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Relativistic configuration-interaction calculation of the polarizabilities of heliumlike ions
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Polarizabilities of ions of the helium isoelectronic sequence with nuclear charges in the radge3D are
evaluated starting from the relativistic no-pair Hamiltonian and including both the Coulomb and Breit inter-
actions. The ground state and perturbed wave functions are expanded in two-electron basis functions con-
structed fromB splines. For each ion, the ground-state wave function is determined by a configuration inter-
action calculation; the perturbed wave function is then found by solving an inhomogeneous algebraic equation.
Nonrelativistic calculations are carried out in parallel with the relativistic calculations, permitting relativistic
corrections to be isolated. The present nonrelativistic calculations are found to be in good agreement with other
precise calculations. For the experimentally interesting case of heliumlike lithium, we obtain the value
Aage= — (4.50+0.05)x 10" ° a.u. for the relativistic correction to the ground-state polarizability.

PACS numbsgs): 32.10.Dk, 31.15.Ar, 31.30.Jv, 32.16K

I. INTRODUCTION IIl. METHOD

Recent measurements of the Rydberg levels of litHiliin The polarizability of an atom is given by

are of such high accuracy that relativistic corrections to the (W
polarizability of the Li* ion becomes an issue in predicting azzz
the level structure theoretical[2]. Motivated by these mea- n
surements, we undertake calculations of the polarizabilitie
of heliumlike ions with nuclear charges ranging frats- 2
to 30 within the framework of the relativistic no-pair theory
[3]. _ _ _ _ a=—2(V|Z|Py), (2)

The ground-state wave function for each ion considered is
determined from a relativistic configuration-interacti@@l) where the perturbed wave functioh satisfies the inhomo-
calculation essentially identical to that described in R&f.  geneous equation
The calculation is based on the no-pair Hamiltonidahand
uses two-electron configuration-state basis functions con- (H=Ep)¥=—-27,. 3)
structed fromB-spline orbitals constrained to a cavity of
finite radius[5]. The perturbed wave function is also ex- The symboH designates the Schdmger Hamiltonian in the
panded in a basis of configuration-state functions and th@onrelativistic case or the no-pair Hamiltoniancluding the
expansion coefficients are determined by solving a set dnstantaneous Breit interactipin the relativistic case. We
linear inhomogeneous equations. In the calculation, onlgxpand the ground-state wave function as
positive-energy orbitals are used in the construction of
conflgurathn—state functlons. to accommodate _the positive- ‘1’o=2 @ q(00), (4)
energy projection operators in the no-pair Hamiltonian. =k

A nonrelativistic CI calculation of the polarizability is
carried out in parallel with the relativistic one. The nonrela-where, in the relativistic casep,(JM) is a jj-coupled
tivistic values of« are in good agreement with previous configuration-state function given by
high-precision nonrelativistic calculations. The relativistic
correction for heliumlike lithium, obtained from the differ- _ ; ;
ence between the relativistic and nonrelativistic values, is PuIM)= 4 %:l (micjimil IMY kD). ®
found to beAa ge=—(4.50+0.05)x 10"° a.u. Moreover,
the relativistic correction takes the limiting form Here,|kl) is a two-electron Slater determinanj, is a sym-

metry factor defined by

O|£|\Pn><q’n|’z|q’0>
En_EO ,

€y

§vhere£=2izi is the coordinate operator. This equation can
be reformulated as

4.86x10°* 1/\2  fork=I,
Aage—— 77— au. =g for k1

and (jm,j;m|IM) is a Clebsch-Gordan coefficient. The
for large Z. wave-function normalization condition is
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TABLE |. Partial-wave contributions to the polarizability, and electric-dipole shielding facter, of
heliumlike neon Z=10). Units ofa: 10" 2 a.u.

