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We have made careful measurements of Stark resonances in7Li Rydberg states above and below the
classical saddle point to test various theories and to obtain a precise calibration of the electric field. Rydberg
states were populated by two-step diode laser excitation to the 32S state followed by He-Ne or diode laser
excitation to Stark sublevels near then515 manifold energy. Calibration was performed by comparing mea-
sured resonance positions with theoretical results. For zero-field energies, the theoretical calculations were
made using quantum defect parameters obtained by fitting available spectral data on Li, and from recent
polarization model results of Drachman and Bhatia@Phys. Rev. A51, 2926~1995!#. Three theoretical methods
were used:~1! matrix diagonalization over a basis of spherical coordinate states, for which the precision
declines as one approaches the saddle point;~2! frame transformation theory, which makes very economical
use of computer resources but is not reliable beyond a precision of about 500 ppm in an electric field;~3! a
recently developedR-matrix method. The last of these was most accurate and, like the second, could be used
both below and above the saddle point. From the measured resonance positions and an optimum set of Li
quantum defect parameters, theR-matrix calculations provided a calibration of the electric field to about6 2
ppm64 mV/cm. We briefly discuss certain refinements and shortcomings of the other two theoretical methods,
and the special procedures used to obtain high accuracy with theR-matrix method.

PACS number~s!: 32.60.1i, 32.10.Dk, 31.15.2p, 41.20.2q

I. INTRODUCTION

In principle, it is possible to calibrate a static electric field
to the accuracy of the relevant fundamental constants~cur-
rently;0.3 ppm! by measuring resonances of simple atoms
in electric fields and comparing with theoretical results. A
calibration standard is needed for precision measurements of
atomic polarizabilities and molecular dipole moments, and
for testing Stark theory in various atoms. Measurements of
atomic Rydberg levels in an electric field have also been used
to map spatial variations of electrostatic fields@1#, and a
calibration standard would provide an absolute scale. In ad-
dition, measurements of the Stark effect have been used to
measure binding energies@2# and energy differences@3# of
the lower states of a laser-induced transition.

For alkali-metal atoms, neither the theoretical nor experi-
mental techniques have been tested previously at the ppm
level of precision. The theory of hydrogen atoms in an elec-
tric field is presumed known to high accuracy@4–6#, but
because of special requirements and circumstances~dissocia-
tion of H2 into H atoms, excitation, and fast beam velocities!
precision experiments on hydrogen have not been reported.
Therefore Stark measurements on atoms with one electron
outside a closed shell are of interest both for testing theories

for nonseparable quantum systems and for precision field
calibration. Previously, the most precise electric-field calibra-
tion appears to be about6 50 ppm from measurements on
excited helium atoms@7#. In contrast, magnetic fields can be
calibrated to much better than 1 ppm by NMR techniques.

In hopes of achieving a precision electric-field calibration
with Rb atoms, measurements of resonance narrowings
above the saddle pointE522AF were made by Yanget al.
some years ago@1#. Resonance narrowing occurs when two
or more energy levels couple in such a way that different
decay channels interfere. It can dramatically increase the
lifetime of one of the states over a small range of field
@8–11#. Such a sharp feature would appear to be well suited
for field calibration experiments. The data from the Rb ex-
periments were compared with computational results from
Harmin’s frame transformation~FT! theory @12–14# to give
an absolute calibration. Unfortunately, there were inconsis-
tencies as large as 1000 ppm in the calibration parameters
obtained from different narrowing regions. One possible ex-
planation for the discrepancies was that the large and polar-
izable Rb ion core was not properly taken into account in the
theory. If so, then a lighter alkali-metal atom would be ex-
pected to provide better agreement. For the present experi-
ments, we selected Li, which had previously been used for
comparisons between precision measurements and theory for
the diamagnetic Zeeman effect@15,16#.

Initial measurements showed that the change from Rb to
Li did not alleviate the discrepancies, and it became clear
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that such inaccuracies were inherent in the FT computational
method, applied either below or above the saddle point.
Shortly after this conclusion was reached, an alternative
theory for atoms in an electric field was developed@17# using
R-matrix methods@16,18#. In the present work, we report
corroboration between Stark measurements on lithium atoms
andR-matrix calculations at the level of about 2 ppm. This
level of precision is approximately 80 times better than that
achieved in the study of the diamagnetic Zeeman effect in Li
Rydberg levels@15,16#. A summary of the present work has
recently been published@19#.

The theory of the Stark effect in nonhydrogenic atoms
presents a special type of nonseparable partial differential
equation for the outer electron. The core region must be ef-
fectively excised from the solution since it constitutes a
many-body problem. Within and near the core, the external
electric field is negligible compared with the internal atomic
field and the problem is nearly spherically symmetric. Out-
side the core itself, core effects can be expressed to a high
degree of accuracy by thel -dependent quantum defect phase
shifts, as discussed in Sec. III. Neglecting core polarization
effects, the outer region is separable in parabolic coordinates.

The theoretical methods discussed here take three differ-
ent strategies for modeling the core and the outer region. In
the matrix diagonalization~MD! method@20# ~Sec. IV!, the
electric field is the perturbing element. The basis functions
are zero-field eigenfunctions for variousn,l states, with en-
ergies given by a quantum defect expansion, hence with the
correct phase shift outside the core region. This method is
limited because only bound states are included in the basis
set. To obtain convergence as the field approaches the saddle
point at a given energy, progressively larger basis sets must
be used, but spurious resonances can occur when high-lying
basis states are Stark shifted all the way down into the region
of interest. In an attempt to estimate shifts due to high-n
levels and the continuum, we extrapolate calculated energies
as a function of the uppermost energy of the basis set~see
Sec. IV!. This results in a modest improvement of MD ener-
gies, but does not attain the desired level of accuracy.

The frame transformation method@12–14# ~Sec. V! uses
parabolic coordinate solutions for the outer region. Each
parabolic channel wave function is decomposed into spheri-
cal components, to which the appropriatel -dependent phase
shift is applied. In the original formulation@12,13#, WKB
wave functions were used. We have substituted numeric
wave functions, and found slightly improved comparisons
with experiment, shown in Sec. VIII. In Secs. V and VIII, we
speculate on the origin of the discrepancies observed when
comparing FT results with experiment.

Finally, the R-matrix ~RM! approach@16–18,21# ~Sec.
VI ! matches the phase-shifted spherical wave functions at a
radiusr5a with eigenfunctions of the hydrogenic atom plus
electric field system at larger . These eigenfunctions are
computed as combinations of spherical coordinate Sturmian
functions. Complex coordinates and energies are used to
achieve square integrability. The Sturmian functions provide
this method with great flexibility to match both the boundary
conditions atr5a and the desired long-range behavior.

Our experimental technique employed a three-photon
stepwise excitation of7Li from the 2 2S1/2 ground state via
the 2 2P3/2 to the 32S1/2 state and then to Stark sublevels

near then515 manifold energies~see Fig. 1!. As in the
experiments on rubidium~where decay times were measured
with pulsed laser excitation!, we have made some measure-
ments of interference narrowing, but of the resonance lin-
ewidths rather than decay rates~Sec. VII!. With cw lasers,
however, it is more precise and convenient to measure
electric-field values of successive Stark resonances at fixed
laser frequency. This spectroscopic method also is advanta-
geous relative to lifetime measurements because it is sensi-
tive to field variations only over the excitation region, not
over the entire decay length, and because measurements can
be made below the saddle point, where MD calculations@20#
provide a useful first approximation. In addition, the reso-
nances occur at any energy and do not require a search pro-
cedure, as needed to locate regions of interference narrow-
ing. Data were obtained with a stabilized diode laser or
He-Ne laser exciting from the 32S1/2 state, by scanning the
electric field. Resonance peak positions below and above the
saddle point were measured. Further details of the experi-
ment are discussed in Sec. II.

In Sec. VIII we present fits of spectroscopic measure-
ments to computational results from theR-matrix method.
The field calibration exhibits an uncertainty of about 2 ppm
in the effective electrode plate separation plus an uncertainty
of 4 mV/cm from the voltage offset parameter. The fitted
energy of the upper levels excited by the third laser has an
uncertainty of about 1.5 MHz. These error estimates include
effects of uncertainties in the quantum defect parameters, as
discussed in Sec. VIII. In Sec. VIII we also show that MD
eigenvalues typically exhibit systematic errors, and FT re-
sults are again off by a large amount. In the Appendix,
atomic units of energy and field are discussed.

FIG. 1. Excitation scheme used in these experiments. A repre-
sentative field scan is overlaid on the Stark manifold aroundn515
as a visual aid.
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II. EXPERIMENTAL SETUP

Our three-step excitation scheme utilizes al 5 670-nm
diode laser to excite from 22S1/2→2 2P3/2, a l 5 813-nm
diode laser to excite 22P 3/2→3 2S1/2, and a third laser, at
l 5 633 nm, to excite from 32S1/2 to n515 states~see Fig.
1! @22#. The first two lasers are locked to atomic resonances
in the ~field-free! fluorescence region of our apparatus~see
Fig. 2!, while the third laser, either a diode laser or He-Ne
laser, is frequency stabilized using different schemes. The
diode laser is stabilized by locking to an Invar Fabry-Pe´rot
reference cavity. This cavity is kept in rough vacuum to
minimize environmental thermal and pressure effects and
provides an overall frequency stability of approximately 1
MHz/h. The He-Ne laser is stabilized by locking to a differ-
ence signal from the two stable laser cavity modes of per-
pendicular polarizations~polarization stabilization!.

