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We present several schemes for preparing and detecting coherent superpositions of classically distinct states
of the electromagnetic field in one or two high-Q cavities. These proposals are based on two-atom correlation
measurements, to be performed on circular Rydberg atoms interacting dispersively with the cavity fields.
Changing the time interval between the two detected atoms allows a monitoring of the decay of quantum
coherence due to dissipation.
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I. INTRODUCTION

The nonexistence of quantum superpositions at the classi-
cal level has been a long-standing problem in quantum me-
chanics. Schro¨dinger emphasized this point in his famous
‘‘cat paradox’’ @1#: if one assumes that the usual rules of
quantum dynamics are valid up to the macroscopic level,
then the existence of quantum interference at the micro-
scopic level necessarily implies that the same phenomenon
should occur between distinguishable macroscopic states.
Einstein considered as a fundamental problem the ‘‘inexis-
tence at the classical level of the majority of states allowed
by quantum mechanics,’’ namely, those involving the coher-
ent superposition of two or more macroscopically separated
localized states@2#. Several possibilities have been explored
as solutions to this paradox, including the proposal that a
small nonlinear term in the Schro¨dinger equation, although
unnoticeable for microscopic phenomena, could eliminate
the coherence between macroscopic states, thus transforming
the quantum superpositions into statistical mixtures@3#.
More recently, the role of dissipation in the disappearance of
coherence has been stressed. Decoherence follows from the
irreversible coupling of the observed system to the outside
world reservoir@4,5#. In this process, the quantum superpo-
sition is turned into a statistical mixture, for which all the
information on the system can be described in classical
terms, so our usual perception of the world is recovered.
Furthermore, for macroscopic superpositions, quantum co-
herence decays much faster than the usual physical observ-
ables of the system, its decay time being given by the energy
dissipation time divided by a dimensionless number measur-
ing the ‘‘separation’’ between the two parts. The statement
that these two parts are macroscopically separated implies
that this separation is an extremely large number. Such is the
case for biological systems like ‘‘cats’’ made of huge number
of molecules. In the simple case mentioned by Einstein@2# of

a particle split into two spatially separated wave packets by a
distanced, the dimensionless measure of the separation is
(d/ldB)

2, whereldB is the particle de Broglie wavelength.
For a massive particle at not too low a temperature, this
number is huge and the decoherence is for all purposes in-
stantaneous. This would provide an answer to Einstein’s con-
cern: decoherence of macroscopic states would be too fast to
be observed. This decoherence process is also at the heart of
quantum measurement theory. von Neumann’s collapse pos-
tulate@6# introduces two distinct types of evolution in quan-
tum mechanics: the deterministic and unitary evolution asso-
ciated to the Schro¨dinger equation, which describes the
establishment of a correlation between states of the micro-
scopic system being measured and distinguishable classical
states of the macroscopic measurement apparatus~for in-
stance, distinct positions of a pointer!; and the probabilistic
and irreversible process associated with measurement, which
transforms the correlated state into a statistical mixture. This
separation of the whole process into two steps has been the
object of much debate@3,7,8#; indeed, it would not only im-
ply an intrinsic limitation of quantum mechanics in dealing
with classical objects, but it would also pose the problem of
drawing the line between the microscopic and the macro-
scopic worlds.

Several models have been proposed to demonstrate the
‘‘superselection rule’’ which forbids coherent superpositions
of macroscopically separated states@4,5,7–9#. The non-
observability of the coherence between the two positions of
the pointer has been attributed both to the lack of nonlocal
observables with matrix elements between the two corre-
sponding states@10# as well as to the fast decoherence due to
dissipation@5,9#. Precisely because of these two reasons the
evolution of coherent superpositions of classically distin-
guishable states towards statistical mixtures has not been
monitored experimentally yet: not only is the decoherence
time very short, but besides it is necessary to imagine an
experiment which would display interference effects between
macroscopically distinct states. This has precluded experi-
mental observation so far, in spite of the large number of
theoretical proposals of ‘‘Schro¨dinger cats’’ and mesoscopic
coherences in various contexts. Two different kinds of sys-
tems have been considered recently. Josephson junctions in
various superconducting quantum interference device
~SQUID! configurations have been theoretically analyzed by

*Permanent address: Instituto de Fisica, Universidade Federal do
Rio de Janeiro, Caixa Postal 68528, RJ 21945-970, Rio de Janeiro,
Brazil.
†Laboratoire de l’Universite´ Pierre et Marie Curie et de l’ENS,

associe´ au CNRS~URA18!.

PHYSICAL REVIEW A MARCH 1996VOLUME 53, NUMBER 3

531050-2947/96/53~3!/1295~15!/$10.00 1295 © 1996 The American Physical Society



Leggett@11# and will not be discussed here. In quantum op-
tics, several schemes have been proposed to prepare fields in
superpositions of classically distinguishable states@12#. One
of the difficulties with these schemes is that they involve
traveling fields, which escape at the speed of light from the
experimental area, making tests of quantum coherence diffi-
cult to achieve, even conceptually. It is possible, however, to
build quantum superpositions of mesoscopic states of fields
trapped in one or more cavities, which would display deco-
herence times within observable range. Such proposals must
have two essential ingredients: the first one is a scheme to
build the coherent superposition. The second one is a method
for displaying the interference effects associated with this
superposition, thus circumventing the above-mentioned ob-
jections on the inexistence of nonlocal operators.

A proposal along these lines was made in Ref.@13# which
suggested a simple method to prepare the coherent superpo-
sition, but a rather complicated way of displaying the inter-
ference effect. We present in this paper the principle of ex-
periments which fulfill the preparation and detection
requirements in a simple way, involving only two-atom cor-
relation measurements. In particular, we show how one can
build and detect a superposition of coherent states localized
simultaneously in one or two macroscopically separated
cavities. This system provides also a test of quantum me-
chanics analogous to those made in connection with Bell’s
inequalities@14#, which can disprove the existence of a local
hidden-variable theory, for quantum-correlated states which
are classically distinguishable. Furthermore, it is directly re-
lated to the quantum measurement problem, in the sense that
the presence of a field in one cavity or the other can be
associated to two macroscopically distinct positions of a
classical pointer. A short account of some of these results has
been given in Ref.@15#.

Three different experimental configurations are discussed
in this paper. The first one, analyzed in Sec. II, leads to the
superposition of two coherent states with different phases in
a cavity. The second example, presented in Sec. III, involves
a quantum switch which can be put in a coherent superposi-
tion of an open or ‘‘lighted’’ state~a coherent state inside a
cavity! and a closed or ‘‘dark’’ state~vacuum state in the
cavity!. Finally, we discuss in Sec. IV a configuration con-
sisting of two cavities, which can be prepared in a coherent
superposition with one of the cavities ‘‘lighted’’ and the other
‘‘dark,’’ thus leading to a non-local state of the field. In all
these cases, a detailed analysis is made of the detection pro-
cess, and of the decoherence produced by dissipation. The
three systems considered here are not only experimentally
viable, but also lead to exactly soluble models, and therefore
to a precise consideration of the dissipation process. Quan-
tum coherence is detected through two-atom correlation
measurements, which display the interference between the
two different pointer positions, thus allowing us to distin-
guish between the quantum states and the corresponding
classical statistical mixtures. In fact, this method is a realiza-
tion of a nonlocal measurement. In the two-atom sequence,
the first atom produces the coherent superposition of field
states, and the second one, which is sensitive to the interfer-
ence between these classically distinct states, is used to
‘‘read’’ the coherence. Increasing the delay between the two
atoms leaves more time for dissipation to act, and therefore

the coherent effects get smaller in magnitude. One can thus
monitor the dynamical effects of dissipation on the superpo-
sition state, and follow the transition from the quantum state
to the classical mixture. In practice, the rapid decrease of the
decoherence time with the intensity of the field in the cavity,
the experimental limitations on cavity losses, and the veloc-
ity dispersion of the atomic beam lead to an upper limit for
the number of photons involved~which should be typically
smaller than 100!. The experiments described here will in-
volve therefore mesoscopic field states, even though our
theory has a wider scope, applying also to truly macroscopic
systems.

