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Mesoscopic quantum coherences in cavity QED:
Preparation and decoherence monitoring schemes

L. Davidovichf M. Brune, J. M. Raimond, and S. Haroche
Laboratoire Kastler BrosseTI,D'epartement de Physique, Ecole Normale Siguee, 24 rue Lhomond, F-75231 Paris Cedex, France
(Received 18 April 1995

We present several schemes for preparing and detecting coherent superpositions of classically distinct states
of the electromagnetic field in one or two high€avities. These proposals are based on two-atom correlation
measurements, to be performed on circular Rydberg atoms interacting dispersively with the cavity fields.
Changing the time interval between the two detected atoms allows a monitoring of the decay of quantum
coherence due to dissipation.

PACS numbds): 03.65.Bz, 32.80-t, 42.50.Dv

[. INTRODUCTION a particle split into two spatially separated wave packets by a
distanced, the dimensionless measure of the separation is
The nonexistence of quantum superpositions at the classid/\ 4g)?, where\yg is the particle de Broglie wavelength.

cal level has been a long-standing problem in quantum meFor a massive particle at not too low a temperature, this
chanics. Schidinger emphasized this point in his famous Number is huge and the decoherence is for all purposes in-
“cat paradox” [1]: if one assumes that the usual rules of Stantaneous. This would provide an answer to Einstein’s con-
guantum dynamics are valid up to the macroscopic levelCern: decoherenpe of macroscopic states.would be too fast to
then the existence of quantum interference at the microP€ observed. This decoherence process is also at the heart of

scopic level necessarily implies that the same phenomend@ntum measurement theory. von Neumann's collapse pos-

should occur between distinguishable macroscopic stategt'late[G] introduces two distinct types of evolution in quan-

Einstein considered as a fundamental problem the “inexistUm mechanics: the deterministic and unitary evolution asso-

tence at the classical level of the majority of states allowecf'ated. to the Schdinger (_aquat|on, which describes the
establishment of a correlation between states of the micro-

by quantum mechanics,” namely, those involving the coher- X bei d and distinauishable classical
ent superposition of two or more macroscopically separateaCOpIC system being measured and distinguishable classica
tates of the macroscopic measurement appar@busin-

localized state$2]. Several possibilities have been eXploredstance, distinct positions of a pointeand the probabilistic

as solutions to this paradox, including the proposal that &n jrreversible process associated with measurement, which
small nonlinear term in the Schiimger equation, although ransforms the correlated state into a statistical mixture. This
unnoticeable for microscopic phenomena, could e“m'”at%eparation of the whole process into two steps has been the
the coherence between macroscopic states, thus transformiagject of much debatf8,7,8]; indeed, it would not only im-
the quantum superpositions into statistical mixtuf@.  ply an intrinsic limitation of quantum mechanics in dealing
More recently, the role of dissipation in the disappearance ojvith classical objects, but it would also pose the problem of
coherence has been stressed. Decoherence follows from theawing the line between the microscopic and the macro-
irreversible coupling of the observed system to the outsidgcopic worlds.
world reservoir[4,5]. In this process, the quantum superpo- Several models have been proposed to demonstrate the
sition is turned into a statistical mixture, for which all the “superselection rule” which forbids coherent superpositions
information on the system can be described in classicabf macroscopically separated statp$5,7—9. The non-
terms, so our usual perception of the world is recoveredobservability of the coherence between the two positions of
Furthermore, for macroscopic superpositions, quantum cahe pointer has been attributed both to the lack of nonlocal
herence decays much faster than the usual physical obserbservables with matrix elements between the two corre-
ables of the system, its decay time being given by the energgponding statelsl0] as well as to the fast decoherence due to
dissipation time divided by a dimensionless number measumdissipation[5,9]. Precisely because of these two reasons the
ing the “separation” between the two parts. The statemenevolution of coherent superpositions of classically distin-
that these two parts are macroscopically separated impligquishable states towards statistical mixtures has not been
that this separation is an extremely large number. Such is th@onitored experimentally yet: not only is the decoherence
case for biological systems like “cats” made of huge numbertime very short, but besides it is necessary to imagine an
of molecules. In the simple case mentioned by Eind2jmf  experiment which would display interference effects between
macroscopically distinct states. This has precluded experi-
mental observation so far, in spite of the large humber of
"Permanent address: Instituto de Fisica, Universidade Federal dbieoretical proposals of “Schdinger cats” and mesoscopic
Rio de Janeiro, Caixa Postal 68528, RJ 21945-970, Rio de Janeirapherences in various contexts. Two different kinds of sys-

Brazil. tems have been considered recently. Josephson junctions in
TLaboratoire de I'UniversitePierre et Marie Curie et de 'ENS, various superconducting quantum interference device
associeau CNRS(URALS). (SQUID) configurations have been theoretically analyzed by
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Leggett[11] and will not be discussed here. In quantum op-
tics, several schemes have been proposed to prepare fields in
superpositions of classically distinguishable stqed. One
of the difficulties with these schemes is that they involve
traveling fields, which escape at the speed of light from the
experimental area, making tests of quantum coherence diffi-
cult to achieve, even conceptually. It is possible, however, to
build quantum superpositions of mesoscopic states of fields
trapped in one or more cavities, which would display deco-
herence times within observable range. Such proposals must
have two essential ingredients: the first one is a scheme to
build the coherent superposition. The second one is a method
for displaying the interference effects associated with this
superposition, thus circumventing the above-mentioned ob- FIG. 1. Experimental arrangement for preparing a superposition
jections on the inexistence of nonlocal operators. of two coherent states with opposite phases in a superconducting
A proposal along these lines was made in R&®] which ~ cavity.

suggested a simple method to prepare the coherent superpo- . )
sition, but a rather complicated way of displaying the inter-the coherent effects get smaller in magnitude. One can thus

ference effect. We present in this paper the principle of ex/Menitor the dynamical effects of dissipation on the superpo-
periments which fulfill the preparation and detectionS!tion state, and follow the transition from the quantum state
requirements in a simple way, involving only two-atom cor- to the cIassma! mixture. In practice, the rap|_d de_crease of_ the
relation measurements. In particular, we show how one caflecoherence time with the intensity of the field in the cavity,

build and detect a superposition of coherent states localize{l® experimental limitations on cavity losses, and the veloc-
simultaneously in one or two macroscopically separated dispersion of the atomic beam lead to an upper limit for
cavities. This system provides also a test of quantum meth€ number of photons involvevhich should be typically
chanics analogous to those made in connection with Belr$maller than 100 The experiments described here will in-
inequalities] 14], which can disprove the existence of a local VOIve therefore mesoscopic field states, even though our
hidden-variable theory, for quantum-correlated states whick'€0ry has a wider scope, applying also to truly macroscopic
are classically distinguishable. Furthermore, it is directly re-SyStems.

lated to the quantum measurement problem, in the sense that

the presence of a field in one cavity or the other can be Il. QUANTUM COHERENCE BETWEEN CLASSICAL
associated to two macroscopically distinct positions of a FIELDS WITH DIFFERENT PHASES

classical pointer. A short account of some of these results has
been given in Ref[15].