Rydberg states near then515 manifold energy are popu-
lated by scanning the electric field in the interaction region
~Fig. 2! to shift the Stark levels into resonance with the
633-nm light for transitions from 32S1/2(F52). The popu-
lation of Rydberg atoms is measured by collecting ions
through a slit in the bottom field plate, amplifying this ion
signal with two microchannel plates and a home-built pre-
amplifier, and counting the resulting pulses by computer. A
scan over a wide field region is superimposed on a plot of
lithium levels in an electric field in Fig. 3. The He-Ne laser is
linearly polarized at roughly 45° from the electric-field di-
rection. Therefore the three seriesm521,0,1 are excited in
our experiment. Because of time-reversal invariance,m51
and m521 levels are degenerate. We thus measure in a
single scan two independent series of energy levels,m50
and umu51.

Our signal detection scheme differs from other Rydberg
experiments in that the atoms are ionized directly by the
applied field or photoionized by absorbing additional laser
photons or blackbody radiation. Since no pulsed field is
needed, we are able to measure plate potentials with excel-
lent accuracy using a stable voltage divider. The divider used
in our experiment consists of five 20-MV and one 30-KV
Caddock MG815 resistors. It is used in conjunction with a
Keithley Model 196 DMM~digital multimeter! ~0.83 ppm/h
accuracy! to measure the top plate’s potential ranging from 0
to 10 kV, which is recorded at the beginning and end of data
acquisition via a general purpose interface bus~GPIB! inter-

face. This potential is applied using a Spellman RHSR series
high voltage dc supply that has an overall stability of about 1
ppm/min~see additional comments on this in Sec. VIII!. The
field is scanned and recorded remotely by a computer that
changes the bottom field plate potential from 0 to 10 V. This
scanning voltage is also calibrated using the same precision
voltage divider used to determine the top plate’s potential so
that only one calibration factor is involved in the determina-
tion of the potential difference of the plates.

We determine the center location of each resonance by
fitting the ionization signal to a Gaussian function. This func-
tion closely approximates the sub-saddle-point experimental
line profile, which is a Doppler broadened convolution of the
natural and laser line shapes. On a frequency scale, these
resonances have typical linewidths of about 30 MHz. A typi-
cal scan over a resonance is shown in Fig. 4, which also
shows the fitted Gaussian function and the peak center with
error bars. The experimental line shape in this figure exhibits
some asymmetry that we attribute to small drifts of the
power supply voltage and of the laser frequencies. Since
these drifts are random, it would not be appropriate to intro-

FIG. 2. A schematic of our experimental apparatus showing the
geometry of the three excitation lasers with respect to the atomic
beam.

FIG. 3. Data obtained from a scan at2483.06 cm21 excitation
energy from 1 to 9 kV/cm overlaid on a plot of Li energy levels.
Solid lines denotem50 levels, dashed linesumu51 levels, and dots
denote the saddle-point energy. Eigenvalues above the saddle point
have been computed with a multichannel Fano resonance adaptation
of FT theory @23,24#. The plotted energies terminate at the local
parabolic critical field@5#. Broad resonances occur near and beyond
each of these points.

FIG. 4. Data from a scan over an individual resonance peak
together with the fitted Gaussian function. The fitted resonance volt-
age and error limits are also shown.

53 1351PRECISION MEASUREMENTS ON LITHIUM ATOMS IN AN . . .



duce an asymmetry parameter into the line shape fit. How-
ever, because of this situation, the error bars as given in this
figure ~standard deviations returned by the fitting program!
are typically too small by a factor of 3 to 10. The scatter of
experimental points in the global fit~Sec. VIII! is a truer
measure of the actual uncertainties in the resonance peak
positions.

Peaks at higher fields exhibit larger linewidths that scale
with field as a result of field inhomogeneities arising from
the slit in the bottom field plate. Above the saddle point,
resonance line shapes, especially form50 peaks, broaden
further and become distinctly asymmetric. These may be de-
scribed by Fano profiles, reflecting core-induced coupling of
discrete states with the continuum. In general, we did not
attempt to fit the centers of such broadened resonances since
it would not have improved the field calibration.

III. QUANTUM DEFECT PARAMETERS

For the Stark theory calculations, accurate zero-field en-
ergies are needed, particularly forn515 levels. The accuracy
required is indicated by the uncertainty given in Sec. VIII,
which is about 1 MHz. There have been few direct measure-
ments ofn515 levels in Li, andab initio theory is not yet
sufficiently accurate. Therefore, forl<3, the energies needed
for the calculations have been obtained from quantum defect
~QD! parameters fitted to experimental data. The QD expan-
sion effectively provides an interpolation between micro-
wave data on high-n levels and optical data on low-n levels.
For l>4, the QD parameters are obtained from the polariza-
tion model@25# ~including relativistic terms!. We now define
our quantum defect parameters, explain how we fit them
from the zero-field data, discuss the polarization model and
relativistic terms, and give the resulting parameters.

The quantum defect expansion of atomic energy levels,
attributed to Ritz@26#, was shown by Hartree@27# to be valid
for any spherically symmetric perturbing potential of finite
range. Drake and Swainson@28# have recently verified Har-
tree’s theorem for an expansion of the form originally used
by Ritz. Namely, energies are written

E~n,L !52RA /~n2m!2, ~1!

where hereRA5R7Li is the Li Rydberg constant, as given in
the Appendix, and

m5m01
m2

~n2m!2
1

m4

~n2m!4
1•••. ~2!

Since the quantum defectm occurs in the denominators, it-
eration must be used to determinem for any integraln value.
For intermediate energiesE such as occur in the Stark effect,
Eq. ~2! is a simple series inE/RA , with even powers only.
All core effects can be represented by the above expansion.

For sufficiently highl , penetration and exchange effects
are negligible, and one can compute the needed quantum
defects from core polarization and relativistic effects. Drach-
man and Bhatia@25# have used accurate correlated wave
functions for the Li ion core to calculate the polarizabilities
and adiabatic corrections required for terms up tor28. Their
resultant potential may be written~in atomic units!

Upol5
1

2 FU41U61
1

2
~U71U8!6

1

2
~U71U8!G , ~3!

whereUn5cn /r
n. Values forcn from Ref. @25# are given in

Table I. Since the series is asymptotic, the uncertainty is
taken to be equal in magnitude to the last term (U7 andU8
are mathematically related!.

Relativistic effects have a slightly different form. Al-
though spin-orbit effects are negligible in this work, the rela-
tivistic mass correction is significant. The~weighted! average
shift for theJ5 l61/2 components of a givenn,l level from
Dirac’s theory for hydrogen is

DErel5
a2RA

n3 S 3

4n
2

2

2l11D . ~4!

~For S states,l 5 1/2 is to be substituted.! The shift varies
between 52 and 1 MHz forn515 levels,l50 to 14, respec-
tively. The n23 term in Eq.~4! may be combined with the
m0 term in the Ritz expansion. In principle, then24 term
deviates from the Ritz expansion, and Drake@29# has recom-
mended that this term be subtracted from the term energies
before fitting quantum defect parameters. However, for
l<3, the present experimental uncertainties in the spectral
data for Li happen to be larger than then24 term.

The polarization model and relativistic terms@25# have
been confirmed to a high degree of precision by recent mea-
surements of microwave transitions betweenn510, l54 to 6
levels @30#. We therefore assume that quantum defects for
l54 to 14 may be obtained to sufficient accuracy from this
model.

To obtain quantum defect parameters forl 5 0 to 3, we
have collected all available data on zero-field transitions be-
tween Li energy levels and fit them to expressions of the
form of Eqs.~1! and ~2!. Specifically, the fitted data include
recent interferometric measurements of the LiD lines @31#,
recent hollow cathode measurements on transitions between
levels up ton57 @32#, earlier hollow cathode measurements
@33#, microwave measurements on2S and 2P levels @34#,
microwave measurements on2D→2F and 2D→2G ~from
Stark mixing! intervals@35#, and unpublished laser spectros-
copy measurements of 32S→n 2P transitions@36#. In order
to include 2D→2G microwave data, polarization model re-
sults were used for the2G level energies. All these data sets
were combined with weights appropriate to the measuring
uncertainties in a simultaneous fit to2S, 2P, 2D, and 2F
quantum defect parameters. Fine structure parameters for
each of these manifolds were fit but are not given here be-
cause they were not significant in the present measurements.

Table II gives the parameters obtained from the fit to the
zero-field spectral data. For the optimum fit, referred to as fit
A in Table II and elsewhere, the variance~rms ratio of re-

TABLE I. Polarization model parameters from Ref.@25# as used
in this work.

c4 20.19248540
c6 0.097881
c7 0.143125
c8 20.4285841 0.049005l ( l11)
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siduals to estimated experimental uncertainties! was 2.8. For
fit B there was one less parameter for each manifold, and the
variance increases to 9.2. In view of the correlation between
different parameters, it is necessary to retain several digits
beyond the actual error limits to reproduce the input transi-
tion energies. The effect of uncertainties in the parameters in
Table II on the Stark theory calculations is discussed in Sec.
VIII.

Table III gives the QD parameters for 4< l<8 obtained
from the polarization model and relativistic effect@Eq. ~4!#,
from expressions forr2n, and from the corresponding con-
tributions tom0 ,m2 . . . , given in Eqs.~17!–~20! in Ref. @28#.
Note that because of the contribution fromDErel , the values
do not decrease asl25 ~for l@1) as otherwise expected.

