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A solution is presented for the problem of interpreting measurements of data from many degrees of freedom
where binning is prohibitive. A binninglike procedure is introduced in which data and theory are represented by
a set of independent expectation values. A comparison between theory and experiment is then performed by a
conventional procedure together with an additional test of the independence of the expectation values. Asso-
ciated uncorrelated errors are derived as well. The application of this method to Coulomb-explosion imaging is
discussed. The method is illustrated by the analysis of the bending angle distribution of the CH2

1 molecule
from Coulomb-explosion imaging measurements.

PACS number~s!: 33.15.2e, 34.10.1x

I. INTRODUCTION

This paper deals with the methodology of comparing ex-
perimental values to a model or theory. For data sets with
few degrees of freedom the subject is so well digested that
every aspect of it seems to be already documented@1–3, and
references therein#. Yet, we find a lack of proper treatment
when dealing with data comprising a list of events that were
measured in a multidimensional space. An optimal method of
comparing the experimental values to the theory is missing.
We hope that this paper will fill the gap.

The motivation for writing this paper is to formulate a
methodical analysis of the data of Coulomb-explosion imag-
ing ~CEI!. The subject of CEI will be introduced in the next
section. The method of analysis is general enough that the
reader who might be uninterested in CEI can skip that sec-
tion without losing insight.

The conventional method of comparing experimentally
measured events to theory is first to divide the space of the
measured values into discrete cells, commonly called bins.
The histogram, which is the distribution of the events in the
bins, establishes the grounds for comparing independent
probabilities of measured events to the theory. For instance,
in thex2 test @1,2# a comparison is made between the num-
ber of bins and the sum over the bins of squares of error-
normalized differences between data and theory. In many
experiments, the estimation of the theoretical probability
within a given bin is indirect, namely, a Monte Carlo simu-
lation of the experiment is performed and a simulated histo-
gram is collected. A well-defined comparison can be made
only if the statistics of the simulated data is large enough to
allow an estimate of ‘‘theoretical’’ errors in each bin.

In general, such a procedure is prohibitive for events that
are measured in a multidimensional space of coordinates
~unless the distribution is separable within that space!. First,
the multidimensional histogram is not useful because of its
immense number of bins within any reasonably chosen bin
size. Second, the table of coordinates of measured events
cannot be directly compared with the table of coordinates of
simulated events without specifying a common bin in space
for each comparison. Interpolation methods have been de-

vised to overcome these problems with a disadvantage of
losing the independence of the content of each bin@4,5#. We
have encountered such problems in the analysis of CEI data
~see the next section! and present in this paper a general
solution to the problem.

The essence of the solution is to replace the conventional
binning by a minimal bins representation~MBINS!, which is
a set of expectation values of carefully chosen orthonormal
functions of the measured coordinates. Those functions can
be chosen such that the MBINS are statistically independent
and therefore the collection of MBINS replaces the histo-
gram, and a comparison with theory is simply performed as
in the conventional methodology. As a result the error pro-
cessing, taking into account correlations, is carried out by
simple and transparent means.

II. CEI MEASUREMENTS

CEI @5–7# is a relatively new method for direct determi-
nation of molecular structure, as well as the correlated den-
sity of nuclei within the molecule. It provides a set of experi-
mental values associated with all the nuclear coordinates of
each individually measured molecule. When a substantial
number of molecules is collected one obtains a sample rep-
resenting the nuclear distribution function of the measured
ensemble. The general method presented in this paper is used
for retrieving this distribution from the raw data accompa-
nied by a reliable error estimate. The CEI method for arriv-
ing at the correlated nuclear distribution function is unique in
the sense that it directly extracts such distributions from the
data without using, possibly biased,a priori theoretical as-
sumptions~e.g., adiabatic approximations!. Therefore, the
rigorous procedure of extraction of information from the data
and the precise definition of errors is of importance. An il-
lustrative one-dimensional example is given in Sec. VI,
where the bending motion of CH2