Yo L4 a, ay~ay o, O, 0,
(s,s) (s.p) 1.0564619 0.2037619
(p.p) (p.d) 1.0446033  —0.0118586 0.1999394 —0.0038225
(d,d) (d,f) 1.0447408 0.0001375 0.1999824 0.0000430
(f,f) (f,9) 1.0447696 0.0000288 0.1999923 0.0000099
(9,9) (g,h) 1.0447799 0.0000103 0.1999959 0.0000036
(h,h) (h,i) 1.0447845 0.0000046 0.1999976 0.0000016
Extrapolated £=6) 1.0447909 0.0000064 0.1999998 0.0000023
5 where® ,,(10) is the configuration-state functions given in
&, Ciu=1. 6)  Eq. (5) with (JM)=(10), and where the expansion coeffi-

cientsd,,, are to be determined from E@3). The latter
equation, when expressed in terms of the expansion coeffi-

The expansion coefficients, are the components of the .
cientsd,,, becomes

lowest-energy solution to the eigenvalue problem

H 1)—EgdsmOinldmn=Bst, 9
Izk Hij,kI(O)CkIZEOCij- 7) an[ st,mn( ) 09smStn]dmn st ©)

) whereHg; my(J) is defined in Eq(8) above and where
We use the notation ’

5KkKI

Hij ki(3) = (€& + €) 6ik ) + Vij a(J), @  By=- ——[(s]|Z|k) Sy + (s Zl|1} Suc— (KI|Zl|t) &

1 b TEIRE 1l st gk 7k 3[jk][< I] ) S+ I ||> e I ||> sl

whereVj; ,(J) is the matrix element of the potentiditaken 12ty sodc (10)
- skdVkl -

between two configuration-state functions with angular mo-

mentumJ, Here [j]1=2j+1, k=%(j+1/2) for j=/+1/2, and
(al|z||b) are reduced matrix elements of the coordinate op-

Vij ki(9) = (Pij (IM)[ V[ D14 (IM)). erator. With this notation, the polarizability is given by

A discussion of solutions to the ground- and excited-state
eigenvalue problems in the relativistic case, together with
extensive experimental comparisons, are given in Rf.

The perturbed wave functio® is an odd parityJ=1
state that can be represented by the expansion

a=22 BmnAmn- (11

n>m

The nonrelativistic expression for the polarizability can be
obtained from the above formalism by simply replacing the
jji-coupled configuration-state  functions by their
V=" dy®m(10), LS-coupled counterparts and by using nonrelativistic

n>m

TABLE Ill. Comparison of nonrelativistic “input” energies,

TABLE II. Summary of nonrelativistic polarizabilities with esti- Eq(in), from Drake [8] with extrapolated “output” energies,
mated extrapolation errors. Numbers in brackets are multiplicativéEy(out), obtained using partial waves with<5 from the present
factors in powers of 10. Units: a.u. calculation. Units: a.u.

z aNR Extrap. error z Eq(in) Ey(out) Extrap. error
2 1.3831992 0.0000078 2 —2.90372437 —2.90372 0.000002
3 1.924536B-1] 0.0000028—1] 3 —7.27991339 —7.27991 0.000001
4 5.2268814—2] 0.0000051—2] 4 —13.65556619 —13.65556 0.000002
6 8.963935B8-3] 0.0000087—3] 6 —32.40624656 —32.40622 0.000004
8 2.652507B-3] 0.000002p-3] 8 —59.15659512 —59.15654 0.000006

10 1.044790p-3] 0.0000006—3] 10 —93.90680651 —93.90672 0.000008

14 2.603192B-4] 0.0000008-4] 14 —187.4070500 —187.40691 0.000011

18 9.301333B-5] 0.0000020-5] 18 —312.9071861 —312.90718 0.000003

22 4.105833B-5] 0.0000006—5] 22 —470.4072729 —470.40726 0.000003
26 2.083039¢-5] 0.000000p-5] 26 —659.9073332 —659.90732 0.000002
30 1.1663256-5] 0.000000L-5] 30 —881.4073775 —881.40736 0.000001
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TABLE |V. Differences between partial-wave contributions to relativistic and nonrelativistic polarizabil-
ities for heliumlike neon Z=10). Here,a \g represents nonrelativistic valuas ., represents relativistic
values including only the Coulomb interaction, ang, represents relativistic values including both Cou-
lomb and Breit interactions. Units: 16 a.u.