II. QUANTUM COHERENCE BETWEEN CLASSICAL
FIELDS WITH DIFFERENT PHASES

A. Production and detection of the state

We start by briefly reviewing the method presented in
Ref. @13# for preparing a coherent superposition of two co-
herent states@16# with opposite phases in a superconducting
cavity. The method, sketched in Fig. 1, involves a beam of
circular Rydberg atoms@17# prepared in boxB and crossing
a high-Q cavity C in which a coherent state is previously
injected ~this is accomplished by coupling the cavity to a
classical sourceS through a waveguide!. Circular levels are
required because they are strongly coupled to microwaves
and they have very long radiative decay times, making them
ideally suited for preparing and detecting long-lived correla-
tions between atom and field states. Circular states with prin-
cipal quantum numbern around 50 are used in the experi-
ment under way in our laboratory@18#. The radiative lifetime
of these levels is 331022 s.

The high-Q cavity C is sandwiched between two low-Q
cavities (R1 and R2), in which classical microwave fields
can be applied. TheR1 andR2 set of cavities constitutes the
usual experimental arrangement in the Ramsey method of
interferometry@18,19#. The transition between two nearby
circular atomic states, which we denote byue& and ug&, is
resonant with the microwave fields in cavitiesR1 andR2 . To
be specific, in the following,ue& andug& have principal quan-
tum numbersn551 andn550, respectively. Theue&→ug&
transition frequency is 51.099 GHz. The intensity of the field
in R1 is such that, for the selected atomic velocity, ap/2
pulse is applied to the atom as it crossesR1 . Each atom is

FIG. 1. Experimental arrangement for preparing a superposition
of two coherent states with opposite phases in a superconducting
cavity.
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prepared in the stateue& in boxB. After leavingR1 it is in a
superposition of the two circular Rydberg statesue& and ug&
which, with a proper choice of the microwave field phase, is
given by

uc atom&5
1

A2
~ ue&1ug&). ~2.1!

The superconducting cavityC is tuned close to resonance
with a transition connectingue& to the circular stateu i & ~this
state corresponds ton552, the frequency of theue&→u i &
transition being 48.180 GHz! and is far off resonance with
all transitions involving levelug&. The cavity mode geometry
is such that the field slowly rises and decreases along the
atomic trajectory inC, so that, for sufficiently slow atoms,
and for large enough detunings, the atom-field evolution is
adiabatic. Hence no photon absorption or emission can occur
in C. However, dispersive effects can be important. An atom
crossing the cavity in stateue& induces an appreciable phase
shift on the field inC. Let us assume that this shift can be
adjusted to a value exactly equal top by proper selection of
the atomic velocity~of the order of 100 m/s@18#!. A coherent
field ua& is then transformed intou2a&. The phase shift is
negligible, however, if the atom crosses the cavity in state
ug&.

After the atom prepared in the state defined by Eq.~2.1!
has crossed the cavity, the state of the combined atom-field
system is

uc atom1field&5
1

A2
~ ue;2a&1ug;a&). ~2.2!

Note that the atom crosses the centimeter-sized cavityC
in a time of the order of 1024 s, much shorter than the field
relaxation time~typically 1023–1022 s for a niobium super-
conducting cavity!, and to the atomic radiative damping time
(331022 s!.

The entanglement between the field and atomic states is
analogous to the correlated two-particle states in the
Einstein-Podolski-Rosen~EPR! paradox@14,20,21#. The two
atomic statese and g are here correlated to the two field
statesu2a& and ua&, respectively. Let us assume first that
the cavityR2 is left inactive. The atom crosses it and is
detected downstream in two ionization zonesDe andDg ~see
Fig. 1!. Electric fields are applied to the atoms in these
zones, producing atomic ionization. The resulting electrons
are detected. The electric field inDe is smaller than inDg so
that it ionizes the atoms in thee state, but not in theg state.
The second zoneDg ionizes the atoms which remain in state
g ~see Fig. 1!. This measurement projects the field inC
either in theua& state~if the atom is detected in stateg!, or
in the u2a& state~if the atom is detected in statee!.

However, as in an EPR experiment@21#, one may choose
to make another kind of measurement, by submitting the
atom to a secondp/2 pulse inR2 . This pulse tranforms
again ue& into the state defined by Eq.~2.1! and ug& into
(2ue&1ug&)/A2. The state~2.2! then gets transformed into

uc atom1field8 &5 1
2 ~ ue;2a&2ue;a&1ug;a&1ug;2a&).

~2.3!

If one detects now the atom in the stateug& or ue&, the field
is projected into the state

uc cat&5
1

N1
~ ua&1eic1u2a&), ~2.4!

whereN15A2@11cosc1exp(22a2)# and c150 or p, ac-
cording to whether the detected state isg or e, respectively.
One produces therefore a coherent superposition of two co-
herent states, with phases differing byp. For uau2@1, this is
a ‘‘Schrödinger cat’’ state. The corresponding density opera-
tor is

rF5
1

N1
2 ~ ua&^au1u2a&^2au1eic1u2a&^au

1e2 ic1ua&^2au!. ~2.5!

We show below that by sending a second atom through
the same system, it is possible to distinguish this state from
the corresponding statistical mixture

rF
mixture5 1

2 ~ ua&^au1u2a&^2au!. ~2.6!

Note that foruau2@1, ~2.6! can be obtained from~2.5! by
randomization of the phasec1 .

Let us calculate now the probability of detecting the sec-
ond atom in stateue& or ug&, after it crosses the system
R11C1R2 . We neglect at this stage all relaxation effects.
The state of the ‘‘second atom plus cavity field,’’ as the sec-
ond atom leaves the first microwave zoneR1 , is now

ucatom21field
~0! &5

1

A2
~ ue2&1ug2&)^

1

A2
~ ua&1eic1u2a&),

~2.7!

where we have assumed for simplicity thatuau2@1, so that
the normalization factor in~2.4! becomes 1/A2.

Right after the second atom leaves the superconducting
cavity, and before it interacts withR2 , the state of the system
has evolved into

uc atom21field
~1! &5 1

2 @ ue2 ;2a&1ug2 ;a&

1eic1~ ue2 ;a&1ug2 ;2a&)], ~2.8!

since the second atom dephases, as the first one, the field by
an anglep if it is in stateue&, and does not dephase the field
at all, if its state isug&. Finally, after interacting withR2 , the
state of the system becomes

ucatom21field
~2! &5

1

2A2
@ ue2 ;2a&1ug2 ;2a&1ug2 ;a&

2ue2 ;a&1eic1~ ue2 ;a&1ug2 ;a&

1ug2 ;2a&2ue2 ;2a&)]. ~2.9!

Assuming again thatua& and u2a& are practically or-
thogonal, we get from~2.9! the probabilities for detecting the
second atom in levelg or e:

53 1297MESOSCOPIC QUANTUM COHERENCES IN CAVITY QED: . . .



P~g2!5 1
2 ~11cosc1!, P~e2!5 1

2 ~12cosc1!. ~2.10!