Three different experimental configurations are discussed We start by briefly reviewing the method presented in
in this paper. The first one, analyzed in Sec. II, leads to th&ef. [13] for preparing a coherent superposition of two co-
superposition of two coherent states with different phases ilerent statefl6] with opposite phases in a superconducting
a cavity. The second example, presented in Sec. llI, involve§avity. The method, sketched in Fig. 1, involves a beam of
a quantum switch which can be put in a coherent superposFircular Rydberg atomgl7] prepared in boB and crossing
tion of an open or “lighted” stat€a coherent state inside a @ highQ cavity C in which a coherent state is previously
cavity) and a closed or “dark” statévacuum state in the injected (this is accomplished by coupling the cavity to a
cavity). Finally, we discuss in Sec. IV a configuration con- classical sourcé through a waveguide Circular levels are
sisting of two cavities, which can be prepared in a coherentequired because they are strongly coupled to microwaves
superposition with one of the cavities “lighted” and the other and they have very long radiative decay times, making them
“dark,” thus leading to a non-local state of the field. In all ideally suited for preparing and detecting long-lived correla-
these cases, a detailed analysis is made of the detection piigePns between atom and field states. Circular states with prin-
cess, and of the decoherence produced by dissipation. THé#al quantum numben around 50 are used in the experi-
three systems considered here are not only experimentalfjient under way in our laboratof{8]. The radiative lifetime
viable, but also lead to exactly soluble models, and thereforéf these levels is 310 2 s.
to a precise consideration of the dissipation process. Quan- The highQ cavity C is sandwiched between two lo@-
tum coherence is detected through two-atom correlatiogavities R, and R), in which classical microwave fields
measurements, which display the interference between thean be applied. ThR; andR, set of cavities constitutes the
two different pointer positions, thus allowing us to distin- usual experimental arrangement in the Ramsey method of
guish between the quantum states and the correspondiri.@terferometry[lS,152. The transition between two nearby
classical statistical mixtures. In fact, this method is a realizacircular atomic states, which we denote f& and|g), is
tion of a nonlocal measurement. In the two-atom sequencégsonant with the microwave fields in cavitigg andR,. To
the first atom produces the coherent superposition of fielde specific, in the following.e) and|g) have principal quan-
states, and the second one, which is sensitive to the interfetdm numbersn=51 andn=50, respectively. Theée)—|g)
ence between these classically distinct states, is used teansition frequency is 51.099 GHz. The intensity of the field
“read” the coherence. Increasing the delay between the twan R; is such that, for the selected atomic velocity#
atoms leaves more time for dissipation to act, and thereforpulse is applied to the atom as it cros$&s Each atom is

A. Production and detection of the state
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prepared in the stae) in box B. After leavingR, itisina  If one detects now the atom in the stagp or [e), the field
superposition of the two circular Rydberg statesand|g) IS Projected into the state
which, with a proper choice of the microwave field phase, is

. 1 )
given by |,pca9=N—l(|a>+e'¢l|—a>), (2.4

1
| atomy = quH 19)). (2.)  whereN;=2[1+ cospexp(—2a?)] and ;=0 or m, ac-
cording to whether the detected statgisr e, respectively.
. . One produces therefore a coherent superposition of two co-
The superconducting cavity is tuned close to resonance parent states, with phases differing by For| a|2> 1, this is

with a transition connectinge) to the circular stat¢i) (this 5 “Schredinger cat” state. The corresponding density opera-
state corresponds tn=52, the frequency of th¢e)—[i) (o is

transition being 48.180 GHznd is far off resonance with

all transitions involving levelg). The cavity mode geometry 1 ‘

is such that the field slowly rises and decreases along the PF=W(|6Y><“|+|—a><_a|+e'wl|_a><a|
atomic trajectory inC, so that, for sufficiently slow atoms, !

and for large enough detunings, the atom-field evolution is +e*“ﬂ1|a><—a|)_ (2.5

adiabatic. Hence no photon absorption or emission can occur

in C. However, dispersive effects can be important. An atom We show below that by sending a second atom through
crossing the cavity in state) induces an appreciable phase the same system, it is possible to distinguish this state from
shift on the field inC. Let us assume that this shift can be the corresponding statistical mixture

adjusted to a value exactly equal#oby proper selection of mixture. 1

the atomic velocityof the order of 100 m/g18]). A coherent pr = 3(la)(al+|—a)(—al). (2.6

field |«) is then transformed intb— ). The phase shift is 5 _

negligible, however, if the atom crosses the cavity in statdV0t€ that for|a|*>1, (2.6) can be obtained froni2.5) by

|9). randomization of the phasg; .

After the atom prepared in the state defined by i) Let us calculate now the probability of detecting the sec-
has crossed the cavity, the state of the combined atom-fiefgnd atom in statge) or |g), after it crosses the system
system is R;+C+R,. We neglect at this stage all relaxation effects.

The state of the “second atom plus cavity field,” as the sec-
1 ond atom leaves the first microwave zdRe, is now
|¢ator’m—field>:ﬁ(|e;_a>+|g;a>)- (2.2

1 1 _
O )= —= (&) + ® —=(|a)+e'"1|-a)),

Note that the atom crosses the centimeter-sized c&vity [Vetomztted \/E(l 2)+102)) \/§(| ) =)
in a time of the order of 10435, muzch shorter than the field 2.7
relaxation time(typically 10 °—10 < s for a niobium super- .
conducting cavit);/,pand):o the atomic radiative dampingptime where we have assumed for simplicity thaf®>1, so that
(3X10723). the rjormallzauon factor ii2.4) becomes ];/5 .

The entanglement between the field and atomic states is Right after the second atom leaves the superconducting
analogous to the correlated two-particle states in th&avity, and be_fore it interacts witR,, the state of the system
Einstein-Podolski-RosefEPR) paradox14,20,21. The two ~ has evolved into
atomic statese and g are here correlated to the two field

states| — ) and|a), respectively. Let us assume first that |2 oo = 5[] €2; — @) +]92; @)
the cavity R, is left inactive. The atom crosses it and is iy
detected downstream in two ionization zoiesandD, (see +e(leg; ) +]g2— )], (2.8

Fig. 1). Electric fields are applied to the atoms in these

zones, producing atomic ionization. The resulting electronsince the second atom dephases, as the first one, the field by
are detected. The electric field Dy is smaller than irDy so  an angler if it is in state|e), and does not dephase the field
that it ionizes the atoms in thestate, but not in thg state.  at alll, if its state igg). Finally, after interacting wittR,, the

The second zonB ionizes the atoms which remain in state state of the system becomes

g (see Fig. L This measurement projects the field @

either in the|a) state(if the atom is detected in stap, or 5 1

in the |— «) state(if the atom is detected in stags. | somarfela) = m[|ez?—a>+|gz§—a>+|gz?a>
However, as in an EPR experimdi2tl], one may choose

to make another kind of measurement, by submitting the —|es;a)+ e (|ey;a)+ gy a)

atom to a secondr/2 pulse inR,. This pulse tranforms

again|e) into the state defined by Eq2.1) and |g) into +|g2;— @) —|ex;—a))]. 2.9

(—|e)+|g))/\2. The state2.2) then gets transformed into
Assuming again thata) and |—«) are practically or-
g, a)+|g;— ). thogonal, we get froni2.9) the probabilities for detecting the
(2.3 second atom in level or e:

| stomfiel) = 3(|€ — @) —|e; ) +
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FIG. 2. Possible paths leading from a combined initial state of the two-atom system to final stage- e. In each diagram, the upper
and lower lines are associated to the first and second atoms, respectively. The wiggled line is associated to the cavity state.

