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We have made careful measurements of Stark resonancési iRydberg states above and below the
classical saddle point to test various theories and to obtain a precise calibration of the electric field. Rydberg
states were populated by two-step diode laser excitation to ft&s3ate followed by He-Ne or diode laser
excitation to Stark sublevels near the=15 manifold energy. Calibration was performed by comparing mea-
sured resonance positions with theoretical results. For zero-field energies, the theoretical calculations were
made using quantum defect parameters obtained by fitting available spectral data on Li, and from recent
polarization model results of Drachman and BhfRays. Rev. A51, 2926(1995]. Three theoretical methods
were used:(1) matrix diagonalization over a basis of spherical coordinate states, for which the precision
declines as one approaches the saddle ptirame transformation theory, which makes very economical
use of computer resources but is not reliable beyond a precision of about 500 ppm in an electrig)field;
recently developeR-matrix method. The last of these was most accurate and, like the second, could be used
both below and above the saddle point. From the measured resonance positions and an optimum set of Li
guantum defect parameters, tRematrix calculations provided a calibration of the electric field to abbu2
ppm =4 mV/cm. We briefly discuss certain refinements and shortcomings of the other two theoretical methods,
and the special procedures used to obtain high accuracy witR-thatrix method.

PACS numbds): 32.60+i, 32.10.Dk, 31.15-p, 41.20-—q

[. INTRODUCTION for nonseparable quantum systems and for precision field
calibration. Previously, the most precise electric-field calibra-
In principle, it is possible to calibrate a static electric field tion appears to be about 50 ppm from measurements on
to the accuracy of the relevant fundamental consténis  excited helium atom§7]. In contrast, magnetic fields can be
rently ~0.3 ppn) by measuring resonances of simple atomscalibrated to much better than 1 ppm by NMR techniques.
in electric fields and comparing with theoretical results. A In hopes of achieving a precision electric-field calibration
calibration standard is needed for precision measurements @fith Rb atoms, measurements of resonance narrowings
atomic polarizabilities and molecular dipole moments, andabove the saddle poift= —2JF were made by Yanet al.
for testing Stark theory in various atoms. Measurements ofome years agfl]. Resonance narrowing occurs when two
atomic Rydberg levels in an electric field have also been usedr more energy levels couple in such a way that different
to map spatial variations of electrostatic fielfld, and a decay channels interfere. It can dramatically increase the
calibration standard would provide an absolute scale. In adifetime of one of the states over a small range of field
dition, measurements of the Stark effect have been used {8—11]. Such a sharp feature would appear to be well suited
measure binding energi¢2] and energy difference] of for field calibration experiments. The data from the Rb ex-
the lower states of a laser-induced transition. periments were compared with computational results from
For alkali-metal atoms, neither the theoretical nor experiHarmin's frame transformatiotFT) theory[12—14 to give
mental techniques have been tested previously at the ppam absolute calibration. Unfortunately, there were inconsis-
level of precision. The theory of hydrogen atoms in an electencies as large as 1000 ppm in the calibration parameters
tric field is presumed known to high accurap§—6], but  obtained from different narrowing regions. One possible ex-
because of special requirements and circumstafiesocia-  planation for the discrepancies was that the large and polar-
tion of H, into H atoms, excitation, and fast beam velocities izable Rb ion core was not properly taken into account in the
precision experiments on hydrogen have not been reportetheory. If so, then a lighter alkali-metal atom would be ex-
Therefore Stark measurements on atoms with one electrogpected to provide better agreement. For the present experi-
outside a closed shell are of interest both for testing theoriements, we selected Li, which had previously been used for
comparisons between precision measurements and theory for
the diamagnetic Zeeman effddi5,16.
" Permanent address: Theoretische Astrophysik, UniverBita- Initial measurements showed that the change from Rb to
ingen, Auf der Morgenstelle 10, D 72076 Biagen, Germany. Li did not alleviate the discrepancies, and it became clear
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that such inaccuracies were inherent in the FT computational
method, applied either below or above the saddle point.
Shortly after this conclusion was reached, an alternative
theory for atoms in an electric field was developéd] using
R-matrix methodg16,1§. In the present work, we report
corroboration between Stark measurements on lithium atoms
and R-matrix calculations at the level of about 2 ppm. This
level of precision is approximately 80 times better than that n=15
achieved in the study of the diamagnetic Zeeman effect in Li
Rydberg leveld15,16. A summary of the present work has
recently been published 9].

The theory of the Stark effect in nonhydrogenic atoms 3S + F=2) 189.4 MHz
presents a special type of nonseparable partial differential 112 F=1

*

equation for the outer electron. The core region must be ef- .
fectively excised from the solution since it constitutes a “‘813 nm
many-body problem. Within and near the core, the external “.‘
glectric field is negligib_le compared w!th the internal_atomic "'ZP F=01 15,5 MHz
field and the problem is nearly spherically symmetric. Out- 2 F=3
side the core itself, core effects can be expressed to a high
degree of accuracy by tHedependent quantum defect phase
shifts, as discussed in Sec. lll. Neglecting core polarization .°°.671 nm
effects, the outer region is separable in parabolic coordinates.
The theoretical methods discussed here take three differ-
ent strategies for modeling the core and the outer region. In N

the matrix diagonalizatioMD) method[20] (Sec. IV), the 23<2_—'7'_ F=2)803.5 MHz

electric field is the perturbing element. The basis functions K

are_ zero_-field eigenfunctions for variousl §tates, with e_n- FIG. 1. Excitation scheme used in these experiments. A repre-
ergies given by a q“am‘%m defect expansion, h?nce with thgentative field scan is overlaid on the Stark manifold arourd5
correct phase shift outside the core region. This method ig 5 visual aid.

limited because only bound states are included in the basis

set. To obtain convergence as the field approaches the saddiear then=15 manifold energiegsee Fig. 1 As in the
point at a given energy, progressively larger basis sets mugxperiments on rubidiurfwhere decay times were measured
be used, but spurious resonances can occur when high-lyingjith pulsed laser excitationwe have made some measure-
basis states are Stark shifted all the way down into the regiofents of interference narrowing, but of the resonance lin-
of interest. In an attempt to estimate shifts due to high- €Widths rather than decay rat&Sec. VII). With cw lasers,

levels and the continuum, we extrapolate calculated energiégljwe‘,’e][: |I(t-j IS Imore fpreuse {;mdscor;(vement to mea?ured
as a function of the uppermost energy of the basisisee  electric-field values of successive Stark resonances at fixe

Sec. V). This results in a modest improvement of MD ener- laser frequgncy. T_his.spectroscopic method also iS. z_idvanta_-
gies, but does not attain the desired level of accuracy geous relative to lifetime measurements because it is sensi-

X tive to field variations only over the excitation region, not
The frame tre_msformatlo.n meth§d2-14 (Sec. V) USES  over the entire decay length, and because measurements can
parabolic coordinate solutions for the outer region. Eacfb

bolic ch I function is d dint heri e made below the saddle point, where MD calculati@®
paraboliC channel wave Tunction IS decomposed INto SPNerl . iqe 5 useful first approximation. In addition, the reso-
cal components, to which the appropriétdependent phase ances occur at any energy and do not require a search pro-

shift is applied. In the original formulatiofil2,13, WKB  cequre, as needed to locate regions of interference narrow-
wave functions were used. We have substituted numeriyg Data were obtained with a stabilized diode laser or
wave functions, and found slightly improved comparisonsHe-Ne laser exciting from the 3S,, state, by scanning the
with experiment, shown in Sec. VIII. In Secs. V and VIII, we electric field. Resonance peak positions below and above the
speculate on the origin of the discrepancies observed whegaddle point were measured. Further details of the experi-
comparing FT results with experiment. ment are discussed in Sec. Il.

Finally, the R-matrix (RM) approach[16-18,2] (Sec. In Sec. VIl we present fits of spectroscopic measure-
V1) matches the phase-shifted spherical wave functions at ments to computational results from tfiematrix method.
radiusr = a with eigenfunctions of the hydrogenic atom plus The field calibration exhibits an uncertainty of about 2 ppm
electric field system at large. These eigenfunctions are in the effective electrode plate separation plus an uncertainty
computed as combinations of spherical coordinate Sturmiaof 4 mV/cm from the voltage offset parameter. The fitted
functions. Complex coordinates and energies are used tenergy of the upper levels excited by the third laser has an
achieve square integrability. The Sturmian functions provideuncertainty of about 1.5 MHz. These error estimates include
this method with great flexibility to match both the boundary effects of uncertainties in the quantum defect parameters, as
conditions atr =a and the desired long-range behavior. discussed in Sec. VIII. In Sec. VIl we also show that MD

Our experimental techniqgue employed a three-photoreigenvalues typically exhibit systematic errors, and FT re-
stepwise excitation of Li from the 2 2S,,, ground state via sults are again off by a large amount. In the Appendix,
the 22Pg, to the 32S,,, state and then to Stark sublevels atomic units of energy and field are discussed.
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FIG. 2. A schematic of our experimental apparatus showing the
geometry of the three excitation lasers with respect to the atomic FIG. 3. Data obtained from a scan-a#83.06 cm * excitation
beam. energy from 1 to 9 kV/cm overlaid on a plot of Li energy levels.
Solid lines denoten=0 levels, dashed lingsn|=1 levels, and dots

Il. EXPERIMENTAL SETUP denote the saddle-point energy. Eigenvalues above the saddle point
have been computed with a multichannel Fano resonance adaptation
of FT theory[23,24). The plotted energies terminate at the local
parabolic critical field5]. Broad resonances occur near and beyond
each of these points.