Sincec150 if the first atom was detected in stateg, and
c15p if the first atom was detected in statee, it follows
from ~2.10! that the second atom is always detected in the
same state as the first one. There is thus a complete correla-
tion between the two atoms.

The dependence onc1 of the probabilities in~2.10!
clearly displays the interference nature of the process. If
there were a statistical mixture inC before atom 2 interacts
with it, P(g2) andP(e2) would be equal to 1/2@randomiza-
tion of c1 in Eq. ~2.10!#.

The origin of the interference terms can be understood by
interpreting the two-atom correlation measurement as a col-
lision event between the two successive atoms, mediated by
the systemR11C1R2. A pair of atoms initially in levele is
detected, after crossing the system, in a combined state
e2e, e2g, g2e, or g2g, with the field in the cavity being
left in either stateua& or u2a&. Each possible outcome may
occur via two possible paths. For instance, the final state
e2e with the field in stateua& may be obtained in two
different ways:~i! both atoms cross the cavity in statee,
remaining in this state afterR2 , so that the phase shift pro-
duced by the first atom is undone by the second;~ii ! both
atoms cross the cavity in stateg, leaving the field un-
changed, and flipping back toe in R2 . These two paths,
corresponding to diagrams~a! and ~b! in Fig. 2, are totally
indistinguishable and their amplitudes must thus interfere in
the expression of the probability for the outcomee2e. Fig-
ure 2 also displays the paths~c! and~d! corresponding to the
final stateu2a& for the field. They do not interfere with the
contributions from~a! and~b! as long asuau@1. Note, how-
ever, that foruau<1 all four contributions in Fig. 2 interfere
with each other, due to the nonorthogonality of the coherent
statesua& and u2a&.

B. Effect of dissipation: Exact solution

We consider now the effect of dissipation on the superpo-
sition of the two coherent states, and show that the decoher-
ence can be monitored through the two-atom correlation
measurement described above. Dissipation is described as a
linear coupling of the field mode with a bath of thermal
oscillators at zero temperature@22#.

In order to describe dissipation, it is convenient to turn to
a density-matrix formulation of the problem. We calculate
rF(t), starting withrF(0) given by ~2.5! using a method
based on the calculation of the normal-ordered characteristic
function corresponding to the field density operator@23#:

CN~l,l* ,t !5Tr @rF~ t !ela†e2l* a#. ~2.11!

At time t50, we have

CN~l,l* ,0!5
1

N1
2 $ela*2l* a1e2la*1l* a

1e22uau2@eic1ela*1l* a

1e2 ic1e2~la*1l* a!#%. ~2.12!

The interaction with reservoir leads to the time development
@13,23#

CN~l,l* ,t !5CN~le2gt/2,l* e2gt/2,0!, ~2.13!

whereg51/tc is the damping rate for the field intensity in
the cavity,tc being the corresponding damping time. In real-
istic experimental conditions@13,15#, tc.1022 s. Therefore

FIG. 2. Possible paths leading from a combined initial statee2e of the two-atom system to final statee2e. In each diagram, the upper
and lower lines are associated to the first and second atoms, respectively. The wiggled line is associated to the cavity state.
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CN~l,l* ,t !5
1

N1
2 $e~la*2l* a!e2gt/2

1e~2la*1l* a!e2gt/2

1e22uau2@eic1e~la*1l* a!e2gt/2

1e2 ic1e2~la*1l* a!e2gt/2
#%. ~2.14!

Comparing~2.11! and ~2.14!, we see that the density opera-
tor at timet is

rF~ t !5
1

N1
2 @ uae2gt/2&^ae2gt/2u1u2ae2gt/2&^2ae2gt/2u

1e22uau2~12e2gt!~eic1u2ae2gt/2&^ae2gt/2u

1e2 ic1uae2gt/2&^2ae2gt/2u!#. ~2.15!

This equation displays the evolution of the system, from
the pure state~2.4! to the mixture~2.6!. For t50, we recover
the expression~2.5!. The transition from~2.5! to ~2.6! is
governed by the exponential factor exp@22uau2(12e2gt)#. For
gt!1, this factor becomes exp(22uau2gt), implying that the
coherent contribution to~2.15! decays with a lifetime equal
to tc/2uau2. Thus the larger the average number of photons
inside the cavity, the faster will the coherence decay. The
decoherence time is shorter than the energy dissipation time
in the cavity by a factor precisely equal to the ‘‘size’’ of the
field measured by its photon numberuau2. For large fields
(2uau2 macroscopic!, the decoherence time becomes of
course exceedingly short@5#. This can be related to the basic
mechanism by which coherence between the two positions of
a pointer in a classical measurement apparatus disappears. In
fact, the two fieldsua& and u2a& can be considered, when
uau2@1, as macroscopic pointers, related to the microscopic
atomic state — the field will be left in stateua& if the atom
crosses the cavity in stateug&, or in stateu2a& if the atom is
in state ue&. We show now that the decoherence between
these two field states can be monitored by sending another
atom through the system.

C. Monitoring the decoherence

We assume that a second atom is sent through the cavity a
timeT after the first one. We assume that the time of flight of
the atom through the system is very short compared toT and
to the shortest time scale involved in the field relaxation
~which, as shown in the preceding subsection, is of the order
of tc/2uau2). The atom 2 plus field density operator just be-
fore the second atom goes into the superconducting cavity is
given by

ratom1field~T!5 1
2 ~ ue&1ug&)~^eu1^gu! ^ rF~T!. ~2.16!

After the second atom goes through the cavity, we have

ratom1field5
1
2 @ ue&^eue2 ipa†arF~T!eipa

†a1ug&^gurF~T!

1ue&^gue2 ipa†arF~T!1u f &^eurF~T!eipa
†a#,

~2.17!

since the stateue& is always associated with a phase-shift
operator exp(2ipa†a).

After the second atom interacts with the classical field in
R2 , the state of the system becomes

ratom1field5
1
4 @~ ue&1ug&)~^eu1^gu!e2 ipa†arF~T!eipa

†a

1~2ue&1ug&!~2^eu1^gu!rF~T!

1~ ue&1ug&!~2^eu1^gu!e2 ipa†arF~T!

1~2ue&1ug&!~^eu1^gu!rF~T!eipa
†a#. ~2.18!

From this expression, the probability of detecting the sec-
ond atom in thee or g state is readily obtained:

P~e
g!~T!5 1

2 „16Re$Tr@e2 ipa†arF~T!#%…. ~2.19!

Replacing now in this expressionrF(T) by ~2.15!, and
using that

Tr @e2 ipa†arF~T!#5
1

N1
2 @^ae2gT/2u2ae2gT/2&1^2ae2gT/2uae2gT/2&

1e22uau2~12e2gT!~eic1^ae2gT/2uae2gT/2&1e2 ic1^2ae2gT/2u2ae2gT/2&!#

5
2

N1
2 @e22uau2e2gT

1e22uau2~12e2gT!cosc1#, ~2.20!

we get, finally,

P~e
g!~T!5

1

2 F16
e22uau2e2gT

1cosc1e
22uau2~12e2gT!

11cosc1e
22uau2 G .

~2.21!