1 is analyzed.
A full description of the CEI method and the experimental

setup can be found in several previous publications@7–11#.
For completeness we will outline the principle of the
method. Accelerated molecules are stripped of their binding
electrons in an extremely thin foil. The stripping process is
fast enough to justify the employment of the sudden approxi-
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mation of switching between the molecular Hamiltonian to
an almost pure Coulomb Hamiltonian of the residual atomic
ion fragments. The Coulomb repulsion separates the ion
fragments, and the asymptotic velocities of all the molecular
fragments are measured, one molecule at a time. Such an
event is recorded in a 3M dimensional space, whereM is the
number of atoms in the molecule. This space is closely re-
lated to the asymptotic velocity coordinate space created by
the final-state interaction of pure Coulomb repulsion between
the measured ion fragments. It will be referred to here as the
V space.

The problem of extracting the optimal nuclear density
function in configuration space (R space! from the measured
ensemble of events has been mentioned in previous publica-
tions of CEI@12#. A Monte Carlo simulation of the Coulomb
trajectories has been developed that takes into account the
interaction of the molecules with the target@13#. When sepa-
rableV andR spaces are assumed, the problem reduces to
finding the optimal set of one-dimensional densities. These
are treated by conventional methods of least-squares fit,
which include binning into histograms. As was mentioned
above, such methods are not suitable for nonseparable mul-
tidimensional conversion problems where proper binning is
prohibitive. Previous attempts to overcome the general mul-
tidimensional conversion problem were partially successful
@4# but the complete solution became possible only by fur-
ther developments, which are described below.

III. MINIMAL REPRESENTATION

Assume that a table of measured events in a multidimen-
sional space is given. The boundary of this space, outside of
which no data exist, could be simply determined. Imagine a
complete set of orthonormal functions that are defined in this
space. The physical nature of the data limits the complexity
of the relevant functions; for example, if the data contain
events from an angular correlation of a cascade, then the
possible multipolarities and the involved spins limit the va-
riety of functions to a relatively small finite number. In CEI,
the number of nodes in the relevant functions is limited by
the finite kinetic energy of the measured species. These re-
strictions on the orthonormal functions to be used for the
description of the probability function of the measured
events has to come from general physical understanding of
the nature of the measured system and the measuring appa-
ratus. As a general rule, the experimental probability distri-
bution is assumed to be described by a linear combination of
many functions, but their number is by far smaller than the
number of appropriate bins in the conventional histogram
treatment.

Let $vW a% (a51,2, . . . ,N) be the ensemble of coordinates
of N individually measured events (V space in CEI! and
f k(vW ) are a chosen set of smooth orthonormal functions de-
fined in this space.

Define thekth estimator@ f k# by

@ f k#[@ f k~vW a!#a[
1

N (
a51

N

f k~vW a! ~1!

and an expansion function

F~vW !5( @ f k# f k~vW !5@ f̃ # f̄ ~vW !, ~2!

where the symbol@ f̃ # is used for a row of coefficients@ f k#
and f̄ (vW ) for a column of functionsf k(vW ) ~a bar symbolizes
a column ‘‘matrix’’ and a tilde symbolizes its transpose!.

Theorem:If the exact physical probability function can be
expanded by the setf k(vW ), thenF(vW ) @given by Eq.~2!# is
the optimal expansion in the sense that it approaches the
exact expansion forN→`.
„Proof: If G(vW ) is the exact physical probability function,

then the theorem supposes

G~vW !5( Gkf k~vW !,

where

Gk5E f k~vW !G~vW !dvW .

But vW a is a sample of the exact probability functionG(vW ),
thus by the central limit theorem

lim
N→`

1

N (
a51

N

f k~vW a!5E f k~vW !G~vW !dvW

and @ f k#→Gk asN increases@1#.…
This approach accommodates itself to any number of di-

mensions without the need for defining multidimensional bin
size, cuts, projections, or histograms. This is especially im-
portant in multidimensional problems where choosing a fine
resolution bin size is in conflict with having good statistics
within the bin.