P(g2)=3(1+cosp;), P(e)=3(1-cosjy). (2.10 B. Effect of dissipation: Exact solution
We consider now the effect of dissipation on the superpo-
sition of the two coherent states, and show that the decoher-
Since ;=0 if the first atom was detected in stajeand  ence can be monitored through the two-atom correlation
Y= if the first atom was detected in stage it follows  measurement described above. Dissipation is described as a
from (2.10 that the second atom is always detected in thdinear coupling of the field mode with a bath of thermal
same state as the first one. There is thus a complete correlascillators at zero temperatuf22].
tion between the two atoms. In order to describe dissipation, it is convenient to turn to
The dependence omy; of the probabilities in(2.10 a density-matrix formulation of the problem. We calculate
clearly displays the interference nature of the process. IPF(t), starting withpe(0) given by (2.5 using a method
there were a statistical mixture @ before atom 2 interacts Pased on the calculation of the normal-ordered characteristic

with it, P(g,) andP(e,) would be equal to 1/frandomiza- function corresponding to the field density operdi@s:
tion of ¢, in Eq. (2.10]. o ral a*a

The origin of the interference terms can be understood by CnVAT D =Tr[pe()e™ e 1 @19
interpreting the two-atom correlation measurement as a col-
lision event between the two successive atoms, mediated by, .. _
the systenR; + C+R,. A pair of atoms initially in levek is At time t=0, we have
detected, after crossing the system, in a combined state
e—e, e—g, g—e, org—g, with the field in the cavity being

left in either statd ) or |— ). Each possible outcome may Cn(MAF,0)= iz{em**“‘ur gt AT

occur via two possible paths. For instance, the final state N3

e—e with the field in state|a) may be obtained in two +e—2|a|2[ei1//le)\a*+)\*a

different ways:(i) both atoms cross the cavity in stage

remaining in this state aftéR,, so that the phase shift pro- + e ig—(ha® +\* a7 (2.12

duced by the first atom is undone by the seca(iid; both

atoms cross the cavity in statg, leaving the field un-

changed, and flipping back te in R,. These two paths, The interaction with reservoir leads to the time development
corresponding to diagranm® and (b) in Fig. 2, are totally [13,23

indistinguishable and their amplitudes must thus interfere in

the expression of the probability for the outcome e. Fig-

ure 2 also displays the paths and(d) corresponding to the ChOMAF D =Cy(he "2 \*e "2 0),  (2.13
final state] — «) for the field. They do not interfere with the

contributions from(@) and(b) as long aga|> 1. Note, how-

ever, that forl@|<1 all four contributions in Fig. 2 interfere where y=1/t. is the damping rate for the field intensity in
with each other, due to the nonorthogonality of the coherenthe cavity,t. being the corresponding damping time. In real-
states|a) and|— a). istic experimental conditiongl3,15, t;=10"2 s. Therefore
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1 o i C. Monitoring the decoherence
C ()\ ¥ t): _{e()\a*7)\"‘&)(-2‘7“Vl _’_e(*)\a*Jr)\*a)efyl ) )
N2 N% We assume that a second atom is sent through the cavity a

time T after the first one. We assume that the time of flight of

+ e 2lal’ givngna® 2% aje™ "2 the atom through the system is very short compareH and
v a4 e 2 to the shortest time scale involved in the field relaxation
+egm (TN we T (2.149  (which, as shown in the preceding subsection, is of the order

of t/2|@|?). The atom 2 plus field density operator just be-
fore the second atom goes into the superconducting cavity is
given by

Comparing(2.11) and(2.14), we see that the density opera-
tor at timet is

pe(t) = %Hae* W2y e M2 4| — ge~ ) (— ge~ 12| paomsiert(T) = 2(|€) +19)) (e[ + (gD @ pe(T).  (2.16
1

After the second atom goes through the cavity, we have
t+e- 2|a|2(1—e*7‘)(ei ¢1| — e yt/2><ae— yt/2|

—imal imal
+e 11 ae M) (— ae2))]. 2.15 Patomtfiela= z[|€)(€l€™ ™ Fpe(T)e' ™ 2 +[g)(glpe(T)

4 —ima'a 4 ira'a

This equation displays the evolution of the system, from le)(gle pe(T+[f){elpe(T)e ]
the pure staté2.4) to the mixture(2.6). Fort=0, we recover (217
the expression(2.5). The transition from(2.5 to (2.6) is i . . ) .
governed by the exponential factor &x2|o%(1—e~")]. For since the stat_ée)fls always associated with a phase-shift
yt<1, this factor becomes exp@|al’yt), implying that the ~ OPerator expiza‘a). _ ) e
coherent contribution t62.15 decays with a lifetime equal After the second atom interacts with the classical field in
to t/2|a|2 Thus the larger the average number of photond®2: the state of the system becomes
inside the cavity, the faster will the coherence decay. The . —imata irata
decoherence time is shorter than the energy dissipation timatom:fiei= 2[(/€) +[8)) ((e|+(g|)e pe(T)e

in the cavity by a factor precisely equal to the “size” of the _ _

field measured by its photon numbgr|?. For large fields Flertlen(=(el+(gher(T)

(2|a|2 macroscopif; the decoherence time becomes of +(le)+g))(— (e +<g|)e*iﬂafapF(T)

course exceedingly shdis]. This can be related to the basic o
mechanism by which coherence between the two positions of +(—le)+|g)) (el +{(g])pe(T)e'™?3]. (2.18

a pointer in a classical measurement apparatus disappears. In

fact, the two field§«) and|—a) can be considered, when ~ From this expression, the probability of detecting the sec-
|a|?>1, as macroscopic pointers, related to the microscopi@nd atom in thee or g state is readily obtained:

atomic state — the field will be left in state) if the atom o

crosses the cavity in stalg), or in statel — o) if the atom is Pe(T)=31=ReTrle” ™ %pe(T)]}). (219

in state|e). We show now that the decoherence between

these two field states can be monitored by sending another Replacing now in this expressign-(T) by (2.15, and
atom through the system. using that

. 1
Tr [eflﬂ'aTapF(T)] — F[<ae7 'yT/2| —ae” yT/2>+ < —ae” 'yT/2| ae” 'yT/2>
1

2 —yTy, -
+e—2|a| (1-e™ 7 )(elzﬂ1<ae—yT/2| ae—yT/2>+e—ll/fl<_ae—7T/2 —ae” yT/2>)]

:%[e* 2|al%e” “/T+ e 2la|?(1-e” YT)COS//ﬂ, (2.20
1
|
we get, finally, the detection probability is 1/2, which is the classical statis-
A , . tics result. In this time interval the interference term2nl5
B +e‘2|”‘| e " +cogpe el d-e ) goes to zero, anpe(T) turns into a statistical mixture. When
P(3>(T)_§ 1= 1+cos/f1e*2|“|2 : T increases so thayT>1, one gets agairP,=1 and

(2.2  Pe=0. In this limit, the two state$e) and|—«) relax to-
wards the vacuum, and are not orthogonal anymore. As soon
For |a|>1, andT=0, we recover the results for the corre- as they start to overlap, interference effects, associated with
sponding dissipationless cadef. Eq. (2.10]. If now the evolution of the atomic coherence between the two mi-
t >T>t/2|a|?, again with|a|>1, we get from(2.21) that  crowave zones, become important. In terms of the diagrams
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P(g,e;T) oms. We assume a simple model where the first atom has the
" velocity corresponding to an exagtphase shift for the field
in C when the atom crosses the cavityanand where the

1 . . .
second atom has a slightly different velocity.