For uau@1, andT50, we recover the results for the corre-
sponding dissipationless case@cf. Eq. ~2.10!#. If now
t c@T@tc/2uau2, again withuau@1, we get from~2.21! that

the detection probability is 1/2, which is the classical statis-
tics result. In this time interval the interference term in~2.15!
goes to zero, andrF(T) turns into a statistical mixture. When
T increases so thatgT@1, one gets againPg51 and
Pe50. In this limit, the two statesua& and u2a& relax to-
wards the vacuum, and are not orthogonal anymore. As soon
as they start to overlap, interference effects, associated with
the evolution of the atomic coherence between the two mi-
crowave zones, become important. In terms of the diagrams
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displayed in Fig. 2, this means that paths~c! and ~d! now
start interfering with~a! and~b!. In particular, when the field
has finally relaxed to the vacuum, the cavity no longer has
any effect on the atoms and the combined effects of the two
p/2 pulses amounts to ap pulse. Thus, and independently of
the state in which the first atom was detected, the second
atom should come out in a state different from the state in
which it has come in~i.e., in stateg!. The plot of the
conditional probabilities P(g,e;T)[Pe(T,c150) and
P(e,e;T)[Pe(T,c15p) for detecting the second atom in
level e after having detected the first one, respectively, in
levelsg ande, as a function of the delayT between the two
atoms, is shown in Fig. 3~for an initial state with average
number of photonsn̄510). The fast evolution aroundT50
reveals the rapid decoherence process between the two or-
thogonal components of the mesoscopic field. The plateaus
P(g,e;T)5P(e,e;T)51/2 are the signature of a classical
mixture involving two orthogonal field states in the cavity.
The slow decay at large times indicates that the two states of
the incoherent superposition start to overlap due to field en-
ergy dissipation.

D. Effect of velocity dispersion

The experiment proposed above must be performed with
quasimonokinetic beams ensuring well-defined interaction
times with theR1 , C, andR2 cavities. Let us estimate now
the effect of a small velocity mismatch between the two at-

oms. We assume a simple model where the first atom has the
velocity corresponding to an exactp phase shift for the field
in C when the atom crosses the cavity ine, and where the
second atom has a slightly different velocity.

The second atom velocity mismatch has two conse-
quences. First, it produces for this atom a departure from the
ideal pulse area inR1 andR2 . Second, the phase shift of the
coherent state in the superconducting cavity when this atom
crosses it ine becomesp1e with ueu!1. While the first
effect alters the coefficients in the superpositions~2.16! and
~2.18!, the second affects the phases of the interfering con-
tributions. For a qualitative analysis, we take only this sec-
ond effect into consideration here, since it is by far the most
important one. The probabilities of finding the atom in the
statese andg after it crosses the system become now

P~e
g!~T!5

1

N1
„16Re$Tr@e2 i ~p1e!a†arF~T!#%…. ~2.22!

If we take forrF(T) the result~2.15!, we get

P~e
g!~T!5

1

2 H 16
cos~ uau2e2gTsine!

11cosc1e
22uau2 @e22uau2e2gTcos2 ~e/2!

1cosc1e
22uau2@12e2gTcos2 ~e/2!##J , ~2.23!

which, for e!1, becomes

P~e
g!~T!'

1

2 H 16
cos~ uau2e2gTe!

11cosc1e
22uau2 @e22uau2e2gT

1cosc1e
22uau2~12e2gT!#J . ~2.24!

The conditional probability corresponds to the average of
this expression over the allowed range of values fore. Com-
parison of~2.24! with ~2.21! displays the loss of contrast as
the dispersion in the values ofe increases. The velocity dis-
persion of the atomic beam makes the probability approach
the incoherent value 1/2 as the range of values ofe increases.
The departure of the probability from the value 1/2 at short
timesT can, however, be observed up touau2e of the order
of unity. This is displayed in Fig. 4 where we show
P(g,e;T). For uau25100, the observation of quantum coher-
ence requirese<1022, which corresponds to a velocity dis-
persion of about 1%, easily achievable with today’s laser
cooling techniques.

E. Effect of unread atoms

Let us discuss now the effect of a finite detection effi-
ciency. More precisely, let us assume that an undetected
atom has crossed the cavity between the atom which pre-
pares the mesoscopic field and the probe atom. After the
undetected atom, the field density operator becomes

rF
unread5Tratom@ratom1 field#, ~2.25!

whereratom1field can be taken as~2.17! or ~2.18!—the exist-
ence of the second microwave regionR2 is not relevant for

FIG. 3. ~a! Conditional probabilityP(g,e;T) of detecting the
second atom in levele after having detected the first one in levelg,
as a function of the delayT between the two atoms, for the experi-
ment sketched in Fig. 1. The average number of photons in the
cavity is equal to 10.~b! Conditional probabilityP(e,e;T).
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this atom, which is not measured. One gets then in the gen-
eral case where the phase shift produced by the second atom
is given byf

rF
unread5 1

2 ~e2 ifa†arFe
ifa†a1rF!. ~2.26!

Using the invariance of the trace by circular permutation,
it is easy to see that the replacement ofrF(T) in ~2.22! by
rF
unread does not change the detection probabilities for the
probe atom.

Therefore a high detection efficiency is not required to
monitor the decoherence process. Of course, it is still neces-
sary to make the two successive detections in a time smaller
than the decoherence timetc/2uau2. For a cavity damping
time equal to 1022 s, an average number of photons in the
cavity of the order of 100, and an atomic flux of 105 atoms
per second, it is sufficient to detect about one in every ten
atoms in order to display the coherence between the two
dephased field states.

III. OPTICAL SWITCH WITH QUANTUM COHERENCE
BETWEEN ‘‘OPEN’’ AND ‘‘CLOSED’’ STATES

A. Preparation of the switch

In @15# a method was proposed for preparing an optical
‘‘quantum switch,’’ in a superposition of ‘‘open’’ and
‘‘closed’’ states. The experimental setup is the same as above
~see Fig 1!. A single atom prepared in a superposition of
different energy states is sent across the high-Q cavity C
~resonance frequencyvc) coupled to the monochromatic
classical radiation sourceS ~frequencyvs). The source is
now nonresonant, with a detuningD5vs2vc much larger
than the cavity bandwidthvc /Q51/tc , so that no photons
are fed into the empty cavity. The situation may change,
however, as the atom crosses the cavity. As in Sec. II, we
assume that statee is closer to resonance than stateg, being
coupled to a third, more excited, stateu i & by a transition at
frequencyv05vc2d ~Fig. 5!. The coupling of thee→ i
transition to the cavity mode is characterized by the vacuum
Rabi frequencyV. As before, we assume that the geometry
of the mode and the atomic velocity are such that the cou-
pling is adiabatically switched on and off, as the atom enters

and exits the cavity. Provided the field amplitude remains
small enough, an atom in levele pulls the mode frequency
by V2/d. If the detunings are adjusted so thatD5V2/d, the
atom in levele tunes the cavity into resonance with the
source, while no frequency pulling occurs if the atom crosses
the cavity in levelg. Due to the adiabatic nature of the
coupling, the atom remains in the same state while crossing
the cavity.

Assume now, as above, that an atom is prepared in the
state~2.1!, through the first Ramsey regionR1 . A subsequent
detection in the stateue& or ug&, after the atom has undergone
anotherp/2 pulse inR2 , leaves the field in the state

ucF&5
1

N2
~ ua&1eic1u0&), ~3.1!

where againc150 or p according to whether the atom is
detected in stateug& or ue&, respectively, andN2 is the nor-
malization constantN25$2@11cosc1exp(2uau2)#%1/2, which
reduces toA2 when uau2@1. The state~3.1! is a quantum
superposition of cavity ‘‘filled’’ and ‘‘empty’’ states. For
uau@1, it is a Schro¨dinger cat state.