The covariance matrix elements describing the average
correlation of deviations of the coefficients@ f k# are

cov~k,k̂!5†$ f k~vW a!2@ f k#%$ f k̂~vW a!2@ f k̂#%‡a , ~3!

thus, the theoretical error matrix elements of the@ f k# experi-
mental estimators are

Er~k,k̂!5cov~k,k̂!/~N2P!, ~4!

whereP is the number of coefficients that are used to de-
scribe the estimated probability function of the data. A rela-
tively small set of coefficients@ f k# portrays the ‘‘spectrum’’
of the data in thef k representation, but, unlike histograms,
there must still be correlations that are manifested by the
nondiagonal terms ofEr . This can be rectified by an ortho-
normal transformation,T, which diagonalizesEr and trans-
forms the functionsf̄ (vW ) and the coefficients@ f̄ # into a new
set of orthonormal expansion functions and coefficients

s̄~vW !5T f̄~vW !, @s#5T@ f #. ~5!

The uncorrelated errors are given by

TErT̃5s2, ~6!

wheres2 is a diagonal matrix of positive elements.
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We have reached an estimated probability function given
by a vector of parameters@s1#, . . . ,@sP# and associated er-
rorss1 , . . . ,sP which are statistically equivalent to the mea-
sured ensemble$va%. The multidimensional coordinates list
of events are now represented by MBINS and associated
errors.

IV. EXPERIMENTAL VERIFICATION
OF A PARAMETERLESS THEORY

Assume that a well-planned experiment is designed to test
such a theory. If the theory is correct, then the results of the
measurement are predictable within the experimentally im-
posed accuracy. The verification is performed by negation: if
the simulation is inconsistent with the results of the measure-
ment, then the theory~or the experiment! is rejected within
some statistical confidence level. Thus, initially, the theory is
assumed to be correct. Normally, it is easier to collect simu-
lated data than experimental data. Therefore, a better picture
of the minimal representation is obtained by using a large
simulated sample$vW b

(s)% (b51,2, . . . ,N(s)) and following
the procedure outlined in the preceding section to obtain the
MBINS representation of the data as predicted by the theory.

The experimental error matrix, defined byN events, can
be derived from the simulation as follows. The simulated
covariance matrix elements are

cov~s!~k,k̂!5†$ f k
~s!~vW b

~s!!2@ f k
~s!#%$ f k̂

~s!
~vW b

~s!!2@ f k̂
~s!

#%‡b .
~7!

Thus, the estimate for the experimental error matrix is

Er
~s!~k,k̂!5cov~s!~k,k̂!/~N2P!. ~8!

This matrix depends on the number of experimental eventsN
rather thanN(s).

This can be employed by the experimentalist for a judg-
ment of the finesse of the test of the theory by the given
statistics of the measurements in the following way. The
(N dependent! sensitivity of the measurement of@sk# is es-
timated by

@Sk
~s!#5

@sk
~s!#

sk
~s! . ~9!

If @Sk
(s)#,1, then the measurement is insensitive to the func-

tion sk
(s)(vW ). This suggests a congruent transformation to the

coefficients@ s̄(s)# and the functionss̄(s)(vW ) as follows:

@S̄~s!#5s~s!21@ s̄~s!#, S̄~s!~vW !5s~s!s̄~s!~vW !. ~10!

In the spirit of the verification by negation we have selected
only the theoretically meaningful set of functions
s1
(s)(vW ), . . . ,sP

(s)(vW ). Now, we further reduce the set to indi-
ces for which@Sk

(s)#.1 because of the finite statistics of the
experiment. We also rename the indices to be from 1 to
P<P. The estimated error matrix in this minimal represen-
tation of orthogonal functionsS̄(s) is a unit matrix with rank
P . We expect that looking at the data with this MBINS of
the functionsS̄(s) should statistically reproduce the unit error

matrix and the expectation values@S̄(s)# ~all above 1 and
with a unit standard deviation! for a theory that is consistent
with the measurement.