0.8 The second atom velocity mismatch has two conse-
quences. First, it produces for this atom a departure from the
0.6 (a) ideal pulse area iR; andR,. Second, the phase shift of the

coherent state in the superconducting cavity when this atom

0.4 crosses it ine becomesr+ e with |e|<1. While the first
0.2 effect alters the coefficients in the superpositi¢d4.6 and
’ (2.18), the second affects the phases of the interfering con-
0 YT tributions. For a qualitative analysis, we take only this sec-
1 2 3 4 5 ond effect into consideration here, since it is by far the most
P(e,e;T) important one. The probabilities of finding the atom in the
statese andg after it crosses the system become now
! 1
- —i(m+ea'a
08 Pe(T) Nl(li Re(Tre pe(T1D. (222
0.6 (b) If we take forpg(T) the result(2.15, we get
20— ¥Tai
04 P(g)(T)ZE icos{|a| e smi) o 2lale MTeod (e/2)
0.2 e 2 1+ COS/fleiz‘al
0 —olal2f1—e= T e
1 2 3 4 5\(1“ +cogpye 2l T1e oo /2)]]], (2.23

FIG. 3. () Conditional probabilityP(g,e;T) of detecting the \yhich, for e<1, becomes
second atom in leved after having detected the first one in leggl

as a function of the delay between the two atoms, for the experi- 1 cog|al?e "Te) —
ment sketched in Fig. 1. The average number of photons in the P(g)(T)~§ | 1i+w[e_z|“| €
cavity is equal to 10(b) Conditional probabilityP(e,e;T). ¢ 1+cosje
_ 204 _a—yT
displayed in Fig. 2, this means that patlt$ and (d) now +cogp, e 2la1-e” )]]- (2.24

start interfering with(a) and(b). In particular, when the field
has finally relaxed to the vacuum, the cavity no longer has
any effect on the atoms and the combined effects of the twcﬂqi

/2 pulses amounts toa pulse. Thus, and independently of . . .
the gtate in which the fifst atom was detecte%, the sgcon arison of(2.24 with (2.21) displays the loss of contrast as

atom should come out in a state different from the state iﬁ € c_iispersion in thg values efincreases. The vglocity dis-
which it has come in(i.e., in stateg). The plot of the persion of the atomic beam makes the probaplhty approach
conditional probabilities P(g,e;T)=P4(T,#;=0) and the incoherent value 1/2 as the_z range of valuesiotreases.
P(e,e;T)=P,(T, =) for detecting the second atom in The departure of the probability from the value 1/2 at short

; 2
level e after having detected the first one, respectively, int'meST can, however, be observed up|tg*e of the order

levelsg ande, as a function of the dela} between the two (;f un'lt_?_/. 'ths |sz_diso|cz)la%/§d Ln F'g't. 4 v¥here twe Sr;]OW
atoms, is shown in Fig. &or an initial state with average (g.e:T). Forlal|®= ; tN€ observation ot quantum coher-

il i -2 i i dis.
number of photonsi=10). The fast evolution arouri=0 ence requireg=10 <, which corresponds to a velocity dis

reveals the rapid decoherence process between the two é)rgarsion of about 1%, easily achievable with today's laser

thogonal components of the mesoscopic field. The plateal,f‘sOOIIng techniques.

P(g,e;T)=P(e,e;T)=1/2 are the signature of a classical

mixture involving two orthogonal field states in the cavity. E. Effect of unread atoms

The slow decay at large times indicates that the two states of | et ys discuss now the effect of a finite detection effi-

the incoherent superposition start to overlap due to field engiency. More precisely, let us assume that an undetected
ergy dissipation. atom has crossed the cavity between the atom which pre-
pares the mesoscopic field and the probe atom. After the
undetected atom, the field density operator becomes

The conditional probability corresponds to the average of
s expression over the allowed range of valuesefo€om-

D. Effect of velocity dispersion

The experiment proposed above must be performed with penead Tr 1 patom =+ field]» (2.29
guasimonokinetic beams ensuring well-defined interaction
times with theR,, C, andR, cavities. Let us estimate now wherepom:fielq €aN be taken a.17) or (2.18—the exist-
the effect of a small velocity mismatch between the two at-ence of the second microwave regiBa is not relevant for
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FIG. 4. Effect of velocity dispersion on the conditional probabil-
ity P(g,e;T) shown in Fig. 3a). We take herda|?e=m/3. The tg>
average number of photota|? is 10.

FIG. 5. Sketch of the atomic levels relevant to the quantum

this atom, which is not measured. One gets then in the geng, .. experiment

eral case where the phase shift produced by the second atom

is given by ¢ and exits the cavity. Provided the field amplitude remains

small enough, an atom in level pulls the mode frequency
by Q2/6. If the detunings are adjusted so that )2/ 5, the
atom in levele tunes the cavity into resonance with the

Using the invariance of the trace by circular perml"t""tion’source while no frequency pulling occurs if the atom crosses
it is easy to see that the replacementop(T) in (2.22 by the cavity in levelg. Due to the adiabatic nature of the

unread ; i
PE does not change the detection probabilities for thecoupling, the atom remains in the same state while crossing
probe atom. . . - . : the cavity.
Therefore a high detection efficiency is not required to

. AL Assume now, as above, that an atom is prepared in the
monitor the decoherence process. Of course, it is still nece%-tate(2 1), through the first Ramsey regid . A subsequent
sary to make the two successive detections in a time smalled e ’

than the decoherence timg/2|a|2. For a cavity damping etection in the state) or |g), after the atom has undergone

time equal to 102 s, an average number of photons in theanothera-r/2 pulse inR,, leaves the field in the state
cavity of the order of 100, and an atomic flux of*18toms 1 ,

per second, it is sufficient to detect about one in every ten | )= N—(|a>+e' ¥1)0)), (3.1
atoms in order to display the coherence between the two 2

dephased field states.

pgnread: %(e*itbaTapFei‘baTa—l— PE)- (2.26

where againg, =0 or 7 according to whether the atom is
detected in statég) or |e), respectively, and\, is the nor-

IIl. OPTICAL SWITCH WITH QUANTUM COHERENCE malization constanN,={2[ 1+ cosjzexp(—|a?)]}*2 which
BETWEEN “OPEN" AND "CLOSED" STATES reduces toy2 when|a|?>1. The state(3.1) is a quantum
A. Preparation of the switch superposition of cavity “filled” and “empty” states. For

o1 it oo '
In [15] a method was proposed for preparing an optical'a| 1, itis a Schrainger cat state