B. Measuring the coherence by detection of a second atom

We show now that a two-atom correlation measurement
allows us again to distinguish the state~3.1! from a statistical
mixture. A second probe atom is sent through the system a
time T after the first atom comes into the cavity, and the
probability that this atom is in statee or g is measured. We
neglect at this stage field dissipation. The second atom is also
prepared in the state~2.1!, so that, just before it entersC, the
state of the combined system atom 2 plus field can be written
as

ucatom21field&5
1

N2A2
~ ue&1ug&)^ ~ ua&1eic1u0&). ~3.2!

The second atom will have an effect on the field in the
cavity only if it is in stateue&. In this case, it will add the

FIG. 4. Effect of velocity dispersion on the conditional probabil-
ity P(g,e;T) shown in Fig. 3~a!. We take hereuau2e5p/3. The
average number of photonsuau2 is 10.

FIG. 5. Sketch of the atomic levels relevant to the quantum
switch experiment.
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field ae2 iDT into the cavity, and at the same time will
dephase an already present field byDt i , wheret i is the in-
teraction time between the atom and the cavity field. There-
fore after the second atom crosses the cavity there are four
possibilities for the state of the field: either the cavity ends
up empty or containing one of the three fieldsa, ae2 iDT, or
a(e2 iDT1e2 iDt i). The effect of the second atom on the field
can be expressed in terms of a phase-shift operator
e2 iDt ia

†a and a displacement operatorD(ae2 iDT), defined
by @16#

D~a!5eaa†2a* a. ~3.3!

After the second atom exits the cavity, the state of the system
becomes

ucatom21field&5
1

A2 @ ue&~T ucF&)1ug&ucF&], ~3.4!

whereucF& is given by~3.1!, and we have defined

T 5D~ae2 iDT!e2 iDt ia
†a. ~3.5!

After the second atom goes through the regionR2 , the state
of the system becomes

ucatom21field&5 1
2 @ ue&~T 21!ucF&1ug&~T 11!ucF&]. ~3.6!

The probability of detecting the second atom in the statee
or g can be obtained by calculating the trace of the density
operator corresponding to state~3.6! multiplied by the pro-
jectorsue&^eu or ug&^gu, respectively:

P~e
g!5

1
2 $16Re@Tr~T ucF&^cFu!#%. ~3.7!

We calculate now explicitly this expression, for the state
ucF& given by ~3.1!. We use that, for a coherent stateua&,

T ua&5eifaua~e2 iDT1e2 iDt i !&, ~3.8!

where

fa5uau2sin@D~ t i2T!#. ~3.9!

Also,

T u0&5uae2 iDT&. ~3.10!

We get then

P~e
g!5

1

2 H 16
1

2~11cosc1e
2uau2/2!

Re@^0uae2 iDT&

1eifa^aua~e2 iDT1e2 iDt i !&

1eifae2 ic1^0ua~e2 iDT1e2 iDt i !&

1eic1^auae2 iDT&#J . ~3.11!

In this expression, each scalar product measures the overlap
of two possible field states in the cavity. As in the discussion
of Sec. II, an important overlap means that an interference
process involving indistinguishable final field states can take

place. Whenuau2@1, the first scalar product in Eq.~3.11! is
negligible. The second one is also negligible, except when
simultaneously DT'6p/3(modulo2p) and Dt i
'7p/3( modulo2p). The corresponding interference is
thus accidental~it requires a specific velocity for the atom!,
and will be disregarded in the following. Keeping only the
last two interference terms, we get then, foruau2@1,

P~e
g!5

1
2 „16 1

2 $e22uau2cos2 @D~T2t i !/2#cos~fa2c1!

1e22uau2sin2 ~DT/2!cos@c12uau2sin~DT!#%…. ~3.12!

The dependence onc1 of the terms between curly braces is a
signature of their interference character. For randomc1 , we
get the result for a statistical mixture~i.e., P(

e
g)51/2), as

expected.
On the other hand, for fixedc1 , we see thatP(

e
g) presents

peaks or dips whenD(T2t i)/p is an odd integer orDT/p is
an even one, and is equal to a 1/2 ‘‘background’’ for other
values ofT and t i @15#. The width of these peaks is of the
order of 1/uau. The values ofP(

e
g) for these values ofT and

t i are

P~e
g!5

1
2 ~16 1

2 cosc1!, ~3.13!

so that, if P(a1 ,a2) is the conditional probability that the
first and second atom are measured in statesa1 and a2 ,
respectively, we have

P~g,g!5P~e,e!5 3
4 , P~e,g!5P~g,e!5 1

4 . ~3.14!

For Dt i5(2k11)p, k50,1,2, . . . , the twosets of peaks
merge, and we get instead

P~e
g!5

1
2 ~16cosc1!, ~3.15!

so that now the contrast is increased and the peak values of
P(a1 ,a2) become

P~g,g!5P~e,e!51 , P~e,g!5P~g,e!50 . ~3.16!

Figure 6 displays the conditional probabilityP(g,g;T)
5P(e,e;T) as a function of the delay between the two at-
oms, for uau2510 andDt i57p/2. The interference peaks
are superimposed to a12 ‘‘background.’’

Experimentally, these curves could be obtained by mea-
suring the corresponding conditional probabilities over a
large number of double atom counts, in such a way that the
first atom is always sent in an empty cavity system~obtained
by waiting long enough for the field in the cavity to relax to
the vacuum!. Since the atomic distribution in the beam is
Poissonian, the time delayT will necessarily vary~the range
of variation can be controlled by changing the atomic flux!.
For each run, it can be determined by timing the successive
detections of atoms 1 and 2. Of course, the first peaks in Fig.
6 are not observable, sinceT must be larger than the time of
flight of the first atom through the cavityC.
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C. Monitoring the decoherence due to dissipation

As in Sec. II, dissipation will again cause coherence to
disappear in a time which gets smaller as the intensity of the
field grows. Between the production of the state, through
detection of the first atom, and the detection of the probe
atom, the state of the field evolves towards a statistical mix-
ture. The probability of detecting the second atom in stateg
or e is now

P~e
g!~T!5 1

2 „16Re$Tr@T rF~T!#%…, ~3.17!

whererF(T) is the reduced density matrix of the field in the
cavity, at the timeT when it is crossed by the second atom
~we assume againt i!tc /uau2).

The calculation ofrF(T) follows closely the method used
in Sec. II, and is done in Appendix A. In the limituau2@1,
we get

P~e
g!~T!5 1

2 $16 1
2e

uau2~e2gT/2cosDT21!

3cos~c12uau2e2gT/2sinDT!

6 1
2e

2uau2@e2gT/2cosD~T2t i !11#

3cos@c11uau2e2gT/2sinD~T2t i !#%. ~3.18!

As before, we get peaks or dips whenDT/p is an even
integer orD(T2t i)/p is an odd one. In this case, we get

P~e
g!~T!5 1

2 @16 1
2 cosc1e

uau2~e2gT/221!#. ~3.19!

Moreover, ifDt i is an odd integer, then

P~e
g!~T!5 1

2 @16cosc1e
uau2~e2gT/221!#. ~3.20!

These equations coincide with those obtained in the dis-
sipationless case whenT50. On the other hand, when
uguT!1, ~3.19! and ~3.20! become, respectively,

P~e
g!~T!5 1

2 ~16 1
2 cosc1e

2uau2gT/2! ~3.21!

and

P~e
g!~T!5 1

2 ~16cosc1e
2uau2gT/2!. ~3.22!