IV. MATRIX DIAGONALIZATION

The historically oldest method we have used to calculate
low-field resonance locations is based on Zimmerman’s ma-
trix diagonalization method@20#, which is an extension of
Schrödinger’s original perturbation treatment of the Stark ef-
fect @37#. Matrix elements of the Stark termFz5Frcosu are
calculated using zero-field spherical wave functions as basis
states. We use the standard expressions forD l561 matrix
elements of cosu in evaluating the angular integrals. The
radial integrals are done using the Numerov technique@38#
for the radial Schro¨dinger equation, with the variable
u5Ar @39#. The integration begins at largeu at the quantum
defect energy of each state@40#. For l values for which the
quantum defect shifts are negligible, we use Gordon’s tran-

sition strength formula in terms of hypergeometric functions
@41#. By setting the appropriate quantum defects equal to
zero, the numeric integration results were confirmed by the
hypergeometric function expressions to at least eight digits.

However, this diagonalization method is limited by the
necessarily finite basis set of bound states. Even though the
assumed field may be less than the saddle-point value for the
n level under consideration, it may be larger than the saddle
point for a high-lying n,l basis state, and spurious reso-
nances can occur when the high-lying states are shifted down
into the region of interest. To simulate the extension of a
basis set to higher-n levels and continuum states, we have
extrapolated the calculated energies as a function ofEmax,
the zero-field energy of the uppermost level of the basis set.
In Ref. @3# an exponential form was used. We have since
found that a power law of the form

E~Emax!5E`1
A

~Emax2E`!b ~5!

is more accurate. HereE(Emax) are the calculated MD re-
sults andE` is the extrapolated value that includes an esti-
mate of shifts from higher-n levels and from the continuum.
As discussed in Sec. VIII, for each resonance,E` andA are
found by least squares fit to a series of 12 to 15 values of
E(Emax). An optimum valueb52.50 was found by using the
MD approach and Eq.~5! for hydrogenn515 levels. This is
strictly an ad hocempirical result. For the H 12S ground
state, Eq.~5! does not apply. Values ofz^1suzunp& z2 decrease
as n23 @42# while the n 2P energy level spacings also de-
crease asn23, soE(Emax) decreases approximately linearly
with Emax for Emax<0. The extension of the function
E(Emax) for the H 1 2S state into the continuum has a rather
complicated dependence onEmax @43#, but eventually yields
a 19% continuum contribution to the H 12S polarizability.
We have not attempted such an analysis for then515 Stark
sublevels. However,E` values from MD calculations and
Eq. ~5! with b52.5 did produce agreement to within a few
MHz of the ‘‘exact’’ energies forn515 levels of hydrogen
that we have obtained by the numeric method of Luc-Koenig

TABLE II. Quantum defect parameters for7Li obtained by fitting spectral data to Eqs.~1! and ~2!, Sec.
III. QD set A has one more parameter for eachl manifold than set B. The values forE(n515) are
in cm21.

2S 2P 2D 2F

Fit A: Variance5 2.8
m0 0.39951183 0.04716876 0.00194211 0.00030862
m2 0.02824560 20.02398188 20.00376875 20.00099057
m4 0.02082123 0.01548488 20.01563348 20.00739661
m6 20.09793152 20.16065777 0.10335313
m8 0.14782202 0.33704280
E~15! 2514.74665 2490.75812 2487.80850 2487.70305

Fit B: Variance5 9.2
m0 0.39950971 0.04716701 0.00194961 0.00031432
m2 0.02900322 20.02318304 20.00452170 20.00148768
m4 0.00532119 20.00423309 0.00213012
m6 20.00502291 20.00881455
E~15! 2514.74673 2490.75812 2487.80879 2487.70329

TABLE III. Quantum defect parameters for7Li obtained from
the polarization model of Ref.@25#.

l m0 m2

4 8.86131025 25.4731024

5 3.46931025 22.9831024

6 1.69031025 21.7931024

7 9.76831026 21.1631024
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and Bachelier@5# and confirmed by calculations@44# with
recently developed complex pole theory@4#. Extrapolated
values forE` from MD calculations forn515 Li levels will
be compared with RM results in Sec. VIII. To our knowl-
edge, this represents the most precise application of the MD
approach to Rydberg Stark levels.

V. FRAME TRANSFORMATION METHOD

In this section we present a brief review of Harmin’s
frame transformation Stark effect theory@12–14#, and indi-
cate how we incorporated numerical results to test the accu-
racy of the WKB approximations.

For hydrogen atoms in an electric field, the Schro¨dinger
equation at energye @see Eq.~A3!# is separable in parabolic
coordinates,j5r1z, h5r2z, andf5tan21(y/x):

d2x1n1m
eF ~j!

dj2
1S 12m2

4j2
1

b1

j
1

e

2
2
Fj

4 Dx1n1m
eF ~j!50,

~6!

d2x2n1m
eF ~h!

dh2 1S 12m2

4h2 1
b2

h
1

e

2
1
Fh

4 Dx2n1m
eF ~h!50,

~7!

whereb11b251. Thej equation has a potential well, and
thus presents a discrete eigenvalue problem. At any energy,
the eigenvalues are the values of the separation constantb1
for n1 nodes in thej eigenfunction. Thusn1 designates the
different channels. Theh equation in general has a barrier
resulting from the combination of Coulomb field plus static
field, and there is typically tunneling through this barrier. For
n1.n (b1.1, orb2,0), the effective Coulombic potential
in the h equation is repulsive and the wave function has
small amplitude near the origin.

Near the origin, one can also write a wave function in
spherical coordinates with quantum numbersl andm, and
there is a transformation between the parabolic coordinate
solutions and the spherical coordinate solutions:

cn1m
eF ~rW !5

eimfx1n1m
eF ~j!x2n1m

eF ~h!

A2pjh
5(

l
Un1l

eFmc lm
e ~rW !.

~8!

The lowest order coefficients and the normalization are de-
fined as follows:

x1n1m
eF ~j!>Njj

~m11!/2@11•••#, E
0

`

dj8x1n1m
eF ~j8!/j851,

~9!

x2n1m
eF ~h!>Nhh~m11!/2@11•••#,

x2n1m
eF ~h! →

h→`A 2

pk2~h8!
sinF Eh

k2~h8!dh81 ũ G ,
~10!

c lm
e ~rW !>Ne lYlm~u,f!r l@11•••#,

E c lm
e*c l 8m8

e8 dt5d~e2e8!dmm8d l l 8. ~11!

In the above expressions,k2(h)5(2m2/4h21b2 /h1e/2
1Fh/4)1/2 is the WKB wave number. The transformation
matrix is then given by

Un1l
eFm5an1l

em NjNh

Ne l
, an1l

em5^ lmu jm1 jm2&. ~12!

The energy ise521/(2n2), j5(n21)/2, and m65@m
6n(b12b2)]/2, where n, j , and m6 are in general not
integral. For integer values,an1l

eFm is a standard Clebsch-

Gordan coefficient. For nonintegral values, it is obtained by
substituting appropriateG functions in place of factorial ex-
pression in, for example, Edmonds’s Eq.~3.6.11! @45#. Stark
structure occurs in theNh factor in Un1l

eFm , so that at reso-

nance values of the energy and field,Nh attains a local maxi-
mum.

The transformation matrices apply to the expression for
the photoionization cross section:

sF54pa2\v (
n1 ,m,m̃

z^cn1m
eF ur m̃uc i& z2, ~13!

where c i is the initial state wave function andr m̃ is the
dipole transition matrix element for polarization component
m̃. In view of Eqs.~8! and ~13!, we can write

sF~e!5C (
l ,l 8,m,m̃

^c lm
e ur m̃uc i&^c i ur m̃uc l 8m

e &(
n1

Un1l
eFmŨl 8n1

eFm

5Cs0HeF, ~14!

whereC54p2a\v, and

s l 8 l
0

~e!5^c lm
e ur m̃uc i&^c i ur m̃uc l 8m

e &, ~15!

Hl 8 l
eFm

5(
n1

Ũ l 8n1
eFmUn1l

eFm . ~16!

s l 8 l
0 (e) is independent of field sincec i is localized near the

origin and the integrands are significant only forr!F21/2.
HF contains the Stark structure.

This may also be written

sF~e!5C (
l ,l 8,m,m̃

^c i ur m̃uc l 8m
e &@^c8uc&21# l 8 l

eFm^c lm
e ur m̃uc i&

~17!

so thatHl 8 l
eFm

5@^cuc&21# l 8 l
eFm serves as a normalization fac-

tor.
For alkali-metal atoms, one replaces the hydrogenic

spherical coordinate function c lm
e 5 f e lm(rW)

5Ylm(u,f)Fe l(r )/r , where Fe l(r ) is a regular Coulomb
function, by the phase-shifted function
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C lm
e 5cosd l f e lm~rW !2sind lge lm~rW !, ~18!

wherege lm(rW)5Ylm(u,f)Ge l(r )/r , in which Ge l(r ) is the
irregular Coulomb function@46#. The phase shiftd l is simply
related to the quantum defect through

d l5pm l . ~19!

To introduce a comparable phase shift into the parabolic
functions, we consider the irregularh function, x̄2n1m

eF (h),

which is shifted byp/2 in the well relative tox2n1m
eF (h).