“gquantum switch,” in a superposition of “open” and
“closed” states. The experimental setup is the same as above
(see Fig 1. A single atom prepared in a superposition of \We show now that a two-atom correlation measurement
different energy states is sent across the Igglcavity C allows us again to distinguish the st&81) from a statistical
(resonance frequencw.) coupled to the monochromatic mixture. A second probe atom is sent through the system a
classical radiation sourc8 (frequencywg). The source is time T after the first atom comes into the cavity, and the
now nonresonant, with a detuning= ws— w, much larger probability that this atom is in sta&or g is measured. We
than the cavity bandwidtln./Q=1/;, so that no photons neglect at this stage field dissipation. The second atom is also
are fed into the empty cavity. The situation may changeprepared in the sta{@.1), so that, just before it entefs, the
however, as the atom crosses the cavity. As in Sec. I, weatate of the combined system atom 2 plus field can be written
assume that stateis closer to resonance than stgtebeing as
coupled to a third, more excited, stdt¢ by a transition at
frequency wg=w.— & (Fig. 5. The coupling of thee—i
transition to the cavity mode is characterized by the vacuum
Rabi frequency(}. As before, we assume that the geometry
of the mode and the atomic velocity are such that the cou- The second atom will have an effect on the field in the
pling is adiabatically switched on and off, as the atom entergavity only if it is in state|e). In this case, it will add the

B. Measuring the coherence by detection of a second atom

1 )
| ¢atom2+field> = m(|e> + |g>) ®( | a> +é ¢l| O)) (3.2



1302 L. DAVIDOVICH, M. BRUNE, J. M. RAIMOND, AND S. HAROCHE 53

field «e 2T into the cavity, and at the same time will place. Wherj«|?>1, the first scalar product in E€3.11) is
dephase an already present field &, wheret; is the in-  negligible. The second one is also negligible, except when
teraction time between the atom and the cavity field. Theresimultaneously AT~ = #/3(modulo2r) and  At;

fore after the second atom crosses the cavity there are fout = 77/3( modulo27). The corresponding interference is
possibilities for the state of the field: either the cavity endsthus accidentafit requires a specific velocity for the atom

up empty or containing one of the three fieldsae '*T, or  and will be disregarded in the following. Keeping only the
a(e AT+ e 1At The effect of the second atom on the field last two interference terms, we get then, fat?>1,

can be expressed in terms of a phase-shift operator

gyi[AltZ]Ta and a displacement operatbr(ae'2T), defined p(g)z%(1i%{e*Z\alzcosz[A(T*ti>/2]cos(¢a_l/,l)

—2|a|?sir? (AT/2) 1 12ai

After the second atom exits the cavity, the state of the systerhhe dependence af of the terms between curly braces is a
becomes signature of their interference character. For randbmwe

get the result for a statistical mixturg.e., Pio)=1/2), as

1
| ¢atom2+field> = ﬁ“e)(ﬂ ¢F>) + |g>| lﬂF)], (3.4) eXpeCted-

On the other hand, for fixed¢, , we see thaP(g) presents
peaks or dips wheA (T—t;)/4 is an odd integer oA T/ 7 is
an even one, and is equal to a 1/2 “background” for other
'7:D(ae—im)e—imia*a. (3.5 values of T andt; [15]. The width of these peaks is of the
order of 1/a|. The values oP g for these values oT and
After the second atom goes through the regiyn the state  t; are
of the system becomes

| atomarfietd) = 5[ |€) (7= D) + oW T+ D))l (3.6 Pg= 2(1=5c08)y), (313

where| ) is given by(3.1), and we have defined

The probability of detecting the second atom in the state ¢ that, if P(a;,a,) is the conditional probability that the

or g can be obtained by calculating the trace of the densityiist and second atom are measured in statesand a
operator corresponding to staf®.6) multiplied by the pro- respectively, we have 2

jectors|e)(e| or |g){g|, respectively:

P =3{1= R TH(7 )y )1} (3.7 P(g,9)=P(e,e)=3, P(eg)=P(ge)=%. (319
We calculate now explicitly this expression, for the stateFor At;=(2k+1)w, k=0,1,2..., the twosets of peaks
|4e) given by (3.1). We use that, for a coherent stdte), merge, and we get instead
A\ — ol by —IAT 4 a—iAt
lepzeate Ere ), 49 Piyy= (1= cosyy), (319
where
o so that now the contrast is increased and the peak values of
¢a_|a| SIMA(t;—T)]. (3.9 P(a;,a,) become
Also,
. P(g.9)=P(e,e)=1, P(e,g)=P(g,)=0. (3.1
710y=|ae™'AT), (3.10
Figure 6 displays the conditional probabili®(g,g;T)
We get then =P(e,e;T) as a function of the delay between the two at-
1 1 ' oms, for|a|?=10 andAt;=7#/2. The interference peaks
Po==1{1+ >— R (0]ae 'AT) are superimposed to x“background.”
@2 2(1 —lal/2 ; i
(1+cosye ) Experimentally, these curves could be obtained by mea-

suring the corresponding conditional probabilities over a

+ gl %a e AT g-idy _
{afa( ) large number of double atom counts, in such a way that the

+elbae™11(0[ a(e AT+ e 104)) first atom is always sent in an empty cavity syst@htained
by waiting long enough for the field in the cavity to relax to
m —iAT the vacuum Since the atomic distribution in the beam is
Te'alae >]J' (319 Poissonian, the time deldy will necessarily vary(the range

of variation can be controlled by changing the atomic flux
In this expression, each scalar product measures the overl&wor each run, it can be determined by timing the successive
of two possible field states in the cavity. As in the discussiordetections of atoms 1 and 2. Of course, the first peaks in Fig.
of Sec. Il, an important overlap means that an interferencé are not observable, sindemust be larger than the time of
process involving indistinguishable final field states can takelight of the first atom through the cavi@.
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FIG. 6. ProbabilityP(g,g;T) to detect in the quantum switch  F|G. 7. P(g,g;T) in the quantum switch experiment with cavity
experiment the first and the second atom in the same gtata  g|axation included (1{=A/100).
function of the delay T between the two atoms
(|e|>=10At;=7=/2). Cavity relaxation is neglected. and

C. Monitoring the decoherence due to dissipation lal?
, 9 The deconerence cu P P(o)(T)=3(1= cosjye 1+772), (3.22
As in Sec. I, dissipation will again cause coherence to

disappear in a time which gets smaller as the intensity of the  1hege equations show that the interference term decreases
field grows. Between the production of the state, through,;ii 5 lifetime 2. /|a|?, which gets smaller as the average

detection of the first atom, and the detection of the probe, ,..her of photonsc|? increasegsee Fig. J. The quantity
atom, the state of the field evolves towards a statistical m'XTC/|a|2 sets up, here too, the time scale within which the

ture. The probability of detecting the second atom in state pure state gets transformed into a statistical mixture. By sam-

or e Is now pling double atom counts within this time scale, one can thus

_ 1014 7 monitor the decoherence between the two states of the field
Po(M=21=ReTL.7pe(M1}), (317 in the cavity. Forl@|?=10, andy=1/t,=100 s, this im-

plies an upper limit of the order of 1 ms for the time interval

T between successive atoms, in order that the interference

effect be seen. This interval is easily achievable with the

Rydberg atom beams presently availafflaxes of the order

of 10° atoms per second

wherepg(T) is the reduced density matrix of the field in the
cavity, at the timel when it is crossed by the second atom
(we assume again<t./|a|?).

