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Study of quantum anharmonic oscillators by state-dependent diagonalization
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In the present work, we propose the method of state-dependent diagonalization to find the energy eigenval-
ues and eigenstates of a quantum anharmonic oscillator. The example of a cubic-quartic anharmonic oscillator
is used to illustrate its validity. Unlike the conventional exact diagonalization, this method is shown to be very
efficient for calculating the energy eigenvalues of the excited states as well as the corresponding eigenfunc-
tions. That is, no huge matrix needs to be diagonalized in this approach.

PACS numbsd(s): 03.65.Ge

In recent years the problem of quantum oscillators has To begin with, we consider the one-dimensional cubic-
been a very active area of reseafth The anharmonic os- quartic anharmonic oscillator described by the Hamiltonian,
cillator model has the characteristic of being a rather simple )
model Where many nontnw_al features that are essen_tlal to H— Px AN APCTAS, )
understanding quite complicated systems may be imple- 2
mented, and thus it has played a very significant role in the
theoretical understanding of many branches of physics, e.gihere A,, A;, and A, are the coupling constants. By a
nuclear and particle physics, atomic and molecular physicssimple change of variableg=x—s, as well as the introduc-
solid-state physics, etc. This model also exhibits algebration of the annihilation operatog=(uy+ip,)/\2hu, the
ically simple yet highly interesting properties so that variousHamiltonian can be written in the forrdl=Hy+V, with
approximation schemes can be tested. For instance, it h&$, being the diagonal part and the off-diagonal part:
been demonstrated by Bender and Wu that the application of

a conventional perturbation method gives a divergent pertur- uh

%
+ ﬂ(Aﬁ— 3A;s+6A,5%) |(2n+1)

bation series for all values of the anharmonic coupling con- "0~ | 4~

stant for a quartic anharmonic oscillatf2]. Besides, the P2

problem of flndlng exact solut!ons for the anharmonic osm!- 13A,| | (2724 2R+ 1)+ A, AP Aust
lator model is of considerable importance as well. Not only it 2u

is essential to some model field theories, but it is also useful @)
in various applied contexts.

In the present work we develop the method of statey harefi=a’a andv=3% .a'™V._+H.c. with
dependent diagonalization to determine the energy eigenvaY\-’ ' m=1 m

ues and eigenstates of a quantum anharmonic oscillator. Un- 5o\ 12 7 |32
like the conventional numerical exact diagonalization, this V.= —) (2A,5+3A5%+4A,8%) +3 —)

: - . 2u 2u
approach is a very efficient method for calculating the energy
eigenvalues of the excited states as well as the corresponding X (Ag+4As8)(N+1),

eigenfunctions. In other words, no huge matrix needs to be

diagonalized in the method of state-dependent diagonaliza- uh h

tion. The basic idea of the method is very simple. Instead of Vyo=— a + 2—(A2+3A3s+ 6A4sz)
diagonalizing the Hamiltonian of the anharmonic oscillator

with a fixed basis set, we select different basis sets for dif- 2

ferent energy levels according to some optimization +2A4(2—) (2n+3),
schemes, e.g., the operator meth8Hor the variational prin- ®

ciple of the “measure of nondiagonalify4].” With these 32

optimal basis sets, the off-diagonal matrix elements of the V3=(—) (Ag+4A,S),
Hamiltonian drop off very rapidly for each level. Even for 2p

the highly excited states, the size of the matrix is easily man-
ageable. In the following sections we shall demonstrate the
validity of the method of state-dependent diagonalization via
the example of a cubic-quartic anharmonic oscillator.

% 2
V4:A4 ﬂ . (3)