Asymptotically, x̄2n1m
eF (h) and x2n1m

eF (h) differ by a phase

gn1
, but their amplitudes are identical. Ifa,b,c are the

classical turning points of theh equation, then for
a!h!b

x2n1m
eF ~h!5

1

R
A 2

pk2~h!
sinS E

a

h
k2~h8!dh8D , ~20!

x̄2n1m
eF ~h!5

1

S
A 2

pk2~h!
cosS E

a

h
k2~h8!dh8D , ~21!

and forh@c,

x2n1m
eF ~h!→A 2

pk2~h!
sinS E

c

h
k2~h8!dh81 ũ D , ~22!

x̄2n1m
eF ~h!→A 2

pk2~h!
sinS E

c

h
k2~h8!dh81 ũ1gn1D

~23!

such that W(x2 ,x̄2)5x2x̄282x28x̄252(2/p)singn1
522/(pRS). From the WKB connection formulas using
parabolic cylinder functions,R25T2cos2D1T22sin2D, where
T is the tunneling integral andD is the phase accumulated in
the well plus a small correction for tunneling.~We omit in-
dicesn1 , m, e, andF on R, S, T, andD.) The compa-
rable expression forS2 is obtained by the replacement
D→D2p/2: S25T2sin2D1T22cos2D.

Harmin uses the equality of Green’s function in spherical
and in parabolic coordinates

Gm
c ~r ,r 8!5p(

l
f e lm* ~rW !ge lm~rW8!

52(
n1

x1n1m
eF ~j!x1n1m

eF ~j8!x2n1m
eF ~h!x̄2n1m

eF ~h8!

W~x2n1m
eF ,x̄2n1m

eF !

~24!

to give

ge lm~rW !5
eimf

A2p
(
n1

x1n1m
eF ~j!x̄2n1m

eF ~h!Un1l
eFmcscgn1

~25!

and thus

C lm
eF5~cosd l !(

n1
@~UeFm!21# ln1cn1m

eF

2~sind l !(
n1

Ũ ln1
eFm~cscgn1

!c̄n1m
eF ~26!

5~cosd!U21c2~sind!Ũ~cscg!c̄.
~27!

Note that the left side of Eq.~25! is phase shifted isotropi-
cally, while the right side is phase shifted on the negativez
axis but not on the positivez axis (h50). This deficiency
‘‘heals’’ quickly off the z axis, but may be a limiting factor in
precision calculations.

The normalization factor for alkali-metal atoms is

^CuC8&5@cosd2~sind!Ũ~cotg!U#U21Ũ21

3@Ũ~cotg!Using2cosg# ~28!

5Q~HF!21Q1~sind!HF~sind!5~DF!21,
~29!

where

Q5cosd2~sind!hF, ~30!

hl 8 l
eFm

5(
n1

Ũn1l 8
eFmUn1l

eFmcotgn1
. ~31!

Below the saddle point,HF is small except at a hydro-
genic resonance, hence one may use the expansion

DF5@11~Q21HFsind!2#21Q21HFQ̃21 ~32!

5
q̃HFq1•••

udetQu21tr@~ q̃HFsind!2#1•••

, ~33!

where q̃5Q21detQ is the adjoint ofQ. Hence resonances
occur when

detQ5det@cosd2~sind!hF#50. ~34!

Also, appreciable tunneling below the saddle point leads
to a different representation. SinceNh5B1/2/R, we can fac-
tor Un1l

eFm into a nonresonant part,Uln1
e0m5an1l

emNjB
1/2/Ne l ,

and the resonant part,R21. Furthermore, as sing
51/RS,cotg5sinDcosD@T22T22# and

hl 8,l
eFm

5( Ũ l 8n1
e0mUn1l

e0m
cotgn1

Rn1
2

5( Ũ l 8n1
e0mUn1l

e0msinDcosD@T22T22#

T2cos2D1T22sin2D

→( Ũ l 8n1
e0mUn1l

e0mcotD ~35!
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when the tunneling integralT is large. In the final expres-
sion,T andg do not occur.

The tunneling integralT and phase accumulated in the
well, D, can be computed from WKB expressions. To check
this approximation, we have computed these quantities by
numerical integration using the Milne method as described
by Alijah et al. @47#. Results from this numerical transcrip-
tion of the FT method will be presented in Sec. VIII.

VI. R-MATRIX THEORY COUPLED
WITH COMPLEX COORDINATE ROTATION

A. R-matrix theory for Rydberg states

Recent theoretical work combiningR-matrix and complex
coordinate techniques has provided a computational means
of calculating Rydberg spectra of nonhydrogenic atoms in
the presence of strong electric and/or magnetic fields with
high precision@16–18,21#.

We first summarize the fundamentals ofR-matrix theory.
Space is split into two regions separated by a spherical sur-
face of radiusa ~typically several Bohr radii in size!. For
0,r,a the dynamics is dominated by the complicated in-
teractions among the nucleus and all the electrons. The ex-
ternal electric field is here very small compared to the intra-
atomic electric field. To give an order of magnitude: in our
experiments, the electric field is at most 10 kV/cm, as com-
pared with the 50 MV/cm intra-atomic electric field seen by
an electron at 10 Bohr radii from the nucleus. Hence, in this
inner region, the effect of the external field can be neglected
to lowest approximation. We will show in Sec. VI D how it
may be taken into account perturbatively for very accurate
calculations.

For r.a, the multielectronic character of the atom can be
neglected. The Rydberg electron there is affected only by the
Coulomb field of the ionic core and the external field. Since
the characteristic excitation energy of the ionic core is sev-
eral eV, which is much larger than the;meV energies char-
acterizing the binding energies of the Rydberg states, the
ionic core can be considered frozen and its effect on the
Rydberg electron forr.a represented by an effective poten-
tial. This potential is essentially Coulombic2Z/r ~with
chargeZ51! but small corrections exist due to the core po-
larization, see Eq.~3!. The quantum defect parameters ex-
press the accumulated phase shift at larger from the core
itself and the core polarization potential. If the radiusa is
sufficiently large, core polarization effects may clearly be
neglected forr.a. Thus in the outer region the Rydberg
electron of the nonhydrogenic atom is described by the same
Hamiltonian~not the same wave function! as the electron of
a hydrogen atom.

By splitting space, we reduce the full problem to two
simpler ones: a field-free atom forr,a, and a hydrogenic
problem in the presence of the external field forr.a. Both
are relatively easy to solve. The inner-region wave function
can be obtained from a full multi-electron calculation or ex-
tracted from field-free spectroscopic results, as done in this
paper. The outer problem can be solved numerically using,
for example, diagonalization over a Sturmian basis. The dif-
ficulty ~overcome by conventionalR-matrix theory! lies in
matchingthe solutions atr5a.

However, for Rydberg atoms where many energy levels
have to be computed, this conventional theory requires the
computation of many solutions forr.a, followed by a com-
plicated search for roots. In Refs.@16,18#, a more efficient
technique has been presented. The idea is to solvefirst the
inner problem, and then use its solution to build in directly
information about r,a on the boundaryr5a via a
‘‘Schneider term’’ @48# before solving the outer problem.
This ensures that the solutions of the latter give automati-
cally the energy levels of the full problem. The details in
Refs. @16,18# can be summarized as follows. Forr>a, the
eigenfunctionce(rW) with energye is expanded over reduced
radial functionsRl(r ) for angular momentuml , multiplied
by spherical harmonicsYlm(u,f):

c~rW !5(
l

Rl~r !

r
Ylm~u,f!. ~36!

Substituting Eq.~36! in the Schro¨dinger equation with the
additional Schneider boundary term yields

(
l

1

r H 12 F2
d2

dr2
1
l ~ l11!

r 2
2d~r2a!S ddr 2Bl D G2

1

r

1Frcosu2e%Rl~r !Ylm~u,f!50, a<r<`. ~37!

Away from the boundaryr5a, Eq. ~37! reduces to the
Schrödinger equation for a hydrogen atom in a static electric
field, as expected. However, Eq.~37! must incorporate a spe-
cific boundary condition atr5a which depends on theBl
term. The termd(r2a)d/dr in Eq. ~37! makes the Hamil-
tonian Hermitian in the rangea<r,`. In the Schneider
method, the termBl is determined by

Bl5
1

Ue l~a!

dUe l~r !

dr
U
r5a

, ~38!

whereUe l(r ) is the l th partial wave obtained from the inner
region:

Ue l~r !5~cosd l !Fe l~r !2~sind l !Ge l~r !. ~39!

@Fe l(r ) andGe l(r ) are regular and irregular Coulomb func-
tions, respectively, as stated in connection with Eq.~18!.#
Bl depends on the energy and the structure of the ionic core
through the quantum defects inUe l(r ). References@16–18#
demonstrate that, with such a choice, the eigensolutions of
Eq. ~37! give the energy levels and wave functions of the
nonhydrogenic atom in the presence of the external electric
field.

Solving this equation is not easy because the energy en-
ters explicitly as one term of the equation and also via the
energy dependence of theBl . For Rydberg states and not too
large a radiusa, the energy dependence of theBl is suffi-
ciently slow to allow its value computed at some fixed en-
ergy to be used in determining, by numerical diagonalization
of Eq. ~37!, several energy levels close to this. For highly
accurate calculations, this approximation is not acceptable.

However, the experiments are performed at a fixed energy
of the Rydberg state, scanning the electric-field value
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through consecutive resonances. Since theBl depend on en-
ergy, but not on electric-field strength, they need be com-
puted only once and inserted into Eq.~37!. We then expand
theRl(r ) in terms of a Sturmian basis:

Snl
~j!~r !5F ~n2 l21!!