The calculation opg(T) follows closely the method used
in Sec. II, and is done in Appendix A. In the limit|?>1,

we get
g D. Effect of velocity dispersion
20— YTI2 _ . . . . .
P(g)(T):%{li%elal (e7 7 oo T~ 1) We consider here the effect of the dispersion in atomic
o velocities on the height of the interference peaks. We assume
X cog i~ |a|*e™7T%sinAT) the first atom leaves the field in the state
+ %e—\a\z[e*VT/ZcosA(T—ti)ﬂ] 1 _
2 YT [4e)=75(la)+€"0)), (323
X cog ¢ +|a|?e” " %SinA(T—1t)]}.  (3.18

As before, we get peaks or dips whAf/ is an even Wherea depends of course on the atomic speed.

integer OrA(T_ti)/’ﬂ is an odd one. In this case, we get As in Sec. Il, we consider here only the effect of Ve|0City
dispersion on the relative phases of the interfering contribu-
Pa)(T)=3[1=} cogpelde -1 (319  tions, neglecting the changes of the coefficients of the states
€ due to the departure of the pulsesHpandR, from the ideal
Moreover, ifAt; is an odd integer, then /2 situation. Right after the second atom crosses the second
H 1 il

Ramsey region, the state of the system atom 2 plus field is

20— yTI2_
P(T)=F1xcospe® A (320 H=31e)(7 ~D+lg)7 +Dllw), (324
These equations coincide with those obtained in the dis\?\/here now
sipationless case whem=0. On the other hand, when
|¥|T<1, (3.19 and(3.20 become, respectively, 7' =D(a'e AT)g-1ata" (3.25

2
Pio(T)=3(1+3cogpe T 32D i
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a’'=ka, kreal (3.26

while t/ is the interaction time between atom 2 and the su-
perconducting cavity. These expressions take into account
the fact that the different atomic velocity implies a change in
the interaction time, and consequently different values for
the phase shift of the field already present in the cavity, as
well as for the amplitude of the field injected in the cavity
due to the presence of the second atom.

As before, the probability of finding the second atom in
state|e) or |g) is

Po= HL=ERE Tr(.7 " |[ge)(¥e D1}, (3.27) FIG. 8. Sketch of the nonlocal field experiment.

where now mental arrangement. Two identical high-cavitiesC,; and
, _ o C, are coupled to the same microwave soufceAn atom
T a)=eKk?| a(ke AT+ e 1At)) (3.28  crosses the apparatus and experienespulses before,
and afterC,, in the low-Q cavitiesR; and Rz, while a
and pulse is applied irR,, betweenC, andC,. This 7 pulse
, . , performs the transformatiofe)—|g) and|g)— —|e). The
¢o=lal*sifA(t ~T)]. (329 {wo cavities are initially in kteh>e v|ac>:uum |st2;1te, a|62is de-
Also tuned so that a field is injected i@,,C, only if the atom
’ crosses the cavity in state) (the atom interacts dispersively
710y =|kae ATY, (3.30  With the cavity field—see Fig. 5 for the level scheme
Right after the atom goes throu@t, the combined state
We take for simplicity the situation of “merging peaks,” of the system is given by
that is,AT/ 7 equal to an even integer ad; / = equal to an 1
odd one. The analysis is similar, and leads to the same con- _
clusions, in the case in which the peaks do not merge. We [¥)= \/§(|e>+|g>)|0,0>, “.D
also considefa|?>1. Then,
where|0,0) specifies that the fields in both cavities are in the
Tr (7" [e)(el) vacuum state. After the atom goes through the first cavity,

— e 1"1(0] a(k— 1))+ (O|ka) + & ¥1(a|kar)] but before it crosseR,, we have

20 102 1122 120 102 1
=3le eIt ey el el ) [42)= 5 (Ie)l.0)+19)/0.0). 4.2
~ o lalf(k-1)212
~e cosy (3.31
! Right after the atom crossés;, the state of the system will
and be
P ~i[1+e ld*k-D%2gq 2>1). (3.3 1
ol Sl (al>1). (332 [49)=5(19)|2.0~[)/00). 4.3

Comparing this expression wii3.15), we see that the con-
trast decreases as ¢xgal’(k—1)%/2]. The interference After the atom leaves the second cavity, we get
peaks remain detectable as long|a$’(k—1)?<1, that is,
|ba|2(Ak)2< 1,_whereA_k is related to the velocity dispersion | ha) = i(|g)|a,0}— |€)|0,ae” %)), (.4
y Ak~ Ak/k=At;/t;=Av/v. Therefore this condition im- \/§
plies that one should havkv/v <1/ «|. For|a|?~100, this
means that the velocity dispersion should be smaller thaihere ¢o=At is the phase shift between the cavity mode
10%. and the source during the atom time of flighbetweenC,

Let us finally discuss briefly the effect of a finite detection andC,. This phase can be compensated by the introduction
efficiency. As opposed to the coherent superposition of fielddf a dephaser between the source and the second cavity. We
with different phases considered in Sec. I, unread atom&ssume in the following that this compensation is performed,
must have here a strong effect, since they allow a randorand write therefore, instead i),
field to be injected in the cavity. This clearly washes out all
interference effects.

1
|lﬂ£>=ﬁ(l9>|a'0>—|e>|0,a>)- (4.9

IV. NONLOCAL MICROWAVE FIELDS )
Finally, afterR;, the state of the system becomes
Nonlocal field states can be prepared by the combination

of two quantum switche§l5]. Figure 8 shows the experi- |5y =3[(|a,0)—]0,@))|g) — (|@,0)+]0,a))|€)]. (4.6)
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,::g?;c?;a;eicnti?ﬁeo;gsg atom in stafe) or |g), the field is f/—~|:Dl(aefiAT)efiAtiara“ =12 4.8)
with
1 . i we— AT g% gIAT
|4y=5- (|20 +e"1[0a)), (4.7) Di(a™'4T)=g " AT a, (4.9
3