Our three-step excitation scheme utilizea &= 670-nm
diode laser to excite from 25,,,—22%Pg,, aN = 813-nm
diode laser to excite 2P 3,—32S,,,, and a third laser, at
\ = 633 nm, to excite from 3S,,, to n=15 stategsee Fig.

1) [22]. The first two lasers are locked to atomic resonancegyce This potential is applied using a Spellman RHSR series
in the (field-freg) fluorescence region of our apparais®e  nigh voltage dc supply that has an overall stability of about 1
Fig. 2), while the third laser, either a diode laser or He'Neppm/min(see additional comments on this in Sec. YIThe
laser, is frequency stabilized using different schemes. Thge|q js scanned and recorded remotely by a computer that
diode laser is stabilized by locking to an Invar Fabryé®e  cpanges the bottom field plate potential from O to 10 V. This
reference cavity. This cavity is kept in rough vacuum togcanning voltage is also calibrated using the same precision

minimize environmental thermal and pressure effects andgtage divider used to determine the top plate’s potential so
provides an overall frequency stability of approximately 1hat only one calibration factor is involved in the determina-
MHz/h. The He-Ne laser is stabilized by locking to a differ- o of the potential difference of the plates.
ence signal from the two stable laser cavity modes of per- \ye determine the center location of each resonance by
pendicular polarizationgpolarization stabilization fitting the ionization signal to a Gaussian function. This func-
Rydberg states near tie=15 manifold energy are popu- jon closely approximates the sub-saddle-point experimental
lated by scanning the electric field in the interaction regionjing profile, which is a Doppler broadened convolution of the
(Fig. 2 to shift the Stark Ievelsé|snto resonance with the naryral and laser line shapes. On a frequency scale, these
633-nm light for transitions from 3S,,(F=2). The popu-  resonances have typical linewidths of about 30 MHz. A typi-
lation of Rydberg atoms is measured by collecting ionsgq| scan over a resonance is shown in Fig. 4, which also
through a slit in the bottom field plate, amplifying this ion shows the fitted Gaussian function and the peak center with
signal with two microchannel plates and a home-built pre-grror pars. The experimental line shape in this figure exhibits
amplifier, and counting the resulting pulses by computer. Ayome asymmetry that we attribute to small drifts of the
scan over a wide field region is superimposed on a plot OE)ower supply voltage and of the laser frequencies. Since

lithium levels in an electric field in Fig. 3. The He-Ne laser is hase drifts are random, it would not be appropriate to intro-
linearly polarized at roughly 45° from the electric-field di-

rection. Therefore the three series= —1,0,1 are excited in

our experiment. Because of time-reversal invariamoe; 1 1600
and m=—1 levels are degenerate. We thus measure in a 1400
single scan two independent series of energy levats,0
and|m|=1.

Our signal detection scheme differs from other Rydberg
experiments in that the atoms are ionized directly by the
applied field or photoionized by absorbing additional laser
photons or blackbody radiation. Since no pulsed field is
needed, we are able to measure plate potentials with excel-
lent accuracy using a stable voltage divider. The divider used 200 -
in our experiment consists of five 20Mand one 30-K) 0
Caddock MG815 resistors. It is used in conjunction with a
Keithley Model 196 DMM(digital multimetej (0.83 ppm/h
accuracy to measure the top plate’s potential ranging from O  FIG. 4. Data from a scan over an individual resonance peak
to 10 kV, which is recorded at the beginning and end of dataogether with the fitted Gaussian function. The fitted resonance volt-
acquisition via a general purpose interface B@PIB) inter-  age and error limits are also shown.
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duce an asymmetry parameter into the line shape fit. How- TABLE I. Polarization model parameters from RE25] as used
ever, because of this situation, the error bars as given in thig this work.
figure (standard deviations returned by the fitting program

are typically too small by a factor of 3 to 10. The scatter of Cq —0.19248540
experimental points in the global fiSec. VIII) is a truer Ce 0.097881
measure of the actual uncertainties in the resonance peak C7 0.143125
positions. Cg —0.428584+ 0.04900%5(1 +1)

Peaks at higher fields exhibit larger linewidths that scale
with field as a result of field inhomogeneities arising from
the slit in the bottom field plate. Above the saddle point,
resonance line shapes, especially for=0 peaks, broaden
further and become distinctly asymmetric. These may be de-
scribed by Fano profiles, reflecting core-induced coupling ofvhereU,,=c,/r". Values forc, from Ref.[25] are given in
discrete states with the continuum. In general, we did nofrable I. Since the series is asymptotic, the uncertainty is
attempt to fit the centers of such broadened resonances singgken to be equal in magnitude to the last tefdy @ndUg

1 1 1
Upa=5|UatUst 5(U7+Ug)£5(Ur+Ug) |, (3)

it would not have improved the field calibration. are mathematically related
Relativistic effects have a slightly different form. Al-
IIl. QUANTUM DEFECT PARAMETERS though spin-orbit effects are negligible in this work, the rela-

) . tivistic mass correction is significant. Tiweighted average
For the Stark theory calculations, accurate zero-field enghift for the J=1+ 1/2 components of a givem,| level from

ergies are needed, particularly for=15 levels. The accuracy pirac’s theory for hydrogen is

required is indicated by the uncertainty given in Sec. VIII,

which is about 1 MHz. There have been few direct measure- a’Rp( 3 2
ments ofn=15 levels in Li, andab initio theory is not yet AEreI:?<E_ ol+1
sufficiently accurate. Therefore, fbr 3, the energies needed

for the calculations have been obtained from quantum defe(ﬁ:or S states] = 1/2 is to be substitutedThe shift varies
(QD) parameters fitted to experimental data. The QD expangetween 52 and 1 MHz fan= 15 levels,| =0 to 14, respec-
sion effectively provides an interpolation between micro'tively. Then~3 term in Eq.(4) may be combined with the
wave data on higlmlevels and optical data on lowdevels. o term in the Ritz expansion. In principle, the* term
Forl=4, the QD parameters are obtained from the polarizaye,iates from the Ritz expansion, and Dr§R8] has recom-
tion model[25] (including relativistic terms We now defineé  mended that this term be subtracted from the term energies
our quantum defect parameters, explain how we fit theMhetore fitting quantum defect parameters. However, for
from the zero-field data, discuss the polarization model an< 3 he present experimental uncertainties in the spectral
relativistic terms, and give the resulting parameters. data for Li happen to be larger than the* term.

The quantum defect expansion of atomic energy Ievels, e pojarization model and relativistic terrfiés] have
atiributed 1o R|t2[26], was shqwn by Ha_rtre[é?] to .be va||.d. been confirmed to a high degree of precision by recent mea-
for any spherically symmetric perturbing potent!e}l of finite surements of microwave transitions betweenl0,1=4to 6
range. Drake and Swains¢88] have recently verified Har- o015 [30]. We therefore assume that quantum defects for

tree’s theorem for an expansion of the form originally used _4 15 14 may be obtained to sufficient accuracy from this
by Ritz. Namely, energies are written model

To obtain quantum defect parameters for 0 to 3, we
have collected all available data on zero-field transitions be-
) . . . tween Li energy levels and fit them to expressions of the
where hereR,= Ry, is the Li Rydberg constant, as given in o of Egs.(1) and (2). Specifically, the fitted data include
the Appendix, and recent interferometric measurements of theDLiines [31],

recent hollow cathode measurements on transitions between
I ot I o ST ) levels up ton=7 [32], earlier hollow cathode measurements
Koo =2 T (n—p)® ' [33], microwave measurements 6$ and P levels[34],
microwave measurements & —2F and °D—2G (from
Since the quantum defegt occurs in the denominators, it- Stark mixing intervals[35], and unpublished laser spectros-
eration must be used to determinefor any integrai value.  copy measurements of 25— n 2P transitions[36]. In order
For intermediate energids such as occur in the Stark effect, to include °D—2G microwave data, polarization model re-
Eq. (2) is a simple series ifE/R,, with even powers only. sults were used for théG level energies. All these data sets
All core effects can be represented by the above expansionvere combined with weights appropriate to the measuring

For sufficiently highl, penetration and exchange effects uncertainties in a simultaneous fit &8, °P, °D, and 2F
are negligible, and one can compute the needed quantuguantum defect parameters. Fine structure parameters for
defects from core polarization and relativistic effects. Drach-each of these manifolds were fit but are not given here be-
man and Bhatig25] have used accurate correlated wavecause they were not significant in the present measurements.
functions for the Li ion core to calculate the polarizabilities  Table Il gives the parameters obtained from the fit to the
and adiabatic corrections required for terms upt6. Their  zero-field spectral data. For the optimum fit, referred to as fit
resultant potential may be writtgin atomic units A in Table Il and elsewhere, the varian¢ens ratio of re-

: 4

E(n,L):_RA/(n_M)Z, (1)
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TABLE Il. Quantum defect parameters féLi obtained by fitting spectral data to Eqd) and(2), Sec.