2~n1 l !! G1/2~jr ! l11exp~2jr /2!Ln2 l21
~2l11! ~jr !,

~40!

whereLn2 l21
(2l11)(jr ) are associated Laguerre polynomials and

j a free parameter. The expansion is

Rl~r !5(
n

cnlSnl
~j!~r !, ~41!

where thecnl are coefficients to be determined.
Multiplying Eq. ~37! by Sn8 l

(j) (r )Ylm* (u,f) and integrating
over the solid angledV and over the rangea,r,` yields
the equations

1

2(n H E
a

`

Sn8 l
~j!

~r !F2
d2

dr2
1
l ~ l11!

r 2
2d~r2a!S ddr 2Bl D GSnl~j!~r !drJ cnl2(

n
H E

a

`

Sn8 l
~j!

~r !
1

r
Snl

~j!~r !dr1eE
a

`

Sn8 l
~j!

~r !

3Snl
~j!~r !drJ cnl522F(

n
HKll21E

a

`

Sn8 l
~j!

~r !rSnl21
~j! ~r !drJ cnl2122F(

n
HKll11E

a

`

Sn8 l
~j!

~r !rSnl11
~j! ~r !drJ cnl11 ,

~42!

whereKll 85*Ylm* cosuYl8mdV can be easily computed~see,
for example,@49#!.

These equations can be rewritten in matrix form as

Ax5FBx. ~43!

Hence, using this method, all the electric-field values
where a Rydberg state exists with the prescribed energy are
eigenvalues of a generalized eigenvalue problem. A single
matrix diagonalization gives all the electric-field values
where a peak is expected in the experimental spectrum.

TheA andB matrices have a block structure due to the
coupling of differentl by the electric field. Since all radial
integrals are taken over the rangea<r<`, the diagonal
properties of the Sturmian functions withn are lost. How-
ever, all the radial integrals can be evaluated analytically. In
our calculations, the basis set is composed of all the Stur-
mian functions havingn less than or equal to some maxi-
mum valuenmax. A andB are consequently banded sym-
metric matrices with dimension roughlynmax

2 /2. For solving
the generalized eigenvalue problem~42!, we use the Lanczos
algorithm which allows the computation of a few dozen ei-
genvalues in a user-defined interval at relatively low cost
@50#.

B. Complex rotation

The method described in the preceding section is efficient
below the saddle-point energy where Rydberg states are qua-
sibound states. Above the saddle-point energye522AF
~i.e., above the critical electric fieldF5e2/4 at fixed energy!,
the diagonalization cannot converge to any sensible eigen-
value. There, the spectrum is composed of resonances, com-
plex poles of the analytic continuation of the Green’s func-
tion. The positions of these poles in the complex plane can
be obtained using the method of complex rotation~also
known as the complex coordinate method!. This makes it
possible to includeexactlythe effect of the atomic continua.

We define the complex Hamiltonian

H~q!52
e22iq

2
¹22

e2 iq

r
1eiqFrcosu, ~44!

where the following substitutions occur:r→reiq and
p→pe2 iq. Note that this substitution of variables preserves
the commutation relation betweenrW andpW .

The power of this method lies in the fact that the spectrum
of the complex operatorH(q) is composed of the bound
states ofH5H(q50) ~if there are bound states; the corre-
sponding eigenvalues are then purely real!, of isolated com-
plex eigenvalues which are the resonances ofH and of con-
tinua ~half lines rotated in the complex plane by the angle
22q around their branch points!. The corresponding eigen-
function is square integrable, which implies that it can be
computed by numerical diagonalization in a basis such as
Sturmians.

The combination of the complex coordinate method with
R-matrix theory ~with the Schneider method! has already
been demonstrated for nonhydrogenic atoms in a strong
magnetic field@16,18# and in parallel electric and magnetic
fields @17#. This again involves splitting the space into two
regions, solving separately the problem for therotated
HamiltonianH(q) in the two regions and matching the two
solutions atr5a. Note that this has to be done forH(q) as
its eigenstates of interest are square integrable. It cannot be
done directly forH itself as its resonance eigenfunctions are
not square integrable functions and satisfy a different bound-
ary condition atr→` @51#. From the mathematical point of
view, it is equivalent to consider the unrotated Hamiltonian
for complex coordinates and a complex boundaryr5aeiq or
the rotated Hamiltonian and a real boundaryr5a. The latter
is more natural and will be used throughout the paper.

For the specific case we are interested in, we want to
solve the problem at fixed~real! energy of the electron. Us-
ing the same expansion of the wave function, Eqs.~36! and
~41!, but with complex coefficientscnl , we obtain for the
complex rotated problem a generalized eigenvalue problem
very similar to Eq.~42!:
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e22iq

2 (
n

H E
a

`

Sn8 l
~j!

~r !F2
d2

dr2
1
l ~ l11!

r 2
2d~r2a!S ddr 2Bl D GSnl~j!~r !drJ cnl

2(
n

H E
a

`

Sn8 l
~j!

~r !
e2 iq

r
Snl

~j!~r !dr1eE
a

`

Sn8 l
~j!

~r !Snl
~j!~r !drJ cnl

522Feiq(
n

HKll21E
a

`

Sn8 l
~j!

~r !rSnl21
~j! ~r !drJ cnl2122Feiq(

n
HKll11E

a

`

Sn8 l
~j!

~r !rSnl11
~j! ~r !drJ cnl11 . ~45!

The structures of theA andB matrices are the same as
for the unrotated problem. The various matrix elements are
simply multiplied by various powers ofeiq yielding complex
symmetric matrices. The only complication is for the
Schneider term itself which has to be estimated for the ro-
tated problem. This requires the calculation of regular and
irregular Coulomb functions for complex energy and com-
plex radial coordinate as explained in Ref.@18#. The gener-
alized complex symmetric banded eigenvalue problem is
again numerically solved using the Lanczos algorithm.

The result is a set of complex values of the electric field
F, the real part being the center of the resonance and22
times its imaginary part being the width~in units of electric
field! of the resonance when observed at fixed energy.

From the eigenvectors of the rotated problem, we can also
extract the wave functions of the resonances@51#, the exci-
tation probabilities of the various resonances, and the photo-
ionization cross section@18#.

C. Implementation of the method

The calculations reported here have been carried out using
the method described in the preceding section. We now de-
scribe the choice of parameters.

The first parameter is the matching radiusa. It has to be
chosen larger than the radius of the ionic core. Then in the
vicinity of and beyond the boundaryr5a, we can use a
one-electron wave function. If, in addition, the electric-field
term in the Hamiltonian can be neglected nearr5a, i.e.,
Fa2!1, then the one-electron wave function is a linear com-
bination of regular and irregular Coulomb functions with co-
efficients depending only on the quantum defects at the en-
ergy of interest. The Schneider term is then determined from
Eqs.~38! and~39! or the trivial extensions of these equations
for complex boundaryaeiq.

Using a large radiusa makes the outer calculation easier
because the wave function has fewer oscillations and conver-
gence is usually obtained with a smaller basis. However, too
large a matching radius invalidates a basic hypothesis of the
method, namely, the fact that the termFz in the Hamiltonian
can be neglected in the inner region. A good compromise is
to use a matching radius between 5 and 20 Bohr radii. How-
ever, as explained in Sec. VI D, even this is too large for ppm
accuracy.

The rotation angle is not a crucial parameter. Indeed, the
resonances of interest are the narrow ones, which have very
small imaginary parts. For example, below the saddle-point
energy, most of the resonances have widths smaller than the
numerical accuracy of the computer. The numerical results

give widths of the order of 10215 a.u., not significantly dif-
ferent from zero. Rotation angles as small asq50.01 are
sufficient there. Above the saddle point, the situation is dif-
ferent. There are many unconverged complex eigenvalues
with large imaginary parts which fluctuate erratically as the
basis size is increased. These broad resonances~originating
from higher Rydberg states dominated by the external field!
do not contribute significantly to the physics of the system.
There are also converged complex eigenvalues, correspond-
ing to the interesting resonances which usually lie close to
the real axis~widths smaller than 1021021029 a.u.!. For a
sufficiently large basis, their positions are independent of the
rotation angle~as long as it is large enough to ‘‘uncover’’ the
resonance, typicallyq.0.01). It was found numerically that
the large proliferation of broad resonances spoils the conver-
gence of the complex coordinate diagonalization. This is not
really surprising@51# and is probably due to a weak instabil-
ity of the Lanczos algorithm for complex symmetric matri-
ces. To overcome this problem, we used small rotation angles
~0.01! and wrote a specific version of the Lanczos algorithm
using partial pivoting@52#.

The choice of the scaling parameterj of the Sturmian
basis, Eq.~40!, is also important. Too large a value requires
a very large basis while too small a value prevents the nu-
merically computed wave function from reproducing cor-
rectly the oscillations of the exact wave function near the
boundary, thus destroying completely the convergence. For
the parameter valuej52/n, the Sturmian functionSnl(r )
coincides with the radial wave function of the hydrogenic
Rydberg state with principal quantum numbern. Thus it is
natural to use, at a fixed energye, the value j52/n*
52A22e corresponding to nearby Rydberg states (n*.15
for the results reported here!. We observed that a slightly
lower value ofj gave much better results~faster conver-
gence! at the price of a small increase in basis size. With the
optimal choice of the parameterj, good convergence in the
region of interest~principal quantum number about 15! is
obtained using a Sturmian basis withnmax540250 below
the saddle point andnmax560270 above. The corresponding
size of the basis ranges from 800 to 2500. All the calcula-
tions reported here have been performed on an ordinary Sun
workstation. The CPU time was always short, never exceed-
ing 5 min to get all the resonances of interest at a fixed value
of the energy.