After the atom leavef;, the state of the combined atom 2

where ;=0 or 7 according to whether state) or |g) is plus cavities system is

detected, respectively, ady=[2(1+ cosjze *)] "2 | atome+ seid) = 5~ |€)(71+.72) + 1971 =7 2)] )
Equation(4.7) represents a coherent superposition of two (4.10

states, which describes a coherent field located either in the

first or in the second cavity. The sharing of one photon beThe probabilities of detecting atom 2 in statey or |g) are,

tween two cavities has been considered bef@dd, but the  respectively,

state considered here is quite different in nature. For 1 P )

|a|?>1, this nonlocal field is related at the same time to two Pg=z{1* RETHCT 1l wre) (Wl 72) T (.19

paradoxes of quantum mechanics: while the superposition of , )

two macroscopically distinguishable classical states of th&¥ePlacing(4.7) in (4.1, we get

field can be viewed as a Schiinger cat, the nonlocal corre- 1 1

lation of field states is typical of EPR experiments. Further-P(g):— 1+— Re(a,ae 2Ta(e AT+e A, a)e' ¢a

more, stat€4.7) is intimately connected to the measurement ° 2 N3

problem in quantum mechanics: the field in the double cavity +(0,a(e AT +e 7 184)| ge 1AT 4ot

can be considered as a classical pointer, whose position mea- ' ’

sures the internal microscopic state of the atom crossing the  +(a,ae 2T|ae 2T, a)e' 1

system. If the atom comes into the first cavity in the state

le), instead of the superposition state createdRyy it is +(0,a(e AT+ e 18| g (e AT 4 g 1At) Oy i)

easy to see that, after crossing the second cavity, the field is ' ' '

left in the statel «,0), while if the atom comes in the state 4.12

|g) the field is left in the stat¢0,«). Therefore the state of '

the double-cavity system can be used as a pointer, whic{yith é. given by(3.9. When|a|?> 1, the first two terms in

measures the incoming microscopic atomic state. The tworhe expression between square brackets become negligible.
cavity system can thus be considered as a macroscopic me@ze get then,

suring apparatusif |«|?>1), which interacts with a micro-

scopic systenithe two-level atom When the atom comes Po~3{1+3 Coapl[e—Zlalzu—cos&T)
into this “measuring apparatus” in a coherent superposition € )
of the statege) and|g), the system evolves into the en- + e 2lal1rcodAti—Tiy (4.13

tangled state given b{4.4). The transformation of this en- ] ] ) )

tangled state into a statistical mixture is an essential stage of 1he term proportional to cag is the interference contri-

the measurement procef3, 5-9. As in the previous ex- bqtlon. For randomy,, which corresponds to a statistical

amples, this transformation is a decoherence process assoBiixture, we getPg=1/2. Fory;=0 or m, we get peaks

ated with the interaction between the two-cavity system anavheneverA T/ is an even integer, ak(t;— T)/# is an odd

the external world, modeled here by a heat reservoir. Wene. Then the conditional probabilit?(a;,a,) is given

show in the following that it is possible to measure the co-again by(3.14). If, besides,At;/# is an odd integer, both

herence between the two positions of the pointer, and follovgeries of peaks coincide, af{a, ,a,) is given by(3.16).

the process of decoherence in an actual experiment. The two-

cavity system leads therefore not only to an exactly soluble B. Dissipation and decoherence

model of the measurement process, simulating the spatially . i .

distinct positions of a classical pointer, and including the role, 1he evolution of the field density operator under the ac-

of dissipation, but is also sufficiently realistic to foresee antion Of dissipation is calculated in the same way as in the

experimental verification. previous two cases. The details are given in Appendix B.
When|«|?>1, the conditional probability for detecting the
probe atom in statel®) or |g) is now

A. Detection of the state

TR . ~1 1 2|a|?(e” "MeonrT-1)
The distinction between stafd.7) and the corresponding Pe)(T) 2{1= zcogp[edelte O

statistical mixture may again be demonstrated through a two- 2 yTI2 o

atom correlation experiment. A time after preparation of +g?lalfe 7o (Tt) ~1lpy, (4.14
the field statg4.7), a probe atom identical to the first one is ) o - . . W
sent through the system. At this stage, we assume that the This probability exhibits a variation witi quite similar

two atoms have the same velocity and we neglect field rel© the one displayed in Fig. 3 of R€fL5]. When y—0, we

laxation. get Eq.(4.13, as expected. For finite, P(S)(T) exhibits

The effect on the two cavities of the probe atom in seate peaks whose amplitudes decays as ex}pf?yT), corre-
is represented by the unitary operators sponding to a lifetime, /| @|? of the macroscopic coherence.
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C. Effect of velocity dispersion Since ¢, =ALdv/v?, andk~1, condition (4.23b im-

We assume that the first atom prepares the field in th@lies that|a|?<(v/év)?[v/(AL)]% However,|A| must be
state(4.7). The second atom comes a tirfieafter the first at least of the order of the transit-time-broadened linewidth

one, with a different velocity. of the atom, that is, 1/<|A|. But t/<L/v, so that
Let v/IL=<|A| and v/(AL)<1. Therefore one should have
|a|?<(v/6v)?, which coincides with the restriction coming
7| =Dy(kae 18Tye 1A a2 (4159  from (4.233.

Finally, we get from (4.239 that |a|?<(v/év)
P 16,/ A—iAT\ oAt 2l /(AL)], or yet |a|?><v/év. For Svlv~10 2, this
T 4=Dy(kae''e 1AT)e 1Atiazaz, 4.15 XL S Y L
2= Dalka ) (4.150 yields | |?< 100, which is the most restrictive condition so
wherek is a real number, assumed to be close to one, antﬂr. Itis interesting, however, to note that this last condition
#, is the noncompensated phase shift between the cavigPplies only to the peaks associated with the condition

mode and the source during the atom time of flight from theA T/7 equal to an even number. Therefore the peaks which
first to the second cavity: show up wheneveA(T—t{)/m= becomes equal to an odd

number are more robust with respect to the velocity spread.

_ A B L ~AXL ov a1 As this spread increases, these peaks survive the others, up to
b= v vl v2’ 418 ihe point when condition§4.233 and (4.23h are also vio-
lated.
where v =v’'—v. The probability of finding the second Note finally that, as in the case of the quantum switch, a
atom in statee or g is given by high detection efficiency is necessary, since unread atoms

N _, ot also spoil the quantum correlation between the two cavities.
Pey=2{1=ReTr (7 we)(el 73D (417
V. CONCLUSION

For |a|®>1, andAT/m an even integer, we get _ o _
Recent developments in quantum optics, including the

To(T 1 e Y| 7 5)~3e¥(a,kae'® |ka,a), (4.18  production of long-lived circular Rydberg states, of velocity-
selected atomic beams, and of hi@hsuperconducting cavi-

while if A(T—t{)/ is an odd integer, ties, have made it possible to observe phenomena which are
., N i 6 at the heart of quantum mechanics. In this paper, we have
To(T 1l ge)(Yel 7 5) =27 "0,a(ke ' ~1)[a(k=1),0).  giscussed three realistic experimental arrangements, which

(4.19 could produce coherent superpositions of mesoscopic states
of the electromagnetic fielBchralinger caty at the frontier

between the macroscopic and the microscopic worlds, and
the subsequent monitoring of their decoherence, due to dis-

The conditional probability(4.17) becomes then, if
|a|?>>1 andAT/# is an even integer,

Pe~i[1+ %ef\a\Z(lfkﬁef kla|2(1—cosp, 1) sipation. These experiments would constitute an ideal test of
o) the measurement theory, since the classically distinguishable