lll. QD set A has one more parameter for edctmanifold than set B. The values fd&(n=15) are
1

incm™ .
’s 2p 2p 2

Fit A: Variance= 2.8
Mo 0.39951183 0.04716876 0.00194211 0.00030862
Mo 0.02824560 —0.02398188 —0.00376875 —0.00099057
My 0.02082123 0.01548488 —0.01563348 —0.00739661
Me —0.09793152 —0.16065777 0.10335313
Mg 0.14782202 0.33704280
E(15 —514.74665 —490.75812 —487.80850 —487.70305

Fit B: Variance= 9.2
Mo 0.39950971 0.04716701 0.00194961 0.00031432
Mo 0.02900322 —0.02318304 —0.00452170 —0.00148768
Ma 0.00532119 —0.00423309 0.00213012
M6 —0.00502291 —0.00881455
E(15 —514.74673 —490.75812 —487.80879 —487.70329

siduals to estimated experimental uncertaintieas 2.8. For  sition strength formula in terms of hypergeometric functions
fit B there was one less parameter for each manifold, and thigll]. By setting the appropriate quantum defects equal to
variance increases to 9.2. In view of the correlation betweerero, the numeric integration results were confirmed by the
different parameters, it is necessary to retain several digiteypergeometric function expressions to at least eight digits.
beyond the actual error limits to reproduce the input transi- However, this diagonalization method is limited by the
tion energies. The effect of uncertainties in the parameters inecessarily finite basis set of bound states. Even though the
Table 1l on the Stark theory calculations is discussed in Seassumed field may be less than the saddle-point value for the
VIII. n level under consideration, it may be larger than the saddle

Table Il gives the QD parameters fo<d <8 obtained point for a high-lyingn,l basis state, and spurious reso-
from the polarization model and relativistic effd&q. (4)], nances can occur when the high-lying states are shifted down
from expressions for ", and from the corresponding con- into the region of interest. To simulate the extension of a
tributions towg, 1, ..., givenin Egs(17)—(20) in Ref.[28].  basis set to highemn-levels and continuum states, we have
Note that because of the contribution fravk,, the values extrapolated the calculated energies as a functiok i,
do not decrease ds°® (for >1) as otherwise expected. the zero-field energy of the uppermost level of the basis set.

In Ref. [3] an exponential form was used. We have since
IV. MATRIX DIAGONALIZATION found that a power law of the form

The historically oldest method we have used to calculate
low-field resonance locations is based on Zimmerman’'s ma- E(Ema) = Ex+ (Ep— E.)P ®)
trix diagonalization method20], which is an extension of ma
Schralinger’s _original perturbation treatment of the Stark ef-is 1 ore accurate. HerE(E,.,) are the calculated MD re-
fect[37]. Matr_lx elemen_ts of the S_tark terfz= Fr_cos9 art  sults andE.. is the extrapolated value that includes an esti-
calculated using zero-field spherical wave functions as basig,ate of shifts from highen levels and from the continuum.
states. We use the standard expressionsiMor =1 matrix  aq discussed in Sec. VIII, for each resonare andA are

elements of co# in evaluating the angular integrals. The t,,nq by least squares fit to a series of 12 to 15 values of
radial integrals are gone using the Numerov techni@8d E(E,.,). An optimum valued=2.50 was found by using the
for the radial Schrdinger equation, with the variable \p gpproach and Eq5) for hydrogenn=15 levels. This is
u=r [39]. The integration begins at largeat the quantum strictly anad hocempirical result. For the H £S ground
defect energy of each staté0]. For| values for which the = g5t Eq(5) does not apply. Values ¢fLs|z|np)|? decrease
quantum defect shifts are negligible, we use Gordon’s trangg ,-3 [42] while the n2P energy level spacings also de-
crease a® >, sOE(En,,) decreases approximately linearly
with Eqa for En,=0. The extension of the function
E(Emay for the H 12S state into the continuum has a rather
complicated dependence &y, [43], but eventually yields

TABLE Ill. Quantum defect parameters fdLi obtained from
the polarization model of Ref25].

! to 2 a 19% continuum contribution to the H?B polarizability.

4 8.861x107° —5.47x10°4 We have not attempted such an analysis forrtkel5 Stark

5 3.469x10°° —2.98x1074 sublevels. HoweverE,, values from MD calculations and
6 1.690x10°° ~1.79%x10°% Eq. (5) with 8=2.5 did produce agreement to within a few
7 9.768x 1078 ~—1.16x10°* MHz of the “exact” energies fom=15 levels of hydrogen

that we have obtained by the numeric method of Luc-Koenig
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and Bachelie5] and confirmed by calculationgt4] with € T\ [

recently developed complex pole thed®]. Extrapolated Yim(N=NaYin(0, H)r[1+--- ],

values fork., from MD calculations fom=15 Li levels will

be compared with RM results in Sec. VIII. To our knowl- f o lﬂr ,d7=05(€—€') S Oy (12)
edge, this represents the most precise application of the MD 'm m

approach to Rydberg Stark levels. In the above expression&y(7)=(—m?/4n>+ Byl 7+ €l2

+F9/4)*? is the WKB wave number. The transformation
V. FRAME TRANSFORMATION METHOD matrix is then given by

In this section we present a brief review of Harmin’s
frame transformation Stark effect thediy2—14, and indi- ugFm- m NeN, 2™ (Imli s
cate how we incorporated numerical results to test the accu- | Ng @ “ml Isins).
racy of the WKB approximations.

For hydrogen atoms in an electric field, the Scfinger ~ The energy ise=—1/(2v%), j=(v—1)/2, and u.=[m
equation at energy [see Eq(A3)] is separable in parabolic = ¥(B1—62)]/2, wherev, j, and u. are in general not

(12

coordinates¢=r+z, p=r—z, andp=tan *(y/x): integral. For integer value:aafFm is a standard Clebsch-
Gordan coefficient. For nomntegral values, it is obtained by
d2ysk (&) 2 subst[tutlng appropriat€ functions in place of factorial ex-
1n1;n (1 T + &+ A F_g) €k (£)=0, pression in, for example, Edmonds’s E§.6.1] [45]. Stark
d¢ 4¢ & 2 4 ! © structure occurs in thél,, factor in U;E{“, so that at reso-
nance values of the energy and fiel, attains a local maxi-
mum.
d2X2n1m( 7) N . B> . € . Fr\| o The tra}ns_formation matrice§ apply to the expression for
d7? 472 7 2 4 X2n1m( 7)=0, the photoionization cross section:
(7

=47Ta2ﬁw 2 |<¢ |rm|¢|>|2 (13)

where 81+ B,=1. The ¢ equation has a potential well, and ny.m

thus presents a discrete eigenvalue problem. At any energy,

the eigenvalues are the values of the separation congtant where ¢; is the initial state wave function and;, is the
for n; nodes in thet eigenfunction. Thus; designates the dipole transition matrix element for polarization component
different channels. They equation in general has a barrier m. In view of Egs.(8) and(13), we can write

resulting from the combination of Coulomb field plus static

field, and there is typically tunneling through this barrier. For

~ eF
ny>n (B,>1, or B,<0), the effective Coulombic potential @ (€)=C 2 (¥iulral vi)(ilral ¥, >2 UﬁZmUFrnT
in the » equation is repulsive and the wave function has LI, m,m

small amplitude near the origin. =CgOH*<F, (14)

Near the origin, one can also write a wave function in
spherical coordinates with quantum numbkrand m, and whereC=4mafiw, and
there is a transformation between the parabolic coordinate

solutions and the spherical coordinate solutions: 0?r|(€):<i/f|€m|rﬁw|¢i><¢i|rﬁq| W) (15)
|m¢
N Xlnlm(g)Xanm( 7]) N eFm eFmy 1 eFm
Urm(1)= ontn =§|: Ur (). Hpy 2 Ul’nlUnlI : (16)
® U,o,,(e) is independent of field sincg, is localized near the
The lowest order coefficients and the normalization are defigin and the integrands are significant only fogF~*2
fined as follows: HF contains the Stark structure.
This may also be written
NL&M+ D21 4 .. f dé’ veF ) € €
Xinynl ) =N ™ ExinnlEVE=L of = 3 (wilralvf [ 1) wialr sl )
(9) I,1",mm
17
XM =N 7M1+, so thatHT,"=[(¢]¢) 17" serves as a normalization fac-
tor.
For alkali-metal atoms, one replaces the hydrogenic
el 2 (7 ~ spherical coordinate function ¥, ="f (1)
eF ’ ’ Im elm
XZ“lm(”) - wkz(r;’)SW“ Ke(7")d7 +4’ =Y m(0,0)F4(r)/r, where F,(r) is a regular Coulomb

(100  function, by the phase-shifted function



Wi = 0SS in(T) = SiNG G m(r), (18)
wheregdm(F)=Y,m(0,qb)Ge|(r)/r, in which G,(r) is the
irregular Coulomb functiofi46]. The phase shifé; is simply
related to the quantum defect through

5| =T . (19)

To introduce a comparable phase shift into the parabolic

functions, we consider the irregulay function, x5, m( ),
which is shifted byw/2 in the well relative toys, m( 7).
Asymptotically, in m( n) and in rn( n) differ by a phase
Yny: but their amplltudes are |dent|cal. #<b<c are the

classical turning points of they equation, then for
a<np<b

2 ) 7
X2n1m(77) \/msm( fa kz(ﬂ’)dﬂ’), (20)
1 2 7
M= 5\ 70 a( Lkz(n')dn’), 2

and for »>c,

2
=\ | [Niatnan +7).
Yor ( )H\/Lsin Jnk( Ndy + 0+
X2n1m n ’7Tk2( 77) c 2\ 7 7n1

such  that  W(x2,X2) = X2X2— X2X2= — (2/m)siny,
=—-2/(wRYS. From the WKB connection formulas using
parabolic cylinder function®R?=T2coSA+T 2sir’A, where

T is the tunneling integral and is the phase accumulated in
the well plus a small correction for tunnelinMe omit in-
dicesn;, m, € andF onR, S, T, andA.) The compa-

(22

(23
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ﬂffnﬁ=<cos5|)n21 (U™ i
—(sma.)E Ui m(esoyn ) dim  (26)
= (cosd)U ™ Lyy—(sind) U (cscy) .
27

Note that the left side of Eq25) is phase shifted isotropi-
cally, while the right side is phase shifted on the negative
axis but not on the positive axis (z=0). This deficiency
“heals” quickly off the z axis, but may be a limiting factor in
precision calculations.