Finally, there was a problem with the large-l components
of the wave function. Although they have very small quan-
tum defects, they can strongly affect the convergence of the
calculations, especially above the saddle point. The reason
for this is that in ourR-matrix method, we assume that the
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atomic potential is purely Coulombic outside the matching
radius, which makes it possible to use the regular and irregu-
lar Coulomb functions with coefficients corresponding to the
phase shift originating inside the matching radius. This is not
true for high-l values, where the quantum defect is not due to
core penetration, but to core polarization or to the relativistic
mass correction, either of which are associated with a long-
range potential. This means that most of the phase shift at
infinity is actually accumulated not inside but outsider5a.
Hence, atr5a, although the physical reduced radial func-
tion is very small, going smoothly to zero asr l11, the func-
tion used in the calculation containing a nonzero quantum
defect does not have these characteristics. In fact, the irregu-
lar Coulomb function, even though its coefficient is very
small, makes a much bigger contribution than the regular
one, and leads to a wrong estimation ofBl . To overcome this
problem, one can increase the matching radius—which
pushes the problems to higher-l values—and further set the
quantum defects of high-l values exactly to zero. Doing this,
we neglect the quantum defects of states withl larger than 7
or 8 ~see Sec. VIII!. Keeping all the quantum defects nonzero
usually gives results that are not very well converged, espe-
cially above the saddle point.

D. Improving the accuracy of the results

Since we are trying to obtain results that are as accurate as
possible, we now consider possible causes for errors and
inaccuracies. The complex rotation method takes all the cou-
plings with the continuum and between continua exactly into
account. The basis size is not a serious limitation, as it can be
easily extended—even on a workstation—to get fully con-
verged results. Hence, neglecting the core polarization poten-
tial beyond r5a ~which is fully justified if a is large
enough!, we are able to solve the problem in the outer region
with an accuracy limited only by the numerical rounding
errors. Taking into account the weak instability of the Lanc-
zos algorithm, we estimate the eigenvalues obtained by solv-
ing the outer problem to be accurate to ten significant figures,
which is not a serious limitation.

The main difficulty comes in fact from theinner region.
The first limitation concerns knowledge of the quantum de-
fects, which is discussed in Secs. III B and VIII. A more
fundamental limitation comes from the assumption that we
can neglect the effect of the electric field forr,a and thus
use pure Coulomb functions to determine the boundary con-
dition at r5a. The order of magnitude of the error made
using this assumption can be estimated from Eq.~37!. The
term in this equation that couples the variousl channels is
Frcosu. For l mixing to be negligible, forr,a this term has
to be much smaller than the Coulomb potential~diagonal in
l ! at r5a. Hence the condition for neglecting thel mixing in
the inner region is

Fa!
1

a
. ~46!

However, for a typical situation of interest, we have
F.1026 a.u..5 kV/cm anda.10 a.u., which means that
the l -mixing term can be as large as 1024 relative to the
diagonal term. Hence we can expect in the real system a

mixing between computed states of the order of 1024. The
electric field strongly mixes the variousl channels in the
outer region and the effect of thel mixing in the inner region
can consequently induce errors in the determination of the
energy levels~at fixed electric field! or in the determination
of the electric-field values~at fixed energy! in the fourth or
fifth digit. This is clearly not acceptable for measurements at
our present level of precision.

To solve this problem, we remark that the same strategy
~i.e., solving the problem forr.a by diagonalization! can be
kept provided we are able to insert at the boundaryr5a the
correct physical Schneider term associated with the exact
solution in the inner region. Because of thel mixing for
r,a, the Schneider term will lose its diagonal character. In
other words, a solution in the inner region which is a purel
wave close to the nucleus will progressively evolve into a
linear combination of severall waves as it propagates out-
wards. We need to know what the wave will actually be at
radiusr5a. Fortunately, the electric-field-induced mixing in
the inner region is small and can be treated perturbatively
@higher order terms will be at most of the order of
(1024)2, and hence do not have to be considered here#. In
the inner region, as soon as the electron leaves the ionic core,
it is affected by the superposition of the Coulomb plus ex-
ternal field potential. Hence, if we expand the wave function
as in Eq. ~37!, the following equation has to be satisfied
between a small radiusr5b, slightly outside the ionic core,
and the boundaryr5a:

(
l

1

r H 12 F2
d2

dr2
1
l ~ l11!

r 2 G2
1

r
1Frcosu2eJ

3Rl~r !Ylm~u,f!50. ~47!

Hence we are faced with the problem of propagating an ini-
tially pure l wave fromr5b to r5a. This is a well known
problem which can be solved using anR-matrix approach
once again.

Because of the selection rules on the angular variables,
D l561, only channelsl21, l , and l11 will be mixed to
first order.A priori, any complete set of solutions of Eq.~47!
can be used to propagate from the ionic core tor5a. It is
particularly convenient to consider as base solutions those
which are purel waves at the boundary. Let us consider a
basis of such solutionsc@ l #(rW) whose spherical components
will be denotedRl 8

@ l #(r ). They are chosen such that

Rl 8
@ l #

~a!5d l l 8Ue l~a!. ~48!

With this constraint, it is of course in general not possible
to choose simultaneously (dRl 8

@ l #/dr)(r5a)50, which is
possible only in the absence ofl mixing. Hence the nonzero
derivatives will give nondiagonal contributions to the
Schneider term. These can be easily computed to first order
in the electric fieldF by multiplying Eq.~47! for c@ l #(rW) by
the Coulomb functionUe l11(r ) and integrating between the
small radiusb and the boundarya. To first order, the func-
tion Rl

@ l #(r ) will be the main contribution while the other
Rl 8

@ l #(r ) will be O(F) times smaller. Also, to the same order,
Rl

@ l #(r ) has to coincide withUe l(r ). Hence one obtains
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Bl11,l5
1

Rl
@ l #~a!

dRl11
@ l #

dr
U
r5a

5FKll11

*b
aUe l~r !Ue l11~r !rdr

Ue l~a!Ue l11~a!
. ~49!

Bl11,l defines the nondiagonal Schneider term which has to
be included between blocksl and l11. More precisely, one
obtains a generalized eigenvalue problem similar to Eq.~42!
with the simple additional term

1

2(n Bl11,lSn8 l11
~j!

~a!Snl
~j!~a!cnl ~50!

in the left side of the equation.
Thus, to first order, the nondiagonal Schneider term pre-

serves the selection ruleD l561, and consequently the
banded structure of the matrix. Also, from Eq.~49!, the sym-
metric character of theA matrix is preserved. The physical
interpretation of Eq.~49! is simple: the integral represents
the matrix element of the dipole operator between unper-
turbed Coulomb functions, taken in the inner region. Since
Bl11,l represents a small correction, it is appropriate to ne-
glect the effect ofUpol @see Eq.~3!# on the wave functions
Ue l(r ) for b,r<a. The choice of the lower boundb for the
integration has to be made from physical arguments:b must
be larger than the radius of the ionic core, so that the
Ue l(r ) functions are solutions of the physical problem. In
our calculations, we usedb51 or 1.5 Bohr radii, without
observing significant differences. At such a distance, thel
mixing induced by the electric field is actually negligible. Its
order of magnitude can be obtained from the polarizability of
the ionic core by a static electric field. With anR-matrix
approach, there is no hope to go beyond this limit. Indeed,
the polarizability of the core depends on the complicated
multielectron interaction. In the present case of Li, it can be
roughly estimated to be of the order of 10210 a.u. of energy
at 10 kV/cm. This might cause errors of the order of a small
fraction of a ppm in the calculation of the resonance posi-
tions at large fields.

Finally, the importance of the nondiagonal Schneider term
in obtaining highly accurate results is illustrated in Fig. 5,
which shows the computed position of a typical resonance
~real part! as a function of the boundary radiusa with and
without the nondiagonal Schneider term, all other parameters
being kept fixed. At smalla, the calculations do not con-
verge well. In the range 7–20 Bohr radii, the computation
without the nondiagonal Schneider term oscillates—which
demonstrates thatl mixing is not small in such inner
regions—while the full computation is perfectly converged,
with an accuracy much better than 1 ppm.

VII. INTERFERENCE NARROWING MEASUREMENTS

Resonance narrowing occurs when two or more broad en-
ergy levels interact in such a way that the couplings with
continuum channels interfere, decreasing the decay rate by
possibly several orders of magnitude over a small range of
field. Although our experiment in Li was designed to mea-
sure resonance positions rather than lifetimes, we are able to
measure resonance widths and thus to study interference nar-

rowing. Of course, our width measurements were limited by
instrumental factors, such as field inhomogeneity, laser
width, and transverse Doppler width. We studied three sepa-
rate narrowing regions to evaluate the feasibility of using
these features for field calibration with our existing setup.
Only one of the narrowings we examined was found to be
useful for calibration given our experimental resolution. In
the other cases, the calculated deep minimum width was
masked by the experimental width so that only a broad, flat
minimum was observed. Since the voltage offset must be fit
in addition to the effective electrode separation, the range of
voltages over a single narrowing region does not provide a
precise fit to these two parameters. The data we obtained for
the ‘‘best’’ narrowing recorded does, however, show excel-
lent agreement with RM calculations and is presented here
as an additional comparison with the RM and FT theories.

FIG. 5. A typical result showing the influence of field-inducedl
mixing in the inner region for anR-matrix calculation. The figure
displays the position of a resonance as a function of the matching
radius used in the calculation~the basis has a fixed size of 1800!.
The crosses (3) are obtained for a simple calculation withoutl
mixing in the inner region: the accuracy is limited to a few ppm. In
contrast, when thel mixing is taken into account~1! by a nondi-
agonal Schneider term, a far better accuracy is obtained.