This test is accomplished by the evaluation of a new ma-
trix:

C~k,k̂!5†$Sk
~s!~vW a!2@Sk

~s!#%$Sk̂
~s!

~vW a!2@Sk̂
~s!

#%‡a .
~11!

Notice that the aboveC test elements are evaluated by using
ensemble averages of the measured data. The similarity to a
x2 test is quite clear. The@Sk

(s)# are theoretical expectations
with a unit standard deviation and therefore the diagonal
elements are the conventional normalizedx2 tests. The ap-
preciation of the confidence level of the theory of such dis-
tributions are well documented. There is an additional re-
quirement that the absolute value of the off-diagonal
elements ofC are much smaller than 1 which, if reached,
assures that the MBINS are independent of each other.

This C test is not limited to the restricted MBINS func-
tions but can be extended to more functions from the com-
plete setS̄(s) with either theoretical or statistical expectation
values that are equal to zero. Of course, such an extension
would comprise a more stringent test of the theory and can
be useful for finding features of the experimental data that
are not explained by the theory. An obvious case like this
occurs when the MBINS defined by the measured data~Sec.
III ! contain more significant expectation values than the
MBINS defined by the theoretically simulated data.

To summarize,P independentx2 tests are suggested for
examining the consistency of the theory with the measured
array of events without the need of binning or histograms. A
check of the independence of those tests is suggested as well.

V. THEORY WITH ADJUSTABLE PARAMETERS

We consider two types of parameter dependence of theo-
ries: linear and nonlinear. We start with the linearly-
dependent theories and later generalize to cases where linear
iterations are converging.

Most of the measurements in physics are indirect in the
sense that the space where the experimental values are re-
corded through the experimental apparatus is not the space
where the fundamental physics occurs. For example: the
structure of molecules is measured by spectroscopic mea-
surements of electromagnetic radiation; or the interaction of
nuclear multipoles with lattice fields may be measured by the
angular correlation of different radiations.

Call R space the space of the interesting physics~for CEI
this is the configuration space of the molecules under study!
and assume that the theory of the underlying physics can be
expressed as a density function in this space, which is given
by a linear combination of orthonormal functions. Let
G (rW) be an initial guess for theR-space density

G ~rW !5( @gq#gq~rW !5@ g̃#ḡ~rW !, ~12!

wheregq(rW) are a set of assumed orthonormal functions with
assumed coefficients@gq#.
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GivenG (rW), events inR space can be simulated. Assum-
ing that@ ḡ# are the correct coefficients then the MBINS are
realized by theS̄(s)(vW ) functions and@S̄(s)# coefficients. The
direction of simulation calculations is always from@ ḡ# to
@S̄(s)#. Symbolically

@g#⇒ simulations⇒@S̄~s!#. ~13!

Finally, the vector@S̄# is calculated from the experimental
data with the aid of theS̄(s)(vW ) representation, and we define
a difference vector,

d@S̄#5@S̄#2@S̄~s!#. ~14!

If indeed the coefficients@gq# are optimal, thend@S̄# ele-
ments approach zero such that their absolute value is less
than the unit standard deviation. If this is not the case, then
the aim is to minimize this difference by changing the initial
linear combination inR space, namely, by changing@ ḡ#.
This should be done in a least-squares fashion, remembering
that the statistical weight of the components ofd@S̄k# are the
same. It can be performed uniquely only if the number of
parameters is smaller than or equal toP — the number of
components of@S̄(s)#. For simplicity and without loosing
generality we start by choosingP parameters in theR-space
representation.

A linearized matrixK connectingd@S̄# to a correction
d@ ḡ# can be calculated by varying the parameters@ ḡ# one at
a time and recalculating simulated events, keeping the repre-
sentationS̄(s)(vW ) intact:

d@S̄#5Kd@ ḡ#. ~15!