The normalization factor for alkali-metal atoms is

(V|¥')=[coss— (sins)U(coty)UJU 101

X [O(COty) Usiny—cosy] (28

=Q(HF)'Q+(sin)H (sind)=(DF) !

(29

where
Q=cos5—(sind)h" (30)
hi/"= 2 U U Moty (3D

Below the saddle pointd© is small except at a hydro-
genic resonance, hence one may use the expansion

DF=[1+(Q !HFsins)?] 1Q HFQ? (32)

B aHFq+. ..
|deQ|?+tr[ (qHFsind)?]+ - - -

: (33

rable expression forS? is obtained by the replacement Whered=Q 'deQ is the adjoint ofQ. Hence resonances

A—A—7/2: S2=T32siPA+T 2co<A.

occur when

Harmin uses the equality of Green’s function in spherical

and in parabolic coordinates

Gﬁrr,r’>=w2 (N Gem(r")

Xinym(EX i m(EDX5h m M) X m( 1)

:22
ng

W(XZn m!XZn m
(24)
to give

Gam()= FZ Xinym(E)X5h,m( MU Meseyn, (25)

and thus

deQ=defcoss—(sind)h"]=0. (34)

Also, appreciable tunneling below the saddle point leads
to a different representation. Sindg,=BY4R, we can fac-
tor U™ into a nonresonant part)it"=ag N B N,

and the resonant partR 1. Furthermore as sin
=1/RS coty=sinAcosA[T>— T ?] and

C
Fm Om
hi =2 OFpUR——
n
1

EOmUGOmsinAcosA[Tz T2
"“1 Nl T2cofA + T~ 2sirfA

=2

- ufo’“ufO cotA (35)
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when the tunneling integrdl is large. In the final expres- However, for Rydberg atoms where many energy levels
sion, T andy do not occur. have to be computed, this conventional theory requires the

The tunneling integrall and phase accumulated in the computation of many solutions for>a, followed by a com-
well, A, can be computed from WKB expressions. To checkplicated search for roots. In Refgl6,18, a more efficient
this approximation, we have computed these quantities b{echnique has been presented. The idea is to doistethe
numerical integration using the Milne method as describednner problem, and then use its solution to build in directly
by Alijah et al. [47]. Results from this numerical transcrip- information aboutr<a on the boundaryr=a via a

tion of the FT method will be presented in Sec. VIIl. “Schneider term” [48] before solving the outer problem.
This ensures that the solutions of the latter give automati-

cally the energy levels of the full problem. The details in

V. R-MATRIX THEORY COUPLED Refs.[16,18 can be summarized as follows. Foea, the

WITH COMPLEX COORDINATE ROTATION eigenfunctiony.(r) with energye is expanded over reduced
_ radial functionsR(r) for angular momentunh, multiplied
A. R-matrix theory for Rydberg states by spherical harmonic¥ (6, ¢):

Recent theoretical work combinirigrmatrix and complex

coordinate techniques has provided a computational means - Ri(r)

of calculating Rydberg spectra of nonhydrogenic atoms in w(r):Z TYIm(gv‘ﬁ)- (36)
the presence of strong electric and/or magnetic fields with

high precision16-18,21. Substituting Eq(36) in the Schrdinger equation with the

We first summarize the fundamentalsRfmatrix theory.  additional Schneider boundary term yields
Space is split into two regions separated by a spherical sur-
face of radiusa (typically several Bohr radii in size For 1[ 1

0<r<a the dynamics is dominated by the complicated in- T2

d> 1(1+1)
—W+r—2—5(r—a)

d 1
8|7
teractions among the nucleus and all the electrons. The exi ' '
ternal electric field is here very small compared to the intra-
atomic electric field. To give an order of magnitude: in our +Frcosd—€elR(r)Ym(6,¢)=0, asrso. (37)
experiments, the electric field is at most 10 kV/cm, as com-
pared with the 50 MV/cm intra-atomic electric field seen by Away from the_boundary=a, Eq. (37) reduces_to the i
an electron at 10 Bohr radii from the nucleus. Hence, in this>cHr@inger equation for a hydrogen atom in a static electric
inner region, the effect of the external field can be neglectedf€ld; as expected. However, E@7) must incorporate a spe-
to lowest approximation. We will show in Sec. VI D how it Cific boundary condition at=a which depends on th8,
may be taken into account perturbatively for very accuratd®m- The termé(r —a)d/dr in Eq. (37) makes the Hamil-
calculations. tonian Hermitian in the ranga<r<~. In the Schneider

Forr>a, the multielectronic character of the atom can beMethod, the ternB, is determined by
neglected. The Rydberg electron there is affected only by the
Coulomb field of the ionic core and the external field. Since B = 1 dug(r) 38
the characteristic excitation energy of the ionic core is sev- U a)  dr o (38)
eral eV, which is much larger than themeV energies char-
acterizing the binding energies of the Rydberg states, thehereU,(r) is thelth partial wave obtained from the inner
ionic core can be considered frozen and its effect on theegion:

Rydberg electron for>a represented by an effective poten-

tial. This potential is essentially Coulombie Z/r (with U, (r)=(cosd)F 4(r)—(sind)G,(r). (39
chargeZ=1) but small corrections exist due to the core po-

larization, see Eq(3). The quantum defect parameters ex-[F(r) andG(r) are regular and irregular Coulomb func-
press the accumulated phase shift at largeom the core tions, respectively, as stated in connection with EB).]
itself and the core polarization potential. If the radimuss B depends on the energy and the structure of the ionic core
sufficiently large, core polarization effects may clearly bethrough the quantum defects b, (r). Reference$16—-18
neglected forr>a. Thus in the outer region the Rydberg demonstrate that, with such a choice, the eigensolutions of
electron of the nonhydrogenic atom is described by the samigq. (37) give the energy levels and wave functions of the
Hamiltonian(not the same wave functipms the electron of nonhydrogenic atom in the presence of the external electric
a hydrogen atom. field.

By splitting space, we reduce the full problem to two  Solving this equation is not easy because the energy en-
simpler ones: a field-free atom fox<a, and a hydrogenic ters explicitly as one term of the equation and also via the
problem in the presence of the external field fora. Both  energy dependence of tiBg. For Rydberg states and not too
are relatively easy to solve. The inner-region wave functionarge a radius, the energy dependence of tBg is suffi-
can be obtained from a full multi-electron calculation or ex-ciently slow to allow its value computed at some fixed en-
tracted from field-free spectroscopic results, as done in thigrgy to be used in determining, by numerical diagonalization
paper. The outer problem can be solved numerically usingof Eq. (37), several energy levels close to this. For highly
for example, diagonalization over a Sturmian basis. The difaccurate calculations, this approximation is not acceptable.
ficulty (overcome by conventiond®-matrix theory lies in However, the experiments are performed at a fixed energy
matchingthe solutions at =a. of the Rydberg state, scanning the electric-field value
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through consecutive resonances. SinceBhdepend on en-

ic-fi : R(N=2 cuSi(n) (41)
ergy, but not on electric-field strength, they need be com | = Cni=ni (),
puted only once and inserted into E&7). We then expand
the Ri(r) in terms of a Sturmian basis:

12 where thec,, are coefficients to be determined.
(gr)' P rexp(—er2)L @ N (gr), Multiplying Eq. (37) by S (r)Yf.(6,#) and integrating
(40) over the solid angle() and over the ranga<r <o yields
the equations
whereL# 1) (¢r) are associated Laguerre polynomials and
¢ a free parameter. The expansion is

(n—1-=1)!
2(n+1)!

Si(r)=

)

1 = d? I(+1 .
2 H Si‘g’)'(r)[_W+(r;z)_6(r_a)(£_8'”5(”§')(r)dr]C”'_; U SEinrsfndree [ S8

n a r a

xs;?(r)dr)cne—zq [K.llfa s;%1<r)rs<nf.>l<r>dr]cn.1—2@ [K..Hja s;?.(r)rs;%l(r)dr]cnm.