FIG. 6. Line shapes observed from successive electric field
scans shown with energies differing by 750 MHz~twice the refer-
ence cavity mode separation!, illustrating interference line narrow-
ing. The central peak has energy of2482.898 25~4! cm21 cali-
brated using MD in conjunction with low-field resonance data. The
x axis has likewise been calibrated in units of field, using the same
low-field data. The resonances near the minimum width are nearly
symmetric.
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Figure 6 shows the general appearance of a region of
interference narrowing. Each individual peak represents a
field scan at a fixed excitation frequency from the Li 32S
level. The laser frequency of the final step to Rydberg levels
is adjusted between each peak measurement and locked to a
stabilized Fabry-Pe´rot reference cavity. The recorded reso-
nance data sets are separated by the cavity’s free spectral
range, 375~1! MHz ~those shown in the figure are separated
by twice this, 750 MHz, to make the figure intelligible!. Near
the minimum width, the line shapes are roughly symmetric,
but away from the minimum, asymmetric Fano shapes ap-
pear. We extracted values for the linewidths by fitting Gauss-
ian line profiles to the symmetric resonances. The widths are
plotted as a function of field in Fig. 7. These points were fit
with a quadratic function of field near the minimum in order
to obtain an optimum value for the voltage at which the
narrowing reaches a minimum.

To compare with theory, we calibrated the field by mea-
suring seven resonance peaks at low field, using the method
outlined below. These data yielded an effective plate separa-
tion of 0.720 862 0~27! cm, zero-field offset of
20.1197(57) V, and an energy of2482.898 25~4! cm21.
Using these parameters, the field at the minimum width was
found to be 8334.96~12! V/cm ~14 ppm uncertainty!. RM
calculations predict the value to be 8334.93 V/cm, well
within our experimental uncertainty. By contrast, FT calcu-
lations predict the narrowing minimum to occur at
8336.57~06! V/cm, giving a discrepancy of more than 190
ppm.

VIII. COMPARISON BETWEEN THEORY
AND EXPERIMENT

The primary goal of the present work was to demonstrate
a precision~ppm level! calibration of the electric field, by
comparing measurements of Li Stark resonance voltages
with theory. For reasons discussed below, all final data fits
have been made with results fromR-matrix theory. The de-
ficiencies of MD and FT methods will then be made evident.
Our data thus offer insights into the ultimate limitations of
these two approaches, and a confirmation of the higher ac-
curacy achievable with the RM method.

The fitting procedure also provides a value for the atomic
binding energy of the upper level of the laser transition. In

work on Na @2#, such information has been used together
with an accurate value for the laser frequency to provide
improved information on the binding energy of the lower
level. In the present case, this would be the Li 32S state, but
in our experiments, the absolute laser frequency was not ac-
curately known. However, a discussion of the error limits for
the energy determination as well as for the field calibration is
of interest with regard to the future possibilities for the de-
termination of the binding energy of the Li 32S state. We
will discuss effects caused by the Stark shift of the 32S
level, uncertainties in the quantum defect parameters, the po-
larization potential, and relativistic terms in the Hamiltonian
used to compute the Stark wave functions.

The fits to our ‘‘best’’ data sets were significantly im-
proved by including the Stark shift of the 32S state. Values
for this shift were obtained by MD and RM calculations and
found to agree to within 0.2% of the value from the 32S
polarizability of 1.103310211 a.u. calculated by Themelis
and Nicolaides@53#. The shift is very nearly quadratic and
equal to 51.4 MHz at 10 kV/cm. It is important in the fol-
lowing discussion that the 813-nm laser was always locked
to the 22P→3 2S transition in thefield-free fluorescence
region~see Fig. 2 and Sec. II!. One of us~C.H.I.! has carried
out a calculation for two-photon excitation in a three-level
system. We find that the importance of a shift of the inter-
mediate state depends on the linewidth of the two lasers. In
the case of extremely narrow lasers and atomic linewidth, the
spectrum of a two-photon transition will depend only on the
initial and final states, and will not be affected by a shift of
the intermediate state. On the other extreme, if the laser has
a wide frequency bandwidth or the intermediate state is suf-
ficiently broadened by radiative decay or by Doppler effects,
the intermediate state can be excited by the wings of the first
laser, and the two-photon spectrum will depend on the posi-
tion of the intermediate state.~A related calculation has been
carried out in Ref.@54#.! For our estimated experimental con-
ditions with relatively broad laser linewidth, the results of
our model are consistent with the conclusion that the Stark
shift of the 32S state should be included. For certain scans,
the 813-nm laser was narrow enough to produce an interme-
diate situation in which the 32S Stark shift was only partly
evident, hence fits either with or without the 32S Stark shift
gave results of poorer quality than with data obtained with a
broader laser.

To obtain a field calibration, the voltage scan data were fit
to Gaussian resonance shapes to extract resonance voltages,
as shown in Fig. 4, and then the resonance voltages were fit
to calculated resonance positions. Initially, fitted peak posi-
tions below the saddle point were fit to energy levels calcu-
lated by MD theory, using polynomials fitted over a series of
~energy!/~field! values for the various Stark components. The
energy, calibration factor~effective electrode spacing!, and
voltage offset were adjusted to achieve the best least squares
fit to the resonance peak positions. To minimize the correla-
tion between the fitted field and energy parameters, it is es-
sential that the measured resonances exhibit different slopes,
preferably of opposite sign. For this reason, the ‘‘spaghetti’’
region of many avoided crossings is especially useful. Even-
tually, RM results became available, and could be extended
beyond the saddle point. The extracted parameters obtained
with MD and RM methods diverged, and for reasons dis-

FIG. 7. Linewidths determined from the data shown in Fig. 6.
The fitted minimum occurs at 8334.96~12! V/cm.
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cussed below, it became evident that MD results were inac-
curate at the level of precision attained experimentally.

Figure 8 shows a plot of residuals from a least squares fit
of resonance positions to RM results obtained with 2450
basis states~results with 1800 basis states differed only
slightly!. Most peaks are fit to better than 15 mV~20 mV/
cm!. The residuals are three to ten times larger than the un-
certainties from the fits to the individual peak positions
~shown as error bars in Fig. 8!. There was possibly a small
drift of the high voltage dc power supply while the indi-
vidual peaks were scanned~the voltage was recorded before
and after scanning each peak!, or small drifts of the laser
frequency during or between the peak scans. This suggests
that improved stabilization of the power supply and lasers
might lead to several times better precision.

Figures 9 and 10 show the error limits for the electrode
spacing and energy parameters. The first data point in each
figure shows the result with all 27 narrow resonances (m 5
0 andumu51 peaks together! with the quantum defect param-

eter set A given in Table II forl<3, with the QD parameters
given in Table III for 4< l<7, and with allm l50 for l.8.
Results of a fit withm7 also set to zero are shown in the
second line. The third line of Figs. 9 and 10 gives results
with QD parameter set B~Table II!, andm7 again as in Table
III. Since the interpolated energies for the 152D and 2F
states differ by about 9 and 7 MHz, respectively, between
QD fit A and fit B ~as indicated in Table II!, the value of the
fitted energy changes by about 1 MHz, and the fitted value
for d changes by just 0.5 ppm. This provides one indication
of the effect of uncertainties in the QD parameters on the fit
results. Another indication is provided by the changes of the
results when QD parameters are varied by the standard de-
viations obtained from fits A and B. These changes were
smaller than the differences between results with QD set A
and B.

The fourth and fifth lines in Figs. 9 and 10 show results of
a fit with just them50 andumu51 peaks, respectively. The
results for the electrode spacingd differ by almost 4 ppm,
but the error limits overlap. BecauseE is also fitted, the fitted
value ford from the fits withm50 andumu51 peaks sepa-
rately are both greater than from the combined fit. For the
fitted value ofE, the umu51 peaks alone gave a result less
than the combined fit by slightly more than the combined
error limits.

The R-matrix method cannot easily accommodate the
small quantum defect parameters forl>8 that arise from the
relativistic mass correction termErel and the polarization po-
tential. These phase shifts accumulate primarily in the region
r.a. The average energy shift from these omitted quantum
defect parameters is mostly cancelled~to '1 MHz! by the
positive energy shifts from then24 part ofE rel , which are
not included in the QD-shifted energies. In view of the cor-
relation between the fittedE andd parameters, we estimate
that the net effect of the omitted quantum defect parameters
and the omittedn24 terms fromErel on d is approximately
0.3 ppm.

After the additional uncertainties in the field calibration
due to uncertainties in the fitted QD parameters and due to
neglecting high-l QD parameters is taken into account, we
believe the calibration parameter (d) is accurate to6 2 ppm,
and the fitted energy is accurate to 1.5 MHz.

Direct comparisons of calculated resonance energies be-
low the saddle point obtained from RM and MD methods
show that thead hocextrapolation procedure discussed in

FIG. 8. Residuals~calculated minus observed values! from a fit
of measurements of 27 peaks to RM calculations, using QD param-
eter set A andm l as given in Table III for 4< l<7. Them 5 0 ~open
circles! and umu 5 1 ~closed circles! data were fitted together. The
calibration parameters obtained from the fit ared0 5
0.723 716 7~10! cm, offset voltageVo 5 0.2630~31! V, andE0 5
2483.060 897~24! cm21.