/ @ NR & coul Aa coy X Rel Aapel

0 1.056462 1.051281 —0.005181 1.051805 —0.004657
1 1.044603 1.039503 —0.005100 1.039879 —0.004724
2 1.044741 1.039640 —0.005101 1.040014 —0.004727
3 1.044770 1.039668 —0.005101 1.040042 —0.004728
4 1.044780 1.039679 —0.005101 1.040051 —0.004729

B-spline basis orbitals. Comparing our nonrelativistic calcu-electric-dipole shielding factos for the case of heliumlike
lation with other precise nonrelativistic calculations serves tmeon ¢=10). The shielding factor is evaluated using ex-
calibrate the accuracy of our subsequent relativistic calculaactly the same ground state wave function and solving the
tion. same inhomogeneous equation for the perturbed wave func-

As a first step in our calculations, ontyorbitals are in- tions but replacing by z/r? in Eq. (10). The nonrelativistic
cluded in the ground-state wave function. The resulting twovalue of the shielding factor for a two-electron ion with
particle configurations are designated bggns) wherem nuclear charge is exactlyo=2/Z. As seen from the table,
andn are different principal quantum numbers. Correspondthe two quantitiesr and a exhibit similar convergence pat-
ingly, the perturbed wave function is made up of all possibleterns: both fall off as 14+ 1/2)* asymptotically. Moreover,
(msnp) configurations. As a second stemg,np) configu-  the extrapolated value af is within 0.0001% of the exact
rations are included in the ground state amdp(nd) con-  value.
figurations are added to the perturbed wave function. We Sinceo=2/Z, the extrapolation error i can be deter-
continue these steps, adding one angular momentum value @tined exactly. This error ranges from 0.4% of the extrapo-
a time to the wave function until all configurations up to lated remainder foZz =2 to about 10% of the remainder for
(mh,nh) are included in the ground state and the corre-Z=10. Given the similarity in convergence patternsxodind
sponding (nh,ni) configurations are included in the per- o, one expects the extrapolation error ferto be approxi-
turbed wave function. At each step, we determine the partiainately the same fraction of the remainderain We use this
contribution to the polarizability from the added angular-rule to obtain a first estimate of the extrapolation error. For
momentum state, and, at the final step, we estimate the re¢he case of heliumlike neon, this estimate leads to the value
mainder from those angular-momentum states not included = 1.044 790 9(6X 10 2 a.u. for the polarizability. The ab-
in the wave function by extrapolation. Incremental partial-solute value of the difference obtained on extrapolating
wave contributions from high- states are found to decrease from /=5 and from/ =4 gives a second measure of the
with increasing/” as 1/¢”+1/2)*. extrapolation error.

We take a conservative approach and quote the larger of
the two estimates described above as the extrapolation error
in Table Il, where we present the extrapolated nonrelativistic

To illustrate our method of calculation, we give in Table | values ofa, together with estimated extrapolation errors. For
the successive contributions to the polarizabilityand the Z=2, the present value=1.383 199(8) can be compared

lll. RESULTS AND DISCUSSIONS

TABLE V. Relativistic corrections;A a ge, to the polarizability given by differences afyg(/'=4), and
a re(/'=4), which are calculated with the first five partial waves only. Full relativistic polarizabilities,
a Rl are obtained by addingy « e to the nonrelativistic polarizabilitiesy yg, shown in Table 1. Numbers
in brackets are multiplicative factors in powers of 10. Units: a.u.

z anr(/=4) @ e/ =4) Aage @ Rel

2 1.383226 1.383149 —7.65Q0—-5] 1.383123

3 1.924457-1] 1.924008—1] —4.485-5] 1.924088—1]

4 5.2266882] 5.223981 2] ~2.707-5] 5.224179—2]

6 8.9637283] 8.951057—3] ~1.267-5] 8.951270—3]

8 2.6524673] 2.645174-3] —7.293-6] 2.645216—3]
10 1.04478p-3] 1.040051—-3] —4.729-6] 1.040062—-3]
14 2.60317B-4] 2.578710-4] —2.447-6] 2.578726—4]
18 9.30130p-5] 9.152248-5] —1.491-6] 9.152282-5]
22 4.10582B-5] 4.005668—5] —1.002-6] 4.005678—5]
26 2.083036-5] 2.011188-5] ~7.18§-7] 2.011199-5]
30 1.166328-5] 1.112320-5] ~5.400—7] 1.112329-5]
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with a recent, more precise valae=1.383 192 179 given by
Bhatia and Drachmal6], and to an older, less precise value
a=1.3830 given by Grasso, Chung, and H{iit Similarly,

the present nonrelativistic value=0.192 453 6(3) for Li

can be compared with the high-precision value
a=0.192 453 204 of Drachman and Bhdt# and the older
value «=0.192 45 from Ref[7]. For both ions, the present
values are larger than the high-precision values by approxi-
mately the estimated extrapolation error.