(42)
|
whereK;;, = [Y},cos9Y,,,dQ can be easily computeee, g 2iv ) e id o
for example [49]). H(d)=—- 5 Ve— - +€e'"Frcos, (44)
These equations can be rewritten in matrix form as
Ix=F.%x. (43  Where the following substitutions occur —re'? and

p—pe . Note that this substitution of variables preserves

Hence, using this method, all the electric-field valuesthe commutation relation betweenand p.
where a Rydberg state exists with the prescribed energy are The power of this method lies in the fact that the spectrum
eigenvalues of a generalized eigenvalue problem. A singlef the complex operatoH () is composed of the bound
matrix diagonalization gives all the electric-field valuesstates ofH=H(9=0) (if there are bound states; the corre-
where a peak is expected in the experimental spectrum. sponding eigenvalues are then purely yeaf isolated com-
The.Z and.% matrices have a block structure due to theplex eigenvalues which are the resonancebl aind of con-
coupling of differentl by the electric field. Since all radial tinua (half lines rotated in the complex plane by the angle
integrals are taken over the rangesr<«, the diagonal —2 around their branch pointsThe corresponding eigen-
properties of the Sturmian functions withare lost. How- function is square integrable, which implies that it can be
ever, all the radial integrals can be evaluated analytically. Icomputed by numerical diagonalization in a basis such as
our calculations, the basis set is composed of all the SturSturmians.
mian functions havingn less than or equal to some maxi-  The combination of the complex coordinate method with
mum valuen,.,. . 7 and.% are consequently banded sym- R-matrix theory (with the Schneider methochas already
metric matrices with dimension roughhy,./2. For solving ~been demonstrated for nonhydrogenic atoms in a strong
the generalized eigenvalue probléa®), we use the Lanczos Magnetic field[16,18 and in parallel electric and magnetic
algorithm which allows the computation of a few dozen ei-fields[17]. This again involves splitting the space into two
genvalues in a user-defined interval at relatively low cosf€gions, solving separately the problem for thetated
[50]. HamiltonianH () in the two regions and matching the two
solutions ar =a. Note that this has to be done foi( ¥) as
its eigenstates of interest are square integrable. It cannot be
done directly forH itself as its resonance eigenfunctions are
The method described in the preceding section is efficienhot square integrable functions and satisfy a different bound-
below the saddle-point energy where Rydberg states are quary condition atr —« [51]. From the mathematical point of
sibound states. Above the saddle-point eneegy—2\F  view, it is equivalent to consider the unrotated Hamiltonian
(i.e., above the critical electric fiel= %/4 at fixed energy ~ for complex coordinates and a complex boundanae' ? or
the diagonalization cannot converge to any sensible eigerihe rotated Hamiltonian and a real boundarya. The latter
value. There, the spectrum is composed of resonances, coris-more natural and will be used throughout the paper.
plex poles of the analytic continuation of the Green’s func- For the specific case we are interested in, we want to
tion. The positions of these poles in the complex plane caisolve the problem at fixetreal) energy of the electron. Us-
be obtained using the method of complex rotati@so ing the same expansion of the wave function, E§§) and
known as the complex coordinate methodhis makes it (41), but with complex coefficients,,, we obtain for the
possible to includexactlythe effect of the atomic continua. complex rotated problem a generalized eigenvalue problem
We define the complex Hamiltonian very similar to Eq.(42):

B. Complex rotation
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e—2i1‘}

* d> I(1+1) d
5 }n‘, Ua sﬁﬁ)l(r)[—WJrr—z—(S(r—a)(a—Bl
-2

Sﬁ?(r)dr]cm
0 —id [
[0S sioare [ sqosion e,

=-2Fe’> [Knlja s;%(r)rsaf.)l(r)dr}cn.1—2Fe"9§ [K.Hlfa SIS, A (rdrfenpyy. (45)

The structures of the# and.” matrices are the same as give widths of the order of 10'° a.u., not significantly dif-
for the unrotated problem. The various matrix elements aréerent from zero. Rotation angles as small&s 0.01 are
simply multiplied by various powers @ ? yielding complex  sufficient there. Above the saddle point, the situation is dif-
symmetric matrices. The only complication is for the ferent. There are many unconverged complex eigenvalues
Schneider term itself which has to be estimated for the rowith large imaginary parts which fluctuate erratically as the
tated problem. This requires the calculation of regular andasis size is increased. These broad resonacignating
irregular Coulomb functions for complex energy and com-from higher Rydberg states dominated by the external)field
plex radial coordinate as explained in REE8]. The gener- do not contribute significantly to the physics of the system.
alized complex symmetric banded eigenvalue problem iShere are also converged complex eigenvalues, correspond-
again numerically solved using the Lanczos algorithm. ing to the interesting resonances which usually lie close to

The result is a set of complex values of the electric fieldthe real axis(widths smaller than 10'°—10"° a.u). For a
F, the real part being the center of the resonance a@d sufficiently large basis, their positions are independent of the
times its imaginary part being the wid{in units of electric  rotation anglgas long as it is large enough to “uncover” the
field) of the resonance when observed at fixed energy. resonance, typicallyy>0.01). It was found numerically that

From the eigenvectors of the rotated problem, we can alsthe large proliferation of broad resonances spoils the conver-
extract the wave functions of the resonanf®s], the exci- gence of the complex coordinate diagonalization. This is not
tation probabilities of the various resonances, and the photaeally surprising51] and is probably due to a weak instabil-
ionization cross sectiofi 8]. ity of the Lanczos algorithm for complex symmetric matri-

ces. To overcome this problem, we used small rotation angles
(0.01) and wrote a specific version of the Lanczos algorithm
C. Implementation of the method using partial pivotingd52].

The calculations reported here have been carried out using The choice of the scaling parametgrof the Sturmian
the method described in the preceding section. We now detasis, Eq(40), is also important. Too large a value requires
scribe the choice of parameters. a very large basis while too small a value prevents the nu-

The first parameter is the matching radauslt has to be ~ merically computed wave function from reproducing cor-
chosen larger than the radius of the ionic core. Then in théectly the oscillations of the exact wave function near the
vicinity of and beyond the boundany=a, we can use a boundary, thus destroying completely the convergence. For
one-electron wave function. If, in addition, the electric-field the parameter valug¢=2/n, the Sturmian functiorS,(r)
term in the Hamiltonian can be neglected neara, i.e.,  coincides with the radial wave function of the hydrogenic
Fa?<1, then the one-electron wave function is a linear com-Rydberg state with principal quantum numbrerThus it is
bination of regular and irregular Coulomb functions with co-natural to use, at a fixed energy, the value {=2/n*
efficients depending only on the quantum defects at the er=2+/—2¢ corresponding to nearby Rydberg state 15
ergy of interest. The Schneider term is then determined fronfior the results reported hereWe observed that a slightly
Egs.(38) and(39) or the trivial extensions of these equations lower value of ¢ gave much better resuli$aster conver-
for complex boundarpaée'?. gence at the price of a small increase in basis size. With the

Using a large radiua makes the outer calculation easier optimal choice of the parametér good convergence in the
because the wave function has fewer oscillations and converegion of interest(principal quantum number about )15
gence is usually obtained with a smaller basis. However, toobtained using a Sturmian basis witl,,,=40—50 below
large a matching radius invalidates a basic hypothesis of ththe saddle point and,,,,=60— 70 above. The corresponding
method, namely, the fact that the teFa in the Hamiltonian  size of the basis ranges from 800 to 2500. All the calcula-
can be neglected in the inner region. A good compromise itions reported here have been performed on an ordinary Sun
to use a matching radius between 5 and 20 Bohr radii. Howworkstation. The CPU time was always short, never exceed-
ever, as explained in Sec. VI D, even this is too large for pprring 5 min to get all the resonances of interest at a fixed value
accuracy. of the energy.

The rotation angle is not a crucial parameter. Indeed, the Finally, there was a problem with the largeomponents
resonances of interest are the narrow ones, which have vepf the wave function. Although they have very small quan-
small imaginary parts. For example, below the saddle-pointum defects, they can strongly affect the convergence of the
energy, most of the resonances have widths smaller than thelculations, especially above the saddle point. The reason
numerical accuracy of the computer. The numerical resultfor this is that in ourR-matrix method, we assume that the
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atomic potential is purely Coulombic outside the matchingmixing between computed states of the order of 40The
radius, which makes it possible to use the regular and irregwelectric field strongly mixes the variodschannels in the

lar Coulomb functions with coefficients corresponding to theouter region and the effect of themixing in the inner region
phase shift originating inside the matching radius. This is notan consequently induce errors in the determination of the
true for hight values, where the quantum defect is not due toenergy levelgat fixed electric fielgl or in the determination
core penetration, but to core polarization or to the relativisticof the electric-field valuegat fixed energyin the fourth or
mass correction, either of which are associated with a longfifth digit. This is clearly not acceptable for measurements at
range potential. This means that most of the phase shift aiur present level of precision.