FIG. 9. Fitted values of the effective electrode plate separationd
from comparisons of the experimental peaks with RM calculations.
The valued0 is given in the caption for Fig. 8. The top two lines
give the results of fits ofm 5 0 and 1 peaks with QD parameter set
A, the third line with QD parameter set B, the fourth line gives
results with a fit ofm50 peaks only, and the fifth line gives results
with umu51 peaks only. In each case,m l values are as given in
Tables II and III,~andm l50 for l>8) except for the second line,
for which m750.

FIG. 10. Fitted values of the binding energy of the upper level
of the laser-excited transition from comparisons of experimental
peak positions and RM calculations. The various fit results are la-
beled as in Fig. 9.E0 is given in the caption for Fig. 8.
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Sec. IV @Eq. ~5!# can yield estimated energies within a few
MHz of the RM values. Figure 11~a! shows a series of ei-
genvalues for them50 resonance at 4831 V/cm and
E52483.0609 cm21 calculated with basis states fromn52
up to variousn values as indicated. Extraneous weakly
coupled nearby eigenvalues from drastically shifted high-n
levels produce small deviations of the data points from a
smooth curve. Because of these effects and the approxima-
tions in this procedure, the extrapolated value forE` does
not agree exactly with the RM value, shown as the horizontal
solid line in Fig. 11~a!. Figure 11~b! shows differences be-
tween the extrapolated MD results and RM results for each
observed resonance below the saddle point at a binding en-
ergy of2483.0609 cm21. As discussed in Sec. IV, the value
for the exponentb was chosen from a comparison between
MD results and ‘‘exact’’ results for hydrogenn515 umu51
levels. The close agreement with RM results for Li using this
procedure corroborates RM results to the level of a few
MHz, although their accuracy is believed to be considerably
better. This comparison also suggests that if RM results are
not available, extrapolation of MD results as a function of
Emax offers an alternative procedure of moderately high ac-

curacy provided one stays sufficiently far below the saddle
point.

Taking the field calibration and energy parameters from
the RM fit, we find that calculations with the FT approach
differ by relatively large amounts. Figure 12~b! shows that
for umu51 peak positions, FT theory with WKB wave func-
tions was within 250 ppm, and was significantly better when
numeric wave functions rather than WKB approximations
were used. However, deviations form50 peaks shown in
Fig. 12~a! were as much as 2 GHz, and only marginally
improved by the use of numeric wave functions~open circles
in Fig. 12!. The energy shifts relative to RM results shown in
Fig. 12 forumu51 peaks translate into shifts of the resonance
voltages of typically 150 ppm for WKB wave functions and
25 ppm for numeric wave functions. Them50 resonance
energy shifts correspond to 1000–5000 ppm shifts in field,
with the numeric wave function FT results about 10% closer
to RM values than the WKB FT results.

One potential source of error that may account for the
large residuals with the FT approach is Eq.~25!. Numerical
calculations of the sum in this equation confirm that the
phase shift from the right hand side is not isotropic. We are
investigating an alternative approach in which phase-shifted
functions ofj as well as ofh are used. This entails a funda-
mentally different approach@55#.

IX. CONCLUSIONS

We have demonstrated a calibration of the applied electric
field to about62 ppm64 mV/cm by comparing observed

FIG. 11. An evaluation of MD results.~a! A plot of fits to MD
eigenvalues,E(Emax), as a function of the energyEmax of the up-
permost level in the basis set. The fitting function is Eq.~5! in the
text. The fitted energyE` ~dashed line! includes an estimate for the
shift from coupling with continuum levels. However,E` is about 6
MHz below the RM result~solid line! for this resonance.~b! Open
and closed circles show differences betweenE` values from MD
calculations and RM results for 18 Li resonances at2483.0609
cm21.

FIG. 12. Deviations between FT results and RM results for the
observed peaks. Filled circles refer to WKB results, open circles
refer to results obtained with numeric wave functions.~a! m50
peaks;~b! umu51 peaks.
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Stark resonances in7Li with calculated resonance positions.
The error limits correspond to the uncertainty in the fitted
electrode spacing and in the fitted voltage offset parameter.
The optimum experimental technique was found to be a scan
of resonances as a function of voltage with frequency-
stabilized lasers. The optimum theoretical approach was
found to be theR-matrix method with complex rotation, us-
ing a basis of Sturmian functions. This method agreed well
with experimental results both below and above the saddle
point. Empirical quantum defect parameters for Li, required
in this calculation, were fitted from available zero-field spec-
tral data. Uncertainties in the QD expansion parameters af-
fect the field calibration by about 0.3 ppm.

The matrix diagonalization approach could be used only
below the saddle point and its accuracy suffered because
only discrete states could be included in the basis. An ex-
trapolation technique used to estimate the continuum contri-
butions resulted in somewhat better agreement withR-matrix
results.

Although FT theory is attractive and reliable at lower pre-
cision, it gives results~with WKB wave functions! that de-
viate from experiment by up to thousands of ppm form50
resonances, althoughumu51 resonances are in every case
within 200 ppm. When numerical wave functions are substi-
tuted for WKB wave functions, there is relatively small im-
provement for them50 resonances, but typically the
umu51 peaks move to within 50 ppm of RM values. This
behavior is not fully understood. We have noted that the
phase shifts in FT theory are not isotropic near the origin and
this may affect the accuracy of the results, but it is not clear
why theumu51 peaks should be more accurate and also more
significantly improved with numeric wave functions than the
m50 results.

The data suggest the presence of drifts in the power sup-
ply voltage and/or the laser frequencies. A more stable high
voltage supply and additional laser frequency stabilization
might improve the quality of the calibration by an order of
magnitude. Also, we note that the energy of the upper state is
fitted to approximately 1.5 MHz, suggesting that this tech-
nique, when combined with accurate knowledge of the laser
frequency, might be used to determine the binding energy of
the lower state of the last transition to this level of precision.

We have also presented measurements of interference line
narrowing showing good agreement with RM calculations,
using a field calibration from resonance measurements at low
field. With cw lasers, line narrowing measurements them-
selves do not give as precise a field calibration as the mea-
surements of line positions. However, these measurements
do demonstrate the successful application of RM theory to
linewidth measurements.
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APPENDIX: UNITS OF ENERGYAND ELECTRIC FIELD

To translate our theoretical results into laboratory units,
precise values of the atomic units of energy and field are
needed. These are obtained from the fundamental constants
as described below.

For measurements on Rydberg states, it is appropriate to
consider neutral Li to be a one-electron atom whose
‘‘nucleus’’ has the mass of the Li1 ion core,M5MA2m,
whereMA is the atomic mass andm the electron mass.~This
ignores the contribution toMA from the binding energy of
the outer electron, which is of the order of 1028 amu.! The
reduced mass is thenm5mM/(M1m). After separating out
the center-of-mass motion, the Schro¨dinger equation for the
outer electron is@in Système International~SI! units to facili-
tate comparisons with tables of the fundamental constants#

F2\2

2m
¹r
22

Ze2

4pe0r
2Vpol~r!2FSIez GC5ESIC, ~A1!

whereZ51 here,Vpol(r) is a potential associated with the
polarization of the core~see Sec. III!, FSI is the applied ex-
ternal electric field in SI units, andESI is the energy in SI
units. To translate to atomic units, we writer5ar and
z5az, wherea is a scaling parameter~the Bohr radius!. We
obtain

F¹ r
21

2ma2

\2 S Ze2

4pe0ar
1Vpol~ar !1FSIeaz1ESID GC50.

~A2!

This assumes the simple form

F¹ r
212S Zr 1Upol~r !1Fz1e D GC50 ~A3!

after appropriate substitutions are made. In particular,

a5
4pe0\

2

me2
5Smm D a

4pR`
5Smm Da` . ~A4!

In Eq. ~A4!, we have used the definitions in SI units:

e05
1

m0c
2 , a5

m0ce
2

2h
, R`5

mca2

2h
, a`5

a

4pR`
.

~A5!

Also, we takee5ESI /EA , where the atomic unit of energy is

EA~J!5Smm D \2

ma2
52Smm DhcR̀ 52hcRA , ~A6!

where R` and RA are in units of m21. Furthermore,
F5FSI /FA , where the atomic unit of field is
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FA~V/m!5
\2

mea3
5

1

a2 S em0c
2

4p D5
1027ec2

a2

5S m

mD 2 1027ec2

a`
2 . ~A7!

In summary, the atomic mass-dependent effects may be sum-
marized as follows:

a5a` /rA , EA5E`rA , FA5F`rA
2 , ~A8!

where

rA5
m

m
5

M

M1m
5
MA2m

MA
512

m

MA
. ~A9!

MA is normally stated in terms of the atomic mass unit:
MA5Au. Using the 1986 recommended values ofm andu
from Table IV, we obtain

rA512
5.485 799~5!31024

A
. ~A10!

For the Rydberg constant for an atom with infinite nuclear
massR` , the weighted average of two recent experimental
results@56,57# provides higher accuracy than we need:

R`5109 737.315 683 7~31! cm21. ~A11!

The atomic unit of electric field for infinite nuclear mass,
F`5e/a`

2 in Gaussian units or 1025ec2/a`
2 V/cm, is ob-

tained from the fundamental constants listed in Table IV:

F`55.142 208 3~16!3109 V/cm. ~A12!

For 7Li, A57.016 004 1(5)@58# and the reduced mass
correction is

r7Li5127.818 979~8!31025 ~A13!

and therefore

R7Li5R`r7Li5109 728.735 35~1! cm21,

F7Li5F`r
7Li

2
55.141 404 2~16!3109 V/cm.
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