X cog i, — K| a|%sing, )], (4.20 field states correspond to the distinct positions of a macro-

scopic pointer. One could thus, by monitoring the decoher-

while if |@|?>>1 andA(T—t/)/ is an odd integer, ence between those states, follow the “collapse” of the quan-

tum state into a classical statistical mixture. Furthermore, the
Py~ i[1+ te lel*1 kg -Kal*(1-cosh)cogy ], (4.20)  nonlocal state of the field discussed in Sec. IV provides an
g EPR-like experiment in which quantum correlations between
If AT/ is an even integer, anit// is an odd integer, we spatially separated mesoscopic systems can be demonstrated.

get instead The conjugation of low-dissipation cavities with the
atomic correlation technique has allowed us to overcome the
p(e)m%{li%e*la\z(lfk)zefk\a\z(lfcowuf)[cos{ Yy two usual.obstacle.s to the re_alization of such e_xperiments.
9 Large cavity damping times yield coherence lifetimes in the
—k|a|?sing, ) +cosy, 1} (4.22  observable range, for up to 100 photons in the cavity, while

o the probing of the coherence by the second atom is equiva-
In order that the peaks do not become negligible, ondent to the measurement of a nonlocal operator.
should satisfy, fo4.20, the conditions
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while for (4.21) only conditions(4.233 and (4.235 apply. APPENDIX A: DISSIPATION IN THE QUANTUM SWITCH

Since |a|*1k, we have|l—k|=|Aa/a|=|bv|/v, and Let us calculate the time evolution, due to dissipation, of
therefore (4.233 implies that |a|?<(v/6v)?. For the field density matrix corresponding to the quantum switch,
Av/v~10"2, this meanga|?><10%. as well as of the conditional probability for finding the sec-
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ond atom in statg or e, after having detected the first atom This expression corresponds to the following density opera-
in one of the two states. tor:

The method coincides with the one adopted in Sec. IIl. We
start from the expression for the normal-ordered characteris-

tic function (2.11) corresponding to stat.1): pe(t)= i2[|ae‘7”2><ae‘7”2|+|0><O|
N2

l * * _ A . _
Ch\N 0= o6 M 041 +e el e 2 elva|0) (a7

2

2 .
+e 1lae”"2(0])]. (A3)
+e—|a\2/2(eiwle)\a*+e—i1//le—)\*a)]_ | >< | ]
(A1)
This equation clearly displays the transition from the ini-
The time evolution of this characteristic function is given by tial pure state to the final complete statistical mixture. For
(2.13, so that t=0, we get the density operator corresponding to the

state (3.1). When ~yt<1l, we may approximate

1 .k a2 exfd —|aX(1—e M/2]~exp(—Yalt/2), so that the coherent
CN()\J\*,U:W[G(W Ve T contribution to (A3) decays with a lifetime 2/|«|?. For
2 2t./|al?<t<t,, (A3) becomes a statistical mixture, with
+elal2gl rgha*e 2 equal weights, of the staté8) and|ae™ ).
From (A3) and (3.5 we calculate now the conditional
e v\ ae (A2)  probability (3.17). We use that

1 _ ) )
T7pe(T) )= (p[(ae” "7 ae™ "2 +(0|.7]0) + e~ "1-e 2 el Vs e~ 7. 7]0) +-&1¥4(0].7 e 7))
2

:iz{ei¢a(T)<ae— yt/2|a(e—iAT+e— yt/2e—iAti)>+<0|ae—iAT)_I_e—\a\z[l—e’yt)/Z[ei ://l<ae— yt/2| ae—iAT>
N2

+ei¢a(T)e7i1//1<0|a(efiAT_’_e* 'yt/2e7iAti)>]}, (A4)
|
where ¢ ,(T) is given by tion, as well as the time-dependent conditional probability of
ot finding the second atom in the same or in a different state
bo(T)=|ale "sinA(ti—T)]. (A5)  than the first one.

- ] The initial field density operator is obtained fra@h.7):
Writing down the expressions for the scalar products, we get

explicitly
1 .
TH(.7pr) pe(0)= 1zl @,0)(a.0+[0.a)(0.al + ("0} (a0
3
—lal?2 i
:e o {eila‘z[(lie—imi)efytiefiATef7112+eiA(Tfti)efyt/2] +e_"/’1|a,0><0,a|)]. (B1)
2N3
+ 1+ e_|a|2/2[ei 'Jlle‘a‘Zef 'yt/ZEfiAT
g |al2e MM From this expression, we get the normal-ordered character-
+e el 1} (A6) istic function right after the preparation of the state:

The first two terms on the right-hand side (@f6) give neg- Culhs Ao N* N*:0
ligible contributions whena|?s>1. Replacing the remaining NAAZIN A2 0)
contributions in(3.17), we obtain expressio(8.19). :Tr[pF(t)eMagexzage-q a1g 2322

=${e()\la*7)\:a)+e()\2a*7)\§a)
3
APPENDIX B: DISSIPATION IN A NONLOCAL FIELD ,

—||?T pih1a(M1@* —\5 @) | a—igga(ha® —\5 @)
We consider here the two-cavity system, and calculate the +e [e™e 2hre e 2“1}
time evolution of the field density operator, due to dissipa- (B2)
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As before, the time evolution of this characteristic function isThis expression for the characteristic function corresponds to
obtained from the following density operator:

Cn(NLNAT NS oY) 1
N( 1./2 2 pF(t)zm [|(,1’67 yt/2,0><0167 yt/2,0| + |01ae7 yt/2><oyae* 7t/2|
3

= CN()\le_ yt/2,7\2€_ yt/Z; )\;f e yt/2’ )\'izc e yt/2; 0), (83)
+e” la|?(1—€~ yt)(ei ¢1| 0,a0e” 'yt/2><ae— yt/2’0|

+e 1| ae” "2 0)(0,0e” "))]. (B5)

so that

{eO\la*—%fa)e’Wz.;. ahoa* ~\E aje M2 This expression exhibits explicitly the transformation of

- ﬁg the initial pure state into a statistical mixture. While the in-
tensity lifetime ist., we see that fofe|?<yt<1, the coher-
+e a7 givigha* —Njaem M2 ences vanish with a lifetime equal tQ/|«|? two times
smaller than in the quantum switch case.
+ e itghoa® —23 “WM]}_ (B4) From (B5), (4.9), and(4.9), we get

1 . , , . . A
Tl’[f/ylpF(T)&ﬁ] — W2{<ae— yT/2| a'(e_'AT+ e yt/2e—|Ati)><ae—|AT|0>el ¢a(T)+<0| ae—lAT><a(e—|AT
3

+e- yt/ZefiAti)|aef yt/2>efid>a(T)+ e"“‘z(lfe_ «/t)[ei ‘”1<ae’ yt/2| aefiAT><ae—iAT| ae” 7t/2>
+e 1(0]a(e 4T+ MM (a(e 1T+ e M2 IN)|0) ]}, (B6)

where ¢ ,(T) is given by(A5).

For |a|?>1, the first two terms will always be negligible. Note that, fer0, the first factor of the first term could be equal
to one if AT=* #/3 andAt;= ¥ #/3 (modulo 2r), as seen in the quantum switch model. However, in this case the second
factor of the first term will be much smaller than one, so that here the first term on the right-hand @& will always be
negligible when|«|?> 1. In this limit, replacing(B6) in (4.11) yields expressiori4.14).
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