infinity is actually accumulated not inside but outsidea. To solve this problem, we remark that the same strategy
Hence, atr =a, although the physical reduced radial func- (i.e., solving the problem far>a by diagonalizatiohcan be
tion is very small, going smoothly to zero &S, the func-  kept provided we are able to insert at the boundana the

tion used in the calculation containing a nonzero quantuncorrect physical Schneider term associated with the exact
defect does not have these characteristics. In fact, the irregselution in the inner region. Because of themixing for

lar Coulomb function, even though its coefficient is veryr<a, the Schneider term will lose its diagonal character. In
small, makes a much bigger contribution than the regulaother words, a solution in the inner region which is a plure
one, and leads to a wrong estimatiorBpf To overcome this wave close to the nucleus will progressively evolve into a
problem, one can increase the matching radius—whicliinear combination of severalwaves as it propagates out-
pushes the problems to higheralues—and further set the wards. We need to know what the wave will actually be at
guantum defects of highvalues exactly to zero. Doing this, radiusr =a. Fortunately, the electric-field-induced mixing in
we neglect the quantum defects of states Witlrger than 7 the inner region is small and can be treated perturbatively
or 8 (see Sec. VIII. Keeping all the quantum defects nonzero[higher order terms will be at most of the order of
usually gives results that are not very well converged, espe-10-4)2, and hence do not have to be considered hére

cially above the saddle point. the inner region, as soon as the electron leaves the ionic core,
it is affected by the superposition of the Coulomb plus ex-
D. Improving the accuracy of the results ternal field potential. Hence, if we expand the wave function

as in Eq.(37), the following equation has to be satisfied

Since we are trying to obtain results that are as accurate 3htween a small radius= b slightly outside the ionic core
possible, we now consider possible causes for errors an(%d the boundary=a: ' '

inaccuracies. The complex rotation method takes all the cou-
plings with the continuum and between continua exactly into 1(1 2 1(1+1)
account. The basis size is not a serious limitation, as it can be > Nzt ———
easily extended—even on a workstation—to get fully con- rori2p dr r
verged results. Hence, neglecting the core polarization poten- _
tial beyondr=a (which is fully justified if a is large XRI(O)Yim(6,4)=0. @0
enough, we are able to solve the problem in the outer regionyence we are faced with the problem of propagating an ini-
with an accuracy limited only by the numerical rounding tially pure| wave fromr=b to r=a. This is a well known
errors. Taking into account the weak instability of the Lanc'problem which can be solved using &matrix approach
zos algorithm, we estimate the eigenvalues obtained by sol;nce again.
ing the outer problem to be accurate to ten significant figures, Because of the selection rules on the angular variables,
which is not a serious limitation. _ , Al==1, only channeld—1, |, andl+1 will be mixed to
The main difficulty comes in fact from thiner region.  first order.A priori, any complete set of solutions of E@7)
The first limitation concerns knowledge of the quantum de-gn pe used to propagate from the ionic core toa. It is
fects, which is discussed in Secs. IllB and VIIl. A more paricylarly convenient to consider as base solutions those
fundamental limitation comes from the assumption that w&yhich are purd waves at the boundary. Let us consider a

can neglect the effect of the electric field foa and thus basis of such solutiong!'!(7) whose spherical components
use pure Coulomb functions to determine the boundary con- P P

; [1]
dition atr=a. The order of magnitude of the error made Will be denotedR;,’(r). They are chosen such that
using this assumption can be estimated from &3). The

1
- F+Frcos9—e

term in this equation that couples the varidushannels is R(a)=a.Uq(a). (48)

Frcosd. Forl mixing to be negligible, for <a this term has

to be much smaller than the Coulomb potenti@iagonal in With this constraint, it is of course in general not possible

I) atr =a. Hence the condition for neglecting thenixingin ~ to choose simultaneouslyd R[',]/dr)(rza)zo, which is

the inner region is possible only in the absence bfmixing. Hence the nonzero
derivatives will give nondiagonal contributions to the

Fa< l (46) Schneider term. These can be easily computed to first order
a

in the electric field® by multiplying Eq.(47) for 4{'(r) by
the Coulomb functioid . 1(r) and integrating between the

However, for a typical situation of interest, we have gmall radiusb and the boundarga. To first order, the func-

F~10"® a.u=5 kV/cm anda=10 a.u., which means that tion Ry '(r) will be the main contribution while the other

I . .
the I-mixing term can be as large as TOrelative to the R;/ (1) will be O(F) times smaller. Also, to the same order,
diagonal term. Hence we can expect in the real system R!'/(r) has to coincide wittU,(r). Hence one obtains
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1 drRY,
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~
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:FK||+1 b el el+1 (49) g 0os | %
Ua(a)Ugq+1(a) s
™ S
B, 1, defines the nondiagonal Schneider term which has to 3 X4 4 x X X X
be included between blocksandl + 1. More precisely, one T o000l XXx%5++% x+t++g 4+t
obtains a generalized eigenvalue problem similar to(Eg). g X
with the simple additional term 5 x
1 € oo 5 10 15 20
E; Bii1) S:%Ll(a)sﬁ)(a)cnl (50 Matching Radius (a.u.)

FIG. 5. Atypical result showing the influence of field-induded

n t_:]ﬁ IeﬁtSIEe tOf tge e?#atlon.d_ | Schneider t mixing in the inner region for aR-matrix calculation. The figure
us, 10 1irs Or. er, thé nondiagonal Schneider term preaisplays the position of a resonance as a function of the matching
serves the selection ruldAl==1, and consequently the

) radius used in the calculatigithe basis has a fixed size of 1800
banded structure of the matrix. Also, from E¢9), the sym- The crosses X) are obtained for a simple calculation withdut

metric character of theZ matrix is preserved. The physical mixing in the inner region: the accuracy is limited to a few ppm. In

interpretation of Eq(49) is simple: the integral represents contrast, when thé mixing is taken into accourtt+) by a nondi-
the matrix element of the dipole operator between unperagonal Schneider term, a far better accuracy is obtained.
turbed Coulomb functions, taken in the inner region. Since
B, .1, represents a small correction, it is appropriate to nerowing. Of course, our width measurements were limited by
glect the effect olU, [see Eq.(3)] on the wave functions instrumental factors, such as field inhomogeneity, laser
U, (r) for b<r=a. The choice of the lower bourtaifor the  width, and transverse Doppler width. We studied three sepa-
integration has to be made from physical argumemtsiust  rate narrowing regions to evaluate the feasibility of using
be larger than the radius of the ionic core, so that thehese features for field calibration with our existing setup.
U, (r) functions are solutions of the physical problem. In Only one of the narrowings we examined was found to be
our calculations, we used=1 or 1.5 Bohr radii, without useful for calibration given our experimental resolution. In
observing significant differences. At such a distance,Ithe the other cases, the calculated deep minimum width was
mixing induced by the electric field is actually negligible. Its masked by the experimental width so that only a broad, flat
order of magnitude can be obtained from the polarizability ofminimum was observed. Since the voltage offset must be fit
the ionic core by a static electric field. With @&-matrix  in addition to the effective electrode separation, the range of
approach, there is no hope to go beyond this limit. Indeedyoltages over a single narrowing region does not provide a
the polarizability of the core depends on the complicatedprecise fit to these two parameters. The data we obtained for
multielectron interaction. In the present case of Li, it can bethe “best” narrowing recorded does, however, show excel-
roughly estimated to be of the order of 8 a.u. of energy lent agreement with RM calculations and is presented here
at 10 kV/cm. This might cause errors of the order of a smallas an additional comparison with the RM and FT theories.
fraction of a ppm in the calculation of the resonance posi-
tions at large fields. 30000
Finally, the importance of the nondiagonal Schneider term
in obtaining highly accurate results is illustrated in Fig. 5, 25000 |
which shows the computed position of a typical resonance
(real parj as a function of the boundary radiaswith and
without the nondiagonal Schneider term, all other parameters
being kept fixed. At smalh, the calculations do not con-
verge well. In the range 7—20 Bohr radii, the computation
without the nondiagonal Schneider term oscillates—which W 1 }\ /\
demonstrates that mixing is not small in such inner s000 /'A\ I /\ /\ i )}\ | \‘fiﬁ\b
\ L
A

regions—while the full computation is perfectly converged, ol e ,,fx;‘&\,,/‘ E&J \J M
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with an accuracy much better than 1 ppm.