These equations show that the interference term decreases
with a lifetime 2tc /uau2, which gets smaller as the average
number of photonsuau2 increases~see Fig. 7!. The quantity
tc /uau2 sets up, here too, the time scale within which the
pure state gets transformed into a statistical mixture. By sam-
pling double atom counts within this time scale, one can thus
monitor the decoherence between the two states of the field
in the cavity. Foruau2510, andg51/tc5100 s21, this im-
plies an upper limit of the order of 1 ms for the time interval
T between successive atoms, in order that the interference
effect be seen. This interval is easily achievable with the
Rydberg atom beams presently available~fluxes of the order
of 105 atoms per second!.

D. Effect of velocity dispersion

We consider here the effect of the dispersion in atomic
velocities on the height of the interference peaks. We assume
the first atom leaves the field in the state

ucF&5
1

A2 ~ ua&1eic1u0&), ~3.23!

wherea depends of course on the atomic speed.
As in Sec. II, we consider here only the effect of velocity

dispersion on the relative phases of the interfering contribu-
tions, neglecting the changes of the coefficients of the states
due to the departure of the pulses inR1 andR2 from the ideal
p/2 situation. Right after the second atom crosses the second
Ramsey region, the state of the system atom 2 plus field is

uc&5 1
2 @ ue&~T 821!1ug&~T 811!] uc&, ~3.24!

where now

T 85D~a8e2 iDT!e2 iDt i8a
†a, ~3.25!

with

FIG. 6. ProbabilityP(g,g;T) to detect in the quantum switch
experiment the first and the second atom in the same stateg as a
function of the delay T between the two atoms
(uau2510,Dt i57p/2). Cavity relaxation is neglected.

FIG. 7. P(g,g;T) in the quantum switch experiment with cavity
relaxation included (1/tc5D/100).
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a85ka, k real ~3.26!

while t i8 is the interaction time between atom 2 and the su-
perconducting cavity. These expressions take into account
the fact that the different atomic velocity implies a change in
the interaction time, and consequently different values for
the phase shift of the field already present in the cavity, as
well as for the amplitude of the field injected in the cavity
due to the presence of the second atom.

As before, the probability of finding the second atom in
stateue& or ug& is

P~e
g!5

1
2 $16Re@ Tr~T 8ucF&^cFu!#%, ~3.27!

where now

T 8ua&5eikfa8 ua~ke2 iDT1e2 iDt i8!& ~3.28!

and

fa85uau2sin@D~ t i82T!#. ~3.29!

Also,

T 8u0&5ukae2 iDT&. ~3.30!

We take for simplicity the situation of ‘‘merging peaks,’’
that is,DT/p equal to an even integer andDt i /p equal to an
odd one. The analysis is similar, and leads to the same con-
clusions, in the case in which the peaks do not merge. We
also consideruau2@1. Then,

Tr ~T 8ucF&^cFu!

5 1
2 @e2 ic1^0ua~k21!&1^0uka&1eic1^auka&#

5 1
2 @e2 ic1e2uau2~k21!2/21e2uau2k2/21eic1e2uau2~k21!2/2#

'e2uau2~k21!2/2cosc1 ~3.31!

and

P~e
g!'

1
2 @16e2uau2~k21!2/2cosc1# ~ uau2@1!. ~3.32!

Comparing this expression with~3.15!, we see that the con-
trast decreases as exp@2uau2(k21)2/2#. The interference
peaks remain detectable as long asuau2(k21)2,1, that is,
uau2(Dk)2,1, whereDk is related to the velocity dispersion
by Dk'Dk/k5Dt i /t i5Dv/v. Therefore this condition im-
plies that one should haveDv/v,1/uau. For uau2'100, this
means that the velocity dispersion should be smaller than
10%.

Let us finally discuss briefly the effect of a finite detection
efficiency. As opposed to the coherent superposition of fields
with different phases considered in Sec. II, unread atoms
must have here a strong effect, since they allow a random
field to be injected in the cavity. This clearly washes out all
interference effects.

IV. NONLOCAL MICROWAVE FIELDS

Nonlocal field states can be prepared by the combination
of two quantum switches@15#. Figure 8 shows the experi-

mental arrangement. Two identical high-Q cavitiesC1 and
C2 are coupled to the same microwave sourceS. An atom
crosses the apparatus and experiencesp/2 pulses beforeC1
and afterC2 , in the low-Q cavitiesR1 andR3 , while ap
pulse is applied inR2 , betweenC1 andC2 . This p pulse
performs the transformationue&→ug& and ug&→2ue&. The
two cavities are initially in the vacuum state, andS is de-
tuned so that a field is injected inC1 ,C2 only if the atom
crosses the cavity in stateue& ~the atom interacts dispersively
with the cavity field—see Fig. 5 for the level scheme!.

Right after the atom goes throughR1 , the combined state
of the system is given by

uc1&5
1

A2 ~ ue&1ug&)u0,0&, ~4.1!

whereu0,0& specifies that the fields in both cavities are in the
vacuum state. After the atom goes through the first cavity,
but before it crossesR2 , we have

uc2&5
1

A2 ~ ue&ua,0&1ug&u0,0&). ~4.2!

Right after the atom crossesR2 , the state of the system will
be

uc3&5
1

A2
~ ug&ua,0&2ue&u0,0&). ~4.3!

After the atom leaves the second cavity, we get

uc4&5
1

A2 ~ ug&ua,0&2ue&u0,ae2 if0&), ~4.4!

wheref05Dt is the phase shift between the cavity mode
and the source during the atom time of flightt betweenC1
andC2 . This phase can be compensated by the introduction
of a dephaser between the source and the second cavity. We
assume in the following that this compensation is performed,
and write therefore, instead ofuc4&,

uc48&5
1

A2
~ ug&ua,0&2ue&u0,a&). ~4.5!

Finally, afterR3 , the state of the system becomes

uc5&5 1
2 @~ ua,0&2u0,a&)ug&2~ ua,0&1u0,a&)ue&]. ~4.6!

FIG. 8. Sketch of the nonlocal field experiment.
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After detection of the atom in stateue& or ug&, the field is
projected in the state

uc f&5
1

N3
~ ua,0&1eic1u0,a&), ~4.7!

wherec150 or p according to whether stateue& or ug& is
detected, respectively, andN35@2(11cosc1e

2uau2)]1/2.
Equation~4.7! represents a coherent superposition of two

states, which describes a coherent field located either in the
first or in the second cavity. The sharing of one photon be-
tween two cavities has been considered before@24#, but the
state considered here is quite different in nature. For
uau2@1, this nonlocal field is related at the same time to two
paradoxes of quantum mechanics: while the superposition of
two macroscopically distinguishable classical states of the
field can be viewed as a Schro¨dinger cat, the nonlocal corre-
lation of field states is typical of EPR experiments. Further-
more, state~4.7! is intimately connected to the measurement
problem in quantum mechanics: the field in the double cavity
can be considered as a classical pointer, whose position mea-
sures the internal microscopic state of the atom crossing the
system. If the atom comes into the first cavity in the state
ue&, instead of the superposition state created byR1 , it is
easy to see that, after crossing the second cavity, the field is
left in the stateua,0&, while if the atom comes in the state
ug& the field is left in the stateu0,a&. Therefore the state of
the double-cavity system can be used as a pointer, which
measures the incoming microscopic atomic state. The two-
cavity system can thus be considered as a macroscopic mea-
suring apparatus~if uau2@1), which interacts with a micro-
scopic system~the two-level atom!. When the atom comes
into this ‘‘measuring apparatus’’ in a coherent superposition
of the statesue& and ug&, the system evolves into the en-
tangled state given by~4.4!. The transformation of this en-
tangled state into a statistical mixture is an essential stage of
the measurement process@3, 5–9#. As in the previous ex-
amples, this transformation is a decoherence process associ-
ated with the interaction between the two-cavity system and
the external world, modeled here by a heat reservoir. We
show in the following that it is possible to measure the co-
herence between the two positions of the pointer, and follow
the process of decoherence in an actual experiment. The two-
cavity system leads therefore not only to an exactly soluble
model of the measurement process, simulating the spatially
distinct positions of a classical pointer, and including the role
of dissipation, but is also sufficiently realistic to foresee an
experimental verification.