The remaining task for the next iteration is to ‘‘invert’’K in
Eq. ~15!. This will enable the evaluation of the correction
d@ ḡ# as well as the transformation of the error matrix fromV
space toR space as required. For truly linearG (rW) there are
no further iterations and this step gives the optimald@ ḡ# in
the least-squares sense. This task belongs to the general
methodology of the linear extraction of measured parameter
values from data. The analysis below closely follows the
methods developed by Monahan@3#.

The symmetric matricesKK̃ and K̃K have common and
positive eigenvaluesL1

2 , . . . ,LP
2 ,

ṼKK̃V5R̃K̃KR5L2, ~16!

whereL2 is a diagonal matrix. Yet, the diagonalizing matri-
ces,V andR respectively, are not only different, but are built
from eigenvectors out of the spacesd@S̄# andd@ ḡ#, respec-
tively ~notice thatK has meaningful left operations on the
V-space vectord@S̄# and meaningful right operations on the
R-space vectord@ ḡ#). The sign of the eigenvectors inR and
V can be chosen such that

KR5VL, ~17!

whereL is the positive square root ofL2.
With this choice ofV andR the ordinary inverse ofK can

be expressed as

K215RL21Ṽ. ~18!

When K21 is used to solve Eq.~15! then very smallL i
amplify small components inV space, which are parallel to
Vi , into large components inR space, which are parallel to
Ri . The significance of such components can be evaluated
by propagating the unit error matrix of theS̄(s)(vW ) represen-
tation ~the orthogonal transformationV does not alter the
unit matrix! into anR-space representation. Specifically, the
Ḡ(rW)5R̃ḡ(rW) orthonormal representation has theL22 diag-
onal error matrix and@Ḡ#5R̃@ ḡ# expansion coefficients. The
nature of the experimental apparatus and the final statistics
do not allow an accurate determination of parameters when
@Gk#,Lk

21 . Thus, the expansion inR space is reduced to
Q functions in which the expansion coefficients are signifi-
cantly different from zero, i.e.,@Gk#.Lk

21 . The iteration
procedure is stopped when all the linear corrections to the
significant parameters are within the one standard deviation
limit, namely,d@Gq#,Lq

21 . Finally theR-space distribution

is represented byQ orthogonal functionsGq(rW) as

G ~rW !5 (
q51

Q

@Gq#Gq~rW ! ~19!

with the corresponding independent errors for the coeffi-
cients@Ḡ#,

L1
21 , . . . ,LQ

21 . ~20!

As was mentioned above, we expect the numberQ of final
significant parameters inR space to be less or equal to the
number of the significant parametersP of the data inV
space. The final test of the results is performed by a direct
comparison of the data to the simulated distribution inV
space by theC test, as described in Sec. III, Eq.~11!.

VI. ILLUSTRATIVE EXAMPLE

A one-dimensional example is outlined here in order to
illustrate the analysis procedure. This enables the illustration
of different features by the aid of graphs and histograms
which is difficult in the multidimensional cases.

A. CEI of cold CH2
1

The CEI measurement of the CH2
1 molecule has been

reported earlier and the reader is referred to Ref.@12# for a
detailed description of the experimental setup and the results.
A short review is given below and is followed by a one-
dimensional analysis of the bending mode of a vibrationally
cold CH2

1. It is given as a simple and easily visualized ex-
ample of the general method presented above.

Cold CH2
1 ions were accelerated to 3.9 MeV by the 5MV

Dynamitron at Argonne National Laboratory. The fast ions
entered a scattering chamber where they were stripped of
their valence electrons by a 0.6mg/cm2 Formvar target. This
fast stripping ~less than 10216 sec! initiated an energetic
Coulomb repulsion between the atomic fragment ions. The
ions emerging from the target were directed towards
position- and time-sensitive detectors. From the position
(x,y) and time (z) coordinates provided by these detectors,
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masses, charge states, and final velocities were extracted for
each fragment, thus yielding a nine-component vector de-
scribing each molecule in the beam. The velocity vectors

vW 1 andvW 2 of the two protons that were measured relative to
the carbon were extracted and a ‘‘V-space bond angle’’uv
was defined as the angle between these two velocity vectors.