VII. INTERFERENCE NARROWING MEASUREMENTS

. FIG. 6. Line shapes observed from successive electric field
Resonance narrowing occurs when two or more broad enszans shown with energies differing by 750 MHwice the refer-

ergy levels interact in such a way that the couplings Withegnce cavity mode separatiprillustrating interference line narrow-
continuum channels interfere, decreasing the decay rate g, The central peak has energy ef482.898 264) cm™? cali-
possibly several orders of magnitude over a small range Ofrated using MD in conjunction with low-field resonance data. The
field. Although our experiment in Li was designed to mea-x axis has likewise been calibrated in units of field, using the same
sure resonance positions rather than lifetimes, we are able tow-field data. The resonances near the minimum width are nearly
measure resonance widths and thus to study interference nagmmetric.
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work on Na[2], such information has been used together
with an accurate value for the laser frequency to provide
improved information on the binding energy of the lower
level. In the present case, this would be the 13S3state, but

in our experiments, the absolute laser frequency was not ac-
curately known. However, a discussion of the error limits for
the energy determination as well as for the field calibration is
of interest with regard to the future possibilities for the de-
termination of the binding energy of the Li %S state. We

will discuss effects caused by the Stark shift of théS3
level, uncertainties in the quantum defect parameters, the po-
larization potential, and relativistic terms in the Hamiltonian
used to compute the Stark wave functions.

o ) o The fits to our “best” data sets were significantly im-
FIG. 7. I__|n_eW|dths determined from the data shown in Fig. 6-proved by including the Stark shift of the 2% state. Values
The fitted minimum occurs at 8334.@@) V/cm. for this shift were obtained by MD and RM calculations and
found to agree to within 0.2% of the value from theS
Figure 6 shows the general appearance of a region Qiplarizability of 1.103x 10! a.u. calculated by Themelis
interference naI’I’OWing. Each individual peak I’epl’esents and N|C0|a|dei53] The shift is very near'y quadratic and
field scan at a fixed excitation frequency from the 1333 equal to 51.4 MHz at 10 kV/cm. It is important in the fol-
level. The laser frequency of the final step to Rydberg levelgowing discussion that the 813-nm laser was always locked
is adjusted between each peak measurement and locked tq@ithe 22P—32S transition in thefield-free fluorescence
stabilized Fabry-fet reference cavity. The recorded reso- region(see Fig. 2 and Sec.)llOne of us(C.H.1.) has carried
nance data sets are separated by the cavity's free spectigiht a calculation for two-photon excitation in a three-level
range, 378l) MHz (those shown in the figure are separatedsystem. We find that the importance of a shift of the inter-
by twice this, 750 MHz, to make the figure intelligiblélear  mediate state depends on the linewidth of the two lasers. In
the minimum width, the line shapes are roughly symmetricihe case of extremely narrow lasers and atomic linewidth, the
but away from the minimum, asymmetric Fano shapes apspectrum of a two-photon transition will depend only on the
pear. We extracted values for the linewidths by fitting Gaussinitial and final states, and will not be affected by a shift of
ian line profiles to the symmetric resonances. The widths arghe intermediate state. On the other extreme, if the laser has
plotted as a function of field in Fig. 7. These points were fita wide frequency bandwidth or the intermediate state is suf-
with a q_uadrahc f_unctlon of field near the minimum in order ficiently broadened by radiative decay or by Doppler effects,
to obtain an optimum value for the voltage at which thethe intermediate state can be excited by the wings of the first
narrowing reache_s a mnimum. _ laser, and the two-photon spectrum will depend on the posi-
To compare with theory, we calibrated the field by mea-tion of the intermediate statéA related calculation has been
suring seven resonance peaks at low field, using the methqgyrried out in Ref[54].) For our estimated experimental con-
outlined below. These data yielded an effective plate separaitions with relatively broad laser linewidth, the results of
tion of 0.720862@®@7) cm, zero-field offset of our model are consistent with the conclusion that the Stark
—0.1197(57) V, and an energy of 482.898 284) cm™*.  ghift of the 3S state should be included. For certain scans,
USing these parametel’s, the f|e|d at the minimu.m W|dth Wag']e 813-nm |aser was narrow enough to produce an interme_
found to be 8334.982) Vicm (14 ppm uncertainty RM  gjate situation in which the 3S Stark shift was only partly
calculations predict the value to be 8334.93 Vicm, wellgyident, hence fits either with or without the?3 Stark shift
within our experimental uncertainty. By contrast, FT calcu-gave results of poorer quality than with data obtained with a
lations predict the narrowing minimum to occur at proader laser.
8336.5706) V/cm, giving a discrepancy of more than 190 g gptain a field calibration, the voltage scan data were fit
ppm. to Gaussian resonance shapes to extract resonance voltages,
as shown in Fig. 4, and then the resonance voltages were fit
to calculated resonance positions. Initially, fitted peak posi-
tions below the saddle point were fit to energy levels calcu-
lated by MD theory, using polynomials fitted over a series of
The primary goal of the present work was to demonstratéenergy/(field) values for the various Stark components. The
a precision(ppm leve) calibration of the electric field, by energy, calibration factoteffective electrode spacihgand
comparing measurements of Li Stark resonance voltagesoltage offset were adjusted to achieve the best least squares
with theory. For reasons discussed below, all final data fitdit to the resonance peak positions. To minimize the correla-
have been made with results fradRimatrix theory. The de- tion between the fitted field and energy parameters, it is es-
ficiencies of MD and FT methods will then be made evident.sential that the measured resonances exhibit different slopes,
Our data thus offer insights into the ultimate limitations of preferably of opposite sign. For this reason, the “spaghetti”
these two approaches, and a confirmation of the higher agegion of many avoided crossings is especially useful. Even-
curacy achievable with the RM method. tually, RM results became available, and could be extended
The fitting procedure also provides a value for the atomidbeyond the saddle point. The extracted parameters obtained
binding energy of the upper level of the laser transition. Inwith MD and RM methods diverged, and for reasons dis-

VIlIl. COMPARISON BETWEEN THEORY
AND EXPERIMENT
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FIG. 10. Fitted values of the binding energy of the upper level
of the laser-excited transition from comparisons of experimental

FIG. 8. Residualgcalculated minus observed valydoom a fit ~ Peak positions and RM calculations. The various fit results are la-
of measurements of 27 peaks to RM calculations, using QD parar2€led as in Fig. 9E, is given in the caption for Fig. 8.

eter set A angy, as given in Table Ill for &1<7. Them = 0 (open . . - .
circles and|m| = 1 (closed circles data were fitted together. The eter set A given in Table Il fof<3, with the QD parameters

Electrode Potential (kV)

calibration parameters obtained from the fit am, =  9iven in Table Il for 4<I<7, and with allx,=0 for >8.
0.723 716 T10) cm, offset voltageV, = 0.263G31) V, and E, = Results of a fit withu, also set to zero are shown in the
— 483.060 8924) cm L. second line. The third line of Figs. 9 and 10 gives results

with QD parameter set Blable Il), andu; again as in Table

cussed below, it became evident that MD results were inadl. Since the interpolated energies for the 45 and °F
curate at the level of precision attained experimentally. states differ by about 9 and 7 MHz, respectively, between

Figure 8 shows a plot of residuals from a least squares fiQD fit A and fit B (as indicated in Table )} the value of the
of resonance positions to RM results obtained with 245(itted energy changes by about 1 MHz, and the fitted value
basis stateqresults with 1800 basis states differed only for d changes by just 0.5 ppm. This provides one indication
slightly). Most peaks are fit to better than 15 n{20 mVv/  of the effect of uncertainties in the QD parameters on the fit
cm). The residuals are three to ten times larger than the urresults. Another indication is provided by the changes of the
certainties from the fits to the individual peak positionsresults when QD parameters are varied by the standard de-
(shown as error bars in Fig).8There was possibly a small viations obtained from fits A and B. These changes were
drift of the high voltage dc power supply while the indi- smaller than the differences between results with QD set A
vidual peaks were scannétihe voltage was recorded before and B.
and after scanning each pealr small drifts of the laser The fourth and fifth lines in Figs. 9 and 10 show results of
frequency during or between the peak scans. This suggesasfit with just them=0 and|m|=1 peaks, respectively. The
that improved stabilization of the power supply and lasergesults for the electrode spacimpdiffer by almost 4 ppm,
might lead to several times better precision. but the error limits overlap. Becaukgs also fitted, the fitted

Figures 9 and 10 show the error limits for the electrodevalue ford from the fits withm=0 and|m|=1 peaks sepa-
spacing and energy parameters. The first data point in eaghtely are both greater than from the combined fit. For the
figure shows the result with all 27 narrow resonanaes< fitted value ofE, the |m|=1 peaks alone gave a result less
0 and|m| =1 peaks togethgwith the quantum defect param- than the combined fit by slightly more than the combined

error limits.
m QDset Imax The R-matrix method cannot easily accommodate the
o1 A 7 e small quantum defect parameters Fer8 that arise from the
0+1 A 6 .  stppm | relativistic mass correction teri, and the polarization po-
tential. These phase shifts accumulate primarily in the region
0+1 B 7 e r>a. The average energy shift from these omitted quantum
o A 7 defect parameters is mostly canceligd ~1 MHz) by the

positive energy shifts from the™* part of E o, which are
1 A 7 e not included in the QD-shifted energies. In view of the cor-
relation between the fitteB andd parameters, we estimate
that the net effect of the omitted quantum defect parameters
and the omittech—* terms fromE,, on d is approximately

FIG. 9. Fitted values of the effective electrode plate separation 0.3 ppm. . o . ) . .
from comparisons of the experimental peaks with RM calculations. After the additional uncertainties in the field calibration
The valued, is given in the caption for Fig. 8. The top two lines due to uncertainties in the fitted QD parameters and due to
give the results of fits ofn = 0 and 1 peaks with QD parameter set N€glecting high- QD parameters is taken into account, we
A, the third line with QD parameter set B, the fourth line gives believe the calibration parametet)(is accurate ta- 2 ppm,
results with a fit ofmn=0 peaks only, and the fifth line gives results and the fitted energy is accurate to 1.5 MHz.
with |m|=1 peaks only. In each casg, values are as given in Direct comparisons of calculated resonance energies be-
Tables Il and Ill,(and u,=0 for 1=8) except for the second line, low the saddle point obtained from RM and MD methods
for which u,=0. show that thead hocextrapolation procedure discussed in

