.016 3 o,=0.456
2 -0.194 -0.219 0.0118  [g]={1.098,0.104;0.109,0.037
3 0.664 0.128 0.005 63
4 -0.846 -0.002 96 0.000 514

2 1 0.005 44 0.183 0.0417 0,=0.324
2 -0.310 0.0604 0.0197 [9]={1.26,0.252;-0.166,0.052 p
3 0.492 -0.070 0.0120
4 -1.17 -0.003 70 0.000 927

3 1 -0.0195 -0.008 23 0.048 4 o,=0.357
2 0.244 0.000 186 0.0199 [g]1={1.24,0.1675;-0.186,0.006 ¥
3 -0.488 -0.000 694 0.0116
4 -1.14 -0.002 55 0.001 83
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TABLE lll. ¥ matrix for CH,™ analysis.

v
0.568 -0.115 0.006 88 -0.001 58
-0.115 0.954 0.002 00 0.005 19
0.00688 0.002 00 1.013 0.004 98
>~ -0.00158 0.005 19 0.004 98 0.995
'_
=
2 02
m (Xr - Xr )
O On(X;)= Pn(x,)ex;;< 2 (23
v 20-r
o

with o, =0, , xX’=x? and the initial coefficientsd] =[f].
Such an assumption is a reasonable starting point for any
molecule of the fornXH,,, whereX is a heavy ion. In such
cases the Coulomb interaction between the protons is weak
in comparison with theX-H interaction, and the angles are
almost unaltered during the explosion. Nevertheless, the fol-
lowing iterative procedure will complete the missing infor-
mation and yield the needed corrections in BRispace dis-
FIG. 2. Distribution of the bending angle in GH The results  tribution.
of three iterations of the inversion procedure are plotted. The lines The linearized transformatiod was calculated as in Eq.
correspond to the coefficients given in Table I1. 15. By inverting K we found the corrections{ G] and
0[g]=RJ4[G]. The next iteration started in sampling the
reduced, thus” = P = 4. The result is illustrated in Fig. 1 newR-space distribution defined hg]+ 8 g]. At this point
where the corresponding distribution functida(x,) is  we modified the representation by calculating a newin
shown within one standard deviation error limits. Note thatthe expansiori21). This had the advantage of both reducing
the histogram representation is replaced by an equivalenthe number of iterations and the number of the expansion
representation that contains only four values and their uncoterms.
related errors. The results of the three iterations are listed in Table II.
The coefficients 5], their correctionss[ G] and the uncor-

C. Characterization of R space related errorsr'®l are calculated by the procedure given at
the end of Sec. V. The corresponding coefficients of the func-
tions g,(x,) and the parameters, are also given for refer-
gnce. The correction§] G] after the third iteration are of the

0 N S NS b W S S N
-1 —0.8-0.6-0.4-0.2 0 0.2 0.4 06 08 1
cos %

The simple illustration above is continued here for the
extraction of the measureR-space density. Following the
prescription given in Sec. V, we assumed as a first guess th
the R-space angles are distributed exactly as Yhepace

angles,
1200 o
2.25 1000
2 x
= 800
1.75 @
<
. @
g Q 600
= a
@D 1.25
< 4
< 00
®) 1
x
Q075 200
0.5 B H H : \ | H :
O . B H H - H H
095 -1 -08-06-0.4-02 0 02 04 06 08 1
0 T R T e N N N cos ¥,
-1 -0.8-06-0.4-02 0 02 0.4 06 08 1

cos ¥, FIG. 4. Same measured angular distribution function as Fig. 1 is
plotted within error limits. It is compared to thé-space distribu-
FIG. 3. Result of the third iteration in Fig. 2 is plotted again tion function that is produced by simulation from tRespace dis-
within its error limits. tribution in Fig. 3(dashed ling
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order of the error or smaller and the coeffici¢f], is sta- sured samples is quite general in fields such as quantum
tistically equivalent to zero. Figure 2 shows the distributionschemistry, particle physic&xperiment and theojyas well
“(x,) [Eqg. (19)] that correspond to Table I, and Fig. 3 as plasma physics. We hope that the contents of this manu-
presents the final result within omeé®! error limits. We used  script will contribute to the methodology of such analysis.
the advantage of a one-dimensional presentation to checkhe principle of the method is based on well known routines
directly that the distribution of the next iteration lies inside of data analysis and error estimates, except for the compli-
these limits, as could be expected from the results in Table lications of dealing with multidimensional spaces, which do
The ¥ matrix test was performed and presented in Tablenot allow a simple extension of the lower dimensional meth-
[ll. The diagonal terms are close to 1 as expected, except favds. For example, the need for binning is avoided com-
the first term, which is correlated to the other terms. Wepletely. This is possible only because of previous information
suspect the calculation df on a finite sample to be the that molecules are defined within a bound space and that
origin of this correlation. The convergence is demonstratedow-lying excitations of molecules require smooth density
directly in Fig. 4 where the simulated-space distribution is  functions within this space. As a result, the density functions
compared to the data, showing a full agreement within theare described by a manageable number of parameters. Those
statistical error. parameters can be extracted and their accuracy and correla-
tions can be derived. The common problem of error amplifi-
VII. CONCLUSION cation by a nearly singular transformation Jacobian is over-

. ] ) come by well known statistical methods.
We presented an algorithm for extracting meaningful den-

sity functions from samples in a multidimensional space. The

source of 'the_samples is not restrlcteq to CEIl data and its ACKNOWLEDGMENT

interpretation in terms of density functions of nuclear coor-

dinates within molecules. The problem of an estimation of a This research is supported by Minerva Foundation, Mu-
smooth multidimensional function from calculated or mea-nich, Germany.
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