This V-space angleuv is closely related to the more fa-
miliar internal coordinate bond angleu r ~see Ref.@12#!.
Since the bending of CH2

1 was found to be uncorrelated to
the other modes of internal motion it could be treated sepa-
rately as a one-dimensional problem. The distribution of
cos(uv) is shown in Fig. 1 in a histogram form with statistical
errors. This is the raw data where target effects~such as
multiple scattering and charge exchange! that cause smearing
of the data are present. It is important to reemphasize that

such convenience of a histogram and display of statistical
errors of data stored in bins is not practicable for multidi-
mensional problems.

B. Characterization of the CEI data

AGaussian fit to the histogram of Fig. 1 suggested the use
of Gaussian weighted functions of the form

f n~xv!5Pn~xv!expS ~xv2xv
0!2

2sv
2 D , ~21!

wherexv5cosuv . The choicexv
0521 was made for illustra-

tive purposes andsv was derived directly from the data. The
polynomialsPn(xv) were derived by a Graham-Schmidt or-
thogonalization of the set$1,x,x2,...,xn%, such that@14#

E
21

1

f i~xv! f j~xv!dxv5d i , j . ~22!

The angular distribution was expanded by a finite set of
functions f n(xv) by means of Eqs.~1! and ~2!. We used an
expansion up to the third power inPn ~four expansion func-
tions! and checked by inspection that additional terms did
not modify the solutionF(xv) within its experimental error.
Of course, the last step is impossible for the multidimen-
sional cases. We looked for the statistically significant coef-
ficients in the uncorrelated error representations̄(xv) @Eqs.
~5! and ~6!#. Table I lists all the coefficients@sk# with their
associated errors. The table shows that all the coefficients are
significantly different from zero and their number cannot be

TABLE II. Uncorrelated-error representation of the reconstructedR space. The results of three iterations
are listed. For each iteration the coefficients of the nondiagonal representation [g] and parameters r are
quoted.

Iteration n [G] n d@G# n sn
@G#

1 1 0.186 0.125 0.016 3 s r50.456
2 -0.194 -0.219 0.011 8 @g#5$1.098,0.104,20.109,0.037 0%
3 0.664 0.128 0.005 63
4 -0.846 -0.002 96 0.000 514

2 1 0.005 44 0.183 0.041 7 s r50.324
2 -0.310 0.060 4 0.019 7 @g#5$1.26,0.252,20.166,0.052 0%
3 0.492 -0.070 0.012 0
4 -1.17 -0.003 70 0.000 927

3 1 -0.019 5 -0.008 23 0.048 4 s r50.357
2 0.244 0.000 186 0.019 9 @g#5$1.24,0.167,20.186,0.006 7%
3 -0.488 -0.000 694 0.011 6
4 -1.14 -0.002 55 0.001 83

FIG. 1. Angular distribution of the CH2
1 molecule inV space is

represented by~a! the conventional histogram representation and
~b! a smooth function given by a combination of four orthogonal
functions with coefficients and errors listed in Table I. The function
is plotted within error limits.

TABLE I. Uncorrelated-error representation ofV-space data
with P54.

n @s#n sn @s#n/sn

1 0.912 0.000 508 1795
2 0.527 0.003 95 133.5
3 -0.348 0.008 24 -42.3
4 0.015 8 0.009 51 1.7
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reduced, thusP 5 P 5 4. The result is illustrated in Fig. 1
where the corresponding distribution functionF(xv) is
shown within one standard deviation error limits. Note that
the histogram representation is replaced by an equivalent
representation that contains only four values and their uncor-
related errors.