40 ©0 10 20 80 40 50
d - dy (nm)
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FIG. 11. An evaluation of MD resultga) A plot of fits to MD
eigenvaluesk(E5), as a function of the enerdy,,,, of the up-
permost level in the basis set. The fitting function is E5).in the

text. The fitted energ§., (dashed lingincludes an estimate for the pomt.k. he field calibrati d f
shift from coupling with continuum levels. Howevét,, is about 6 Taking the field calibration and energy parameters from

MHz below the RM resultsolid line) for this resonanceb) Open  th€ RM fit, we find that calculations with the FT approach
and closed circles show differences betw&nvalues from Mp  differ by relatively large amounts. Figure (&2 shows that

calculations and RM results for 18 Li resonances-at83.0609  for [m|=1 peak positions, FT theory with WKB wave func-
cm™ L, tions was within 250 ppm, and was significantly better when

numeric wave functions rather than WKB approximations

Sec. IV[Eq. (5)] can yield estimated energies within a few Were used. However, deviations far=0 peaks shown in
MHz of the RM values. Figure 1&) shows a series of ei- [19- 12a) were as much as 2 GHz, and only marginally
genvalues for them=0 resonance at 4831 V/cm and improved by the use of numeric wave functidogen circles
E=—483.0609 cm * calculated with basis states fram=2 1N Fig. 12. The energy shifts relative to RM results shown in
up to variousn values as indicated. Extraneous weakIyFig' 12 for|m|=_1 peaks translate into shifts of the resonance
coupled nearby eigenvalues from drastically shifted high- Voltages of typically 150 ppm for WKB wave functions and
levels produce small deviations of the data points from &> PPM for numeric wave functions. The=0 resonance
smooth curve. Because of these effects and the approxim&N€rdy shifts correspond to 1000-5000 ppm shifts in field,
tions in this procedure, the extrapolated value Eor does with the numeric wave function FT results about 10% closer
not agree exactly with the RM value, shown as the horizontal® RM values than the WKB FT results.

solid line in Fig. 11a). Figure 11b) shows differences be- ~ ©ON€ potential source of error that may account for the
tween the extrapolated MD results and RM results for eacl@9€ residuals with the FT approach is E25). Numerical

observed resonance below the saddle point at a binding e@/culations of the sum in this equation confirm that the
ergy of — 483.0609 cm L. As discussed in Sec. IV, the value phase shift from the right hand side is not isotropic. We are

for the exponeni3 was chosen from a comparison betweeninves_tigating an alternative approach in \_Nhich phase-shifted
MD results and “exact” results for hydrogem=15 |m|=1 functions qf§ as well as ofp are used. This entails a funda-
levels. The close agreement with RM results for Li using thisentally different approacfb5.

procedure corroborates RM results to the level of a few
MHz, although their accuracy is believed to be considerably
better. This comparison also suggests that if RM results are
not available, extrapolation of MD results as a function of We have demonstrated a calibration of the applied electric
Emax Offers an alternative procedure of moderately high acfield to about+2 ppm =4 mV/cm by comparing observed

curacy provided one stays sufficiently far below the saddle

IX. CONCLUSIONS
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Stark resonances ifLi with calculated resonance positions. tions possible. Laboratoire Kastler-Brossel, de 'ENS et de
The error limits correspond to the uncertainty in the fitted’lUPMC, is unite associe 18 du CNRS. The RM computa-
electrode spacing and in the fitted voltage offset parametetional effort was supported in part by the UK Engineering
The optimum experimental technique was found to be a scaand Physical Sciences Research Council and by the Alliance
of resonances as a function of voltage with frequency®British French Research Programme. |.S. acknowledges sup-
stabilized lasers. The optimum theoretical approach waport by the German Academic Exchange Serib&AD -
found to be theR-matrix method with complex rotation, us- HSP Il program and the Deutsche Forschungsgemeinschaft.
ing a basis of Sturmian functions. This method agreed well
with experimental results both below and above the saddleappENDIX: UNITS OF ENERGY AND ELECTRIC FIELD
point. Empirical quantum defect parameters for Li, required ) ) )
in this calculation, were fitted from available zero-field spec- TO translate our theoretical results into laboratory units,
tral data. Uncertainties in the QD expansion parameters afirécise values of the atomic units of energy and field are
fect the field calibration by about 0.3 ppm. needed. .These are obtained from the fundamental constants
The matrix diagonalization approach could be used onlyas described below. o .
below the saddle point and its accuracy suffered because FOr measurements on Rydberg states, it is appropriate to
only discrete states could be included in the basis. An exconsider neutral Li to be a one-electron atom whose
trapolation technique used to estimate the continuum contri-nucleus” has the mass of the Li ion core, M=Ma—m,
butions resulted in somewhat better agreement Rithatrix ~ WhereM, is the atomic mass and the electron masgThis
results. ignores the contribution té 4 from the binding energy of
Although FT theory is attractive and reliable at lower pre-the outer electron, which is of the order of Toamu) The
cision, it gives resultgwith WKB wave function$ that de- ~ reduced mass is thep=mM/(M +m). After separating out
viate from experiment by up to thousands of ppmiio=0  the center-of-mass motion, the Sctiiger equation for the
resonances, althougim|=1 resonances are in every case outer electron i§in Systene Internationa(Sl) units to facili-
within 200 ppm. When numerical wave functions are substitate comparisons with tables of the fundamental constants
tuted for WKB wave functions, there is relatively_ small im- _p2 7
provement for them=0. resonances, but typically th(_a = y2_ —V o (p)—Feel | W=Eq¥, (A1)
|m|=1 peaks move to within 50 ppm of RM values. This | 2u ? 4mep P
behavior is not fully understood. We have noted that the ) ) ) )
phase shifts in FT theory are not isotropic near the origin an§’hereZ=1 here,Vy,(p) is a potential associated with the
this may affect the accuracy of the results, but it is not cleaPolarization of the coré¢see Sec. Ill, F is the applied ex-
why the|m| =1 peaks should be more accurate and also moréernal electric field in SI units, anHg, is the energy in Sl
significantly improved with numeric wave functions than the Units. To translate to atomic units, we wrifg=ar and
m=0 results. {=az, wherea is a scaling parameté¢the Bohr radius We
The data suggest the presence of drifts in the power sugPtain
ply voltage and/or the laser frequencies. A more stable high 762
voltage supply and additional laser frequency stabilization =
might improve the quality of the calibration by an order of 4meoar
magnitude. Also, we note that the energy of the upper state is (A2)
fitted to approximately 1.5 MHz, suggesting that this tech-__, . .
nigue, when combined with accurate knowledge of the Iase-tl_hIS assumes the simple form
frequency, might be used to determine the binding energy of
the lower state of the last transition to this level of precision.
We have also presented measurements of interference line

narrowing showing good agreement with RM calculations,after appropriate substitutions are made. In particular
using a field calibration from resonance measurements at low pprop -inp '

2ua’
Vit

+Vpo(ar) +Fgeazt+ ES,) }\p: 0.

Z
V242 —+Upo(r)+Fzte| |¥=0 (A3)

field. With cw lasers, line narrowing measurements them- dmeh? (m| « m
selves do not give as precise a field calibration as the mea- a= ~ :(—> yyer=d s a, . (A4)
surements of line positions. However, these measurements ne M) ATRe AR

do demonstrate the successful application of RM theory t

. X 9 Eqg. (A4), we have used the definitions in Sl units:
linewidth measurements.

1 1oCE? mca? a
6 = H a: 1 OO: 1 aOO: .
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TABLE IV. Relevant fundamental constants used in obtaining the atomic units of energy and field in the
Appendix. All values are taken from RgB9].

Constant Value Units
e 1.6021773849) x1071° Coulomb
c 2.99792458x 10P m/sec
al 137.03598981)
a. 5.2917724@4) x10 1! m
m 9.109389754) x10 3 kg
u 1.660540210) X 10?7 kg

%2 1 [euc? 10 ‘ec? For the Rydberg constant for an atom with infinite nuclear

Fa(Vim)= s @\ A |T a2 massR.,, the weighted average of two recent experimental
results[56,57] provides higher accuracy than we need:
2 — 7
w\210 ‘ec
= (ﬁ —QZ (A7) R.,=109 737.315 683(B1) cm . (A11)

he atomic unit of electric field for infinite nuclear mass,
_.=ela’ in Gaussian units or I¥ec¥a? Vicm, is ob-
tained from the fundamental constants listed in Table IV:

In summary, the atomic mass-dependent effects may be su
marized as follows:

a:aw/pA, EA: EocpAy FA:Focpiv (A8)

F..=5.142 208 816)x 10° V/cm. (A12)
where )
For ’Li, A=7.016 004 1(5)[58] and the reduced mass
s M Mpa—m m correction is
T VR R N S

p7i=1—7.818 9798)x 10 ° (A13)

M4 is normally stated in terms of the atomic mass unit:
M =Au. Using the 1986 recommended valuesmofandu
from Table IV, we obtain

and therefore

R7i=R..p7,;=109 728.73536l) cm 1,

5.485 7995) x 104 )
pa=1- A . (A10) Fri=F.p7 =5.141404 216)x 10° Vicm.
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