A. Detection of the state

The distinction between state~4.7! and the corresponding
statistical mixture may again be demonstrated through a two-
atom correlation experiment. A timeT after preparation of
the field state~4.7!, a probe atom identical to the first one is
sent through the system. At this stage, we assume that the
two atoms have the same velocity and we neglect field re-
laxation.

The effect on the two cavities of the probe atom in statee
is represented by the unitary operators

T l5Dl~ae2 iDT!e2 iDt ial
†al, l51,2 ~4.8!

with

Dl~a2 iDT!5eae2 iDTal
†
2a* eiDTal. ~4.9!

After the atom leavesR3 , the state of the combined atom 2
plus cavities system is

ucatom21 field&5 1
2 @2ue&~T 11T 2!1ug&~T 12T 2!] ucF&.

~4.10!

The probabilities of detecting atom 2 in statesue& or ug& are,
respectively,

P~e
g!5

1
2 $16Re@Tr~T 1ucF&^cFuT 2

†!#%. ~4.11!

Replacing~4.7! in ~4.11!, we get

P~e
g!5

1

2 H 16
1

N3
2 Re@^a,ae

2 iDTua~e2 iDT1e2 iDt i !,a&eifa

1^0,a~e2 iDT1e2 iDt i !uae2 iDT,a&e2 ifa

1^a,ae2 iDTuae2 iDT,a&eic1

1^0,a~e2 iDT1e2 iDt i !ua~e2 iDT1e2 iDt i !,0&e2 ic1#J ,
~4.12!

with fa given by~3.9!. Whenuau2@1, the first two terms in
the expression between square brackets become negligible.
We get then,

P~e
g!'

1
2 $16 1

2 cosc1@e
22uau2~12cosDT!

1e22uau2$11cos@D~ t i2T!#%#%. ~4.13!

The term proportional to cosc1 is the interference contri-
bution. For randomc1 , which corresponds to a statistical
mixture, we getP(

e
g)51/2. Forc150 or p, we get peaks

wheneverDT/p is an even integer, orD(t i2T)/p is an odd
one. Then the conditional probabilityP(a1 ,a2) is given
again by~3.14!. If, besides,Dt i /p is an odd integer, both
series of peaks coincide, andP(a1 ,a2) is given by~3.16!.

B. Dissipation and decoherence

The evolution of the field density operator under the ac-
tion of dissipation is calculated in the same way as in the
previous two cases. The details are given in Appendix B.
When uau2@1, the conditional probability for detecting the
probe atom in statesue& or ug& is now

P~g
e!~T!' 1

2 $16 1
2 cosc1@e

2uau2~e2gT/2cosDT21!

1e2uau2@e2gT/2cosD~T2t i !21##%. ~4.14!

This probability exhibits a variation withT quite similar
to the one displayed in Fig. 3 of Ref.@15#. Wheng→0, we
get Eq. ~4.13!, as expected. For finiteg, P(

g
e)(T) exhibits

peaks whose amplitudes decays as exp(2uau2gT), corre-
sponding to a lifetimetc /uau2 of the macroscopic coherence.
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C. Effect of velocity dispersion

We assume that the first atom prepares the field in the
state~4.7!. The second atom comes a timeT after the first
one, with a different velocity.

Let

T 185D1~kae2 iDT!e2 iDt i8a1
†a1, ~4.15a!

T 285D2~kaeifv8e2 iDT!e2 iDt i8a2
†a2, ~4.15b!

wherek is a real number, assumed to be close to one, and
fv8 is the noncompensated phase shift between the cavity
mode and the source during the atom time of flight from the
first to the second cavity:

fv852DS Lv8
2
L

v D'D3L
dv
v2

, ~4.16!

where dv5v82v. The probability of finding the second
atom in statee or g is given by

P~g
e!5

1
2 $16Re@Tr ~T 18ucF&^cFuT 28

†!#%. ~4.17!

For uau2@1, andDT/p an even integer, we get

Tr~T 18ucF&^cFuT 28!' 1
2e

ic1^a,kaeifv8uka,a&, ~4.18!

while if D(T2t i8)/p is an odd integer,

Tr~T 18ucF&^cFuT 28!' 1
2e

2 ic1^0,a~keifv821!ua~k21!,0&.
~4.19!

The conditional probability ~4.17! becomes then, if
uau2@1 andDT/p is an even integer,

P~g
e!'

1
2 @16 1

2e
2uau2~12k!2e2kuau2~12cosfv8!

3cos~c12kuau2sinfv8!#, ~4.20!

while if uau2@1 andD(T2t i8)/p is an odd integer,

P~g
e!'

1
2 @16 1

2e
2uau2~12k!2e2kuau2~12cosfv8!cosc1#. ~4.21!

If DT/p is an even integer, andDt i8/p is an odd integer, we
get instead

P~g
e!'

1
2 $16 1

2e
2uau2~12k!2e2kuau2~12cosfv8!@cos~c1

2kuau2sinfv8!1cosc1#%. ~4.22!

In order that the peaks do not become negligible, one
should satisfy, for~4.20!, the conditions

uau2~12k!2&1 , ~4.23a!

kuau2fv8
2

&1 , ~4.23b!

kuau2fv8&1 , ~4.23c!

while for ~4.21! only conditions~4.23a! and ~4.23b! apply.
Since uau}1/v, we haveu12ku5uDa/au5udvu/v, and

therefore ~4.23a! implies that uau2&(v/dv)2. For
Dv/v'1022, this meansuau2&104.

Sincefv85DLdv/v2, and k'1, condition ~4.23b! im-
plies thatuau2&(v/dv)2@v/(DL)#2. However,uDu must be
at least of the order of the transit-time-broadened linewidth
of the atom, that is, 1/t i8&uDu. But t i8&L/v, so that
v/L&uDu and v/(DL)!1. Therefore one should have
uau2&(v/dv)2, which coincides with the restriction coming
from ~4.23a!.

Finally, we get from ~4.23c! that uau2&(v/dv)
3@v/(DL)#, or yet uau2&v/dv. For dv/v'1022, this
yields uau2&100, which is the most restrictive condition so
far. It is interesting, however, to note that this last condition
applies only to the peaks associated with the condition
DT/p equal to an even number. Therefore the peaks which
show up wheneverD(T2t i8)/p becomes equal to an odd
number are more robust with respect to the velocity spread.
As this spread increases, these peaks survive the others, up to
the point when conditions~4.23a! and ~4.23b! are also vio-
lated.

Note finally that, as in the case of the quantum switch, a
high detection efficiency is necessary, since unread atoms
also spoil the quantum correlation between the two cavities.