C. Characterization of R space

The simple illustration above is continued here for the
extraction of the measuredR-space density. Following the
prescription given in Sec. V, we assumed as a first guess that
the R-space angles are distributed exactly as theV-space
angles,

gn~xr !5Pn~xr !expS ~xr2xr
0!2

2s r
2 D ~23!

with s r5sv , xr
05xv

0 and the initial coefficients [g]5[ f ].
Such an assumption is a reasonable starting point for any
molecule of the formXH n , whereX is a heavy ion. In such
cases the Coulomb interaction between the protons is weak
in comparison with theX-H interaction, and the angles are
almost unaltered during the explosion. Nevertheless, the fol-
lowing iterative procedure will complete the missing infor-
mation and yield the needed corrections in theR-space dis-
tribution.

The linearized transformationK was calculated as in Eq.
15. By inverting K we found the correctionsd@G# and
d@g#5Rd@G#. The next iteration started in sampling the
newR-space distribution defined by@g#1d@g#. At this point
we modified the representation by calculating a news r in
the expansion~21!. This had the advantage of both reducing
the number of iterations and the number of the expansion
terms.

The results of the three iterations are listed in Table II.
The coefficients [G], their correctionsd@G# and the uncor-
related errorss@G# are calculated by the procedure given at
the end of Sec. V. The corresponding coefficients of the func-
tions gn(xv) and the parameterss r are also given for refer-
ence. The correctionsd@G# after the third iteration are of the

TABLE III. C matrix for CH2
1 analysis.

C

0.568 -0.115 0.006 88 -0.001 58
-0.115 0.954 0.002 00 0.005 19
0.00688 0.002 00 1.013 0.004 98
-0.00158 0.005 19 0.004 98 0.995

FIG. 2. Distribution of the bending angle in CH2
1. The results

of three iterations of the inversion procedure are plotted. The lines
correspond to the coefficients given in Table II.

FIG. 3. Result of the third iteration in Fig. 2 is plotted again
within its error limits.

FIG. 4. Same measured angular distribution function as Fig. 1 is
plotted within error limits. It is compared to theV-space distribu-
tion function that is produced by simulation from theR-space dis-
tribution in Fig. 3~dashed line!.
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order of the error or smaller and the coefficient@G#1 is sta-
tistically equivalent to zero. Figure 2 shows the distributions
G (xv) @Eq. ~19!# that correspond to Table II, and Fig. 3
presents the final result within ones@G# error limits. We used
the advantage of a one-dimensional presentation to check
directly that the distribution of the next iteration lies inside
these limits, as could be expected from the results in Table II.

TheC matrix test was performed and presented in Table
III. The diagonal terms are close to 1 as expected, except for
the first term, which is correlated to the other terms. We
suspect the calculation ofK on a finite sample to be the
origin of this correlation. The convergence is demonstrated
directly in Fig. 4 where the simulatedV-space distribution is
compared to the data, showing a full agreement within the
statistical error.

VII. CONCLUSION

We presented an algorithm for extracting meaningful den-
sity functions from samples in a multidimensional space. The
source of the samples is not restricted to CEI data and its
interpretation in terms of density functions of nuclear coor-
dinates within molecules. The problem of an estimation of a
smooth multidimensional function from calculated or mea-

sured samples is quite general in fields such as quantum
chemistry, particle physics~experiment and theory!, as well
as plasma physics. We hope that the contents of this manu-
script will contribute to the methodology of such analysis.
The principle of the method is based on well known routines
of data analysis and error estimates, except for the compli-
cations of dealing with multidimensional spaces, which do
not allow a simple extension of the lower dimensional meth-
ods. For example, the need for binning is avoided com-
pletely. This is possible only because of previous information
that molecules are defined within a bound space and that
low-lying excitations of molecules require smooth density
functions within this space. As a result, the density functions
are described by a manageable number of parameters. Those
parameters can be extracted and their accuracy and correla-
tions can be derived. The common problem of error amplifi-
cation by a nearly singular transformation Jacobian is over-
come by well known statistical methods.
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