In our nonrelativistic calculations, we fix the “input”
value of Ej at the value given by by Draké]. As we suc-
cessively increase the number of angular-momentum states
included in our basis, the “output” value &, obtained by I T T T T
solving the eigenvalue problem in Eq7) gradually ap- ) 5 10 15 20 25 30
proaches the input value. This is illustrated in Table Ill,
where the inpukg value is compared with the value inferred
by extrapolation of the sequence of outdty values ob-
tained from Eq(7). The sequen4ce of incremental energies 'Siike ions (including the Breit interactionplotted against nuclear
found to converge as U(+1/2)". In all cases, the extrapo- chargeZ.
lated energies agree with the input values to the level of the
estimated extrapolation errors. The relativistic calculations. ] P
are carried out in a similar way, except that the input energiefgure, one infers thatha ge— —4.86x10°%/Z2° a.u. for
from Ref.[8] include relativistic corrections. large values of the nuclear charge .

In Table IV, we compare the partial-wave contributions _APPlying the present analysis to the high-Rydberg states
from our nonrelativistic and relativistic calculations for heli- of Li * mentioned in the introduction, we found that relativ-
umlike neon. In the second column, we list the successivéStic corrections reduce the value effor Li * by 0.0232%.
approximations to the nonrelativistic polarizability and, in The theoretically predicted h0-10i interval for iLi*,
the third column, we list the corresponding relativistic valueswhich is dominated by the dipole polarizability, is
evaluated using only the Coulomb interaction in the no-pairl09.246611) MHz [2]. This value was calculated using
Hamiltonian. The differences between the relativistic ande=0.192 485 410, which includes reduced mass corrections.
nonrelativistic valuesAa ¢, are tabulated in the fourth Reducing this value by 0.0232%which ignores relativistic
column. For/=1, these differences are seen to be stable agorrections to the 1 and 10 wave function changes the
/ increases. In the fifth and sixth columns, we give thepredicted interval to 109.221Bl) MHz. This relativistically
partial-wave approximations to the relativistic polarizability, corrected interval may be compared with the measured inter-
OReb inc|uding both Coulomb and unretarded Breit interac-V&' 109.214M47) MHz. We find that relativistic corrections
tions in the Hamiltonian, and the differences with the non-to the dipole polarizability account for more than 75% of the
relativistic values, Ao re, respectively. The difference difference between the observed and predicted intervals in
Aa ¢4y accounts for the dominant part of the total relativistic this case.
correction. However, including the Breit interaction reduces
the relativistic Coulomb correction by about 20%.

In Table V, we list the nonrelativistic and relativistic
(Coulomb + Breit) values of the polarizabilities calculated  The authors are grateful to E. Hessels and to R. Drachman
up to /=4 for the ions considered, together with the rela-for valuable discussions. The work of W.R.J. was supported
tivistic corrections. As the relativistic corrections are nearlyin part by the National Science Foundation under Grant No.
independent of’, they are combined with the nonrelativistic PHY-92-04089 and in part by the Lawrence Livermore Na-
polarizability results shown in Table Il to get the full relativ- tional Laboratory. The work of K.T.C. was performed under
istic polarizabilities. Results are shown agg in Table V.  the auspices of the U.S. Department of Energy by Lawrence
The corrections\ « g are plotted in Fig. 1, where they are Livermore National Laboratory under Contract No. W-7405-
seen to decrease aZiwith increasingZ. Indeed, from this Eng-48.

2 -4
Z° Ao, (10" a.u.)

-45 L ]

4

FIG. 1. Relativistic corrections to the polarizability of helium-
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