V. CONCLUSION

Recent developments in quantum optics, including the
production of long-lived circular Rydberg states, of velocity-
selected atomic beams, and of high-Q superconducting cavi-
ties, have made it possible to observe phenomena which are
at the heart of quantum mechanics. In this paper, we have
discussed three realistic experimental arrangements, which
could produce coherent superpositions of mesoscopic states
of the electromagnetic field~Schrödinger cats!, at the frontier
between the macroscopic and the microscopic worlds, and
the subsequent monitoring of their decoherence, due to dis-
sipation. These experiments would constitute an ideal test of
the measurement theory, since the classically distinguishable
field states correspond to the distinct positions of a macro-
scopic pointer. One could thus, by monitoring the decoher-
ence between those states, follow the ‘‘collapse’’ of the quan-
tum state into a classical statistical mixture. Furthermore, the
nonlocal state of the field discussed in Sec. IV provides an
EPR-like experiment in which quantum correlations between
spatially separated mesoscopic systems can be demonstrated.

The conjugation of low-dissipation cavities with the
atomic correlation technique has allowed us to overcome the
two usual obstacles to the realization of such experiments.
Large cavity damping times yield coherence lifetimes in the
observable range, for up to 100 photons in the cavity, while
the probing of the coherence by the second atom is equiva-
lent to the measurement of a nonlocal operator.

ACKNOWLEDGMENT

One of the authors~L.D.! thanks the Conselho Nacional
de Desenvolvimento Cientı´fico e Tecnolo´gico ~Brazil! for
support.

APPENDIX A: DISSIPATION IN THE QUANTUM SWITCH

Let us calculate the time evolution, due to dissipation, of
the field density matrix corresponding to the quantum switch,
as well as of the conditional probability for finding the sec-
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ond atom in stateg or e, after having detected the first atom
in one of the two states.

The method coincides with the one adopted in Sec. II. We
start from the expression for the normal-ordered characteris-
tic function ~2.11! corresponding to state~3.1!:

CN~l,l* ,0!5
1

N2
2 @e~la*2l* a!11

1e2uau2/2~eic1ela*1e2 ic1e2l* a!#.

~A1!

The time evolution of this characteristic function is given by
~2.13!, so that

CN~l,l* ,t !5
1

N2
2 @e~la*2l* a!e2gt/2

11

1e2uau2/2~eic1ela* e2gt/2

1e2 ic1e2l* ae2gt/2
!#. ~A2!

This expression corresponds to the following density opera-
tor:

rF~ t !5
1

N2
2 @ uae2gt/2&^ae2gt/2u1u0&^0u

1e2uau2~12e2gt!/2~eic1u0&^ae2gt/2u

1e2 ic1uae2gt/2&^0u!#. ~A3!

This equation clearly displays the transition from the ini-
tial pure state to the final complete statistical mixture. For
t50, we get the density operator corresponding to the
state ~3.1!. When gt!1, we may approximate
exp@2uau2(12e2gt)/2#'exp(2guau2t/2), so that the coherent
contribution to ~A3! decays with a lifetime 2tc /uau2. For
2tc /uau2!t!tc , ~A3! becomes a statistical mixture, with
equal weights, of the statesu0& and uae2gt&.

From ~A3! and ~3.5! we calculate now the conditional
probability ~3.17!. We use that

Tr@T rF~T!#5
1

N2
2 @^ae2gt/2uT uae2gt/2&1^0uT u0&1e2uau2~12e2gt!/2~eic1^ae2gt/2uT u0&1e2 ic1^0uT uae2gt/2&!#

5
1

N2
2 $eifa~T!^ae2gt/2ua~e2 iDT1e2gt/2e2 iDt i !&1^0uae2 iDT&1e2uau2@12e2gt!/2@eic1^ae2gt/2uae2 iDT&

1eifa~T!e2 ic1^0ua~e2 iDT1e2gt/2e2 iDt i !&#%, ~A4!

wherefa(T) is given by

fa~T!5uau2e2gt/2sin@D~ t i2T!#. ~A5!

Writing down the expressions for the scalar products, we get
explicitly

Tr~T rF!

5
e2uau2/2

2N2
2 $e2uau2@~12e2 iDt i !e2gt2e2 iDTe2gt/21eiD~T2t i !e2gt/2#

111e2uau2/2@eic1euau2e2gt/2e2 iDT

1e2 ic1e2uau2e2gt/2eiD~T2t i !#%. ~A6!

The first two terms on the right-hand side of~A6! give neg-
ligible contributions whenuau2@1. Replacing the remaining
contributions in~3.17!, we obtain expression~3.18!.

APPENDIX B: DISSIPATION IN A NONLOCAL FIELD

We consider here the two-cavity system, and calculate the
time evolution of the field density operator, due to dissipa-

tion, as well as the time-dependent conditional probability of
finding the second atom in the same or in a different state
than the first one.

The initial field density operator is obtained from~4.7!:

rF~0!5
1

N3
2 @ ua,0&^a,0u1u0,a&^0,au1~eic1u0,a&^a,0u

1e2 ic1ua,0&^0,au!#. ~B1!

From this expression, we get the normal-ordered character-
istic function right after the preparation of the state:

CN~l1 ,l2 ;l1* ,l2* ;0!

5Tr@rF~ t !el1a1
†
el2a2

†
e2l1* a1e2l2* a2#

5
1

N3
2 $e~l1a*2l1* a!1e~l2a*2l2* a!

1e2uau2@eic1e~l1a*2l2* a!1e2 ic1e~l2a*2l2* a!#%.

~B2!
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As before, the time evolution of this characteristic function is
obtained from

CN~l1 ,l2 ;l1* ,l2* ;t !

5CN~l1e
2gt/2,l2e

2gt/2;l1* e
2gt/2,l2* e

2gt/2;0!, ~B3!

so that

CN~l1 ,l2 ;l1* ,l2* ;t !

5
1

N3
2 $e~l1a*2l1* a!e2gt/2

1e~l2a*2l2* a!e2gt/2

1e2uau2@eic1e~l1a*2l2* a!e2gt/2

1e2 ic1e~l2a*2l2* a!e2gt/2
#%. ~B4!

This expression for the characteristic function corresponds to
the following density operator:

rF~ t !5
1

N3
2 @ uae2gt/2,0&^ae2gt/2,0u1u0,ae2gt/2&^0,ae2gt/2u

1e2uau2~12e2gt!~eic1u0,ae2gt/2&^ae2gt/2,0u

1e2 ic1uae2gt/2,0&^0,ae2gt/2u!#. ~B5!

This expression exhibits explicitly the transformation of
the initial pure state into a statistical mixture. While the in-
tensity lifetime istc , we see that foruau2!gt!1, the coher-
ences vanish with a lifetime equal totc /uau2, two times
smaller than in the quantum switch case.

From ~B5!, ~4.8!, and~4.9!, we get

Tr@T 1rF~T!T 2
†#5

1

N3
2 $^ae2gT/2ua~e2 iDT1e2gt/2e2 iDt i !&^ae2 iDTu0&eifa~T!1^0uae2 iDT&^a~e2 iDT

1e2gt/2e2 iDt i !uae2gt/2&e2 ifa~T!1e2uau2~12e2gt!@eic1^ae2gt/2uae2 iDT&^ae2 iDTuae2gt/2&

1e2 ic1^0ua~e2 iDT1e2gt/2e2 iDt i !&^a~e2 iDT1e2gt/2e2 iDt i !u0&#%, ~B6!

wherefa(T) is given by~A5!.
For uau2@1, the first two terms will always be negligible. Note that, fort50, the first factor of the first term could be equal

to one ifDT56p/3 andDt i57p/3 ~modulo 2p), as seen in the quantum switch model. However, in this case the second
factor of the first term will be much smaller than one, so that here the first term on the right-hand side of~B6! will always be
negligible whenuau2@1. In this limit, replacing~B6! in ~4.11! yields expression~4.14!.
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