It is obvious that the eigenstates of the diagonal tergrare
basically the eigenstates of the simple harmonic oscillator
*Present address: Department of Philosophy, The Chinese Univeassociated with the Hamiltoniad gyo=fu(a’a+3). If V

sity of Hong Kong, Shatin, New Territories, Hong Kong. can be treated as a small perturbation, tignwill be an
TPresent address: Department of Physics, Cornell Universityapproximation to the Hamiltoniald. Besides, the oscillation
Ithaca, NY 14853-2501. theorem[5] states that the wave function of ti¢h excited
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FIG. 1. (@) The cubic-quartic anharmonic oscillator potential
V(x) =x2/2+4x3+ 2x*; (b) the cubic-quartic anharmonic oscillator

potentialV(x) =x2/2+ 2x3+ 2x*.
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state of a bound system has exaatlynodes, and thus the
nth excited statgn) of H, can be regarded as a first approxi-
mation to the correspondingth excited staté,) of H. In
accordance to this approximation, the zeroth-order estimate
of the energy eigenvalue of|¢,) is given by
E®=(n|Hyn), and the first-order  correction
AEM=(n|V|n) vanishes. So far the two parametersnd

p remain undetermined. Therefore, we now discuss how to
fix these parameters according to three different optimization
schemes, namely, the operator method, the variational prin-
ciple of the “measure of nondiagonality,” and the extremiza-
tion method:

(i) Operator methodIf we assume that the most impor-
tant contribution of the off-diagonal terivi comes from the
terms V; and V,, the operator method requires that
Vi/n)=V,|n)=0 so that the zeroth-order estimate of the
energy eigenvaluEﬁO) may be improved. The tw(coupled
algebraic equations will determine the two parameseasd
. In previous studies of the anharmonic oscillators this
method has proven to be able to give very good estimates of
the energy eigenvalug8)].

(i) Variational principle of the “measure of nondiagonal-
ity.” If |n) is taken to approximatéy,), then the non-
negative definite quantity A,=+/(n|][H—(n|H|n)]?|n)
=(n[H?|n)—E? simply tells us how good the approxi-
mate wave function is. In the case whekg vanishes|n)
indeed coincides withy,). Accordingly, we can minimize
A, by varying the parameters and . With these optimal
values ofs and u we can expect thafgo) provides a better
estimate of the exact energy eigenvalue.

(iii) Extremization methodThis method is a straightfor-
ward extension of the variational method for the ground-state
energy in the sense that the paramesesad . are chosen to
extremizeEﬁo). In other words, we vary the parameters to
make the first-order variation & vanish. Unlike the case
of the ground state, the resultant estimate of the energy ei-
genvalue of an excited state does not give any upper bound
to the exact energy. Nevertheless, this approach has been

TABLE I. Comparison of the exact energy eigenvalues of the poterki@R¢ 4x3+2x%), with the
zeroth-order approximations based on three schemes: the operator @Mpdhe variational principle of
the measure of nondiagonalitiIN), and the extremization methd@&X).

Error of Error of Error of

State OoM MN EX Exact OM%) MN (%) EX (%)

0 —-0.579361 —0.542866 —0.57936 —0.671324 —13.69888 —19.13507 —13.698 826
1 1.228 8059 1.1894281 1.1455018 1.29492255.105835 —8.146777 —11.538 966
2 3.483898 3.461298 3.4170776 3.52931441.286825 —1.927174 —3.1801218
3 6.293668 6.2681748 6.1997652 6.37008491.199622 —1.599823 —2.6737424
4 9.5117038 9.5012736 9.3678238 9.58814160.797 212 —0.905994 —2.297 8156
5 13.060 149 13.068 733 12.852358 13.1247470.49219 —-0.42678 —2.0753822
10 34.459 627 34.507 706 33.823237 34.375905 0.2435464 0.383 40816607 718 3
30 155.647 67 155.39116 152.54426 15448539 0.7523536 0.586 31119256 513 6
50 311.38396 310.59711 305.1691 308.79433 0.8386258 0.5838131.173 996
70 490.7817 489.35631 481.02233 486.5447 0.8708361 0.5778728B1350181
100 793.98439 791.46082 778.28388 786.96573 0.891863 0.571 19217103 205 7
500 6886.7442 6861.8532 6754.0297 6824.2604 0.9156125 0.550869D8629 1325
1000 17405.395 17341.941 17072.504 17247.66 0.91453229 0.546 63380155334
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TABLE Il. Same as in Table | except for the potentiaP2+ 2x3+ 2x*).

Error of Error of Error of
State oM MN EX Exact OM%) MN (%) EX (%)

0 0.8108627 0.8150346 0.8108627 0.7912957 2.47276853 2.99999873 2.472 76853
1 2.9217948 29275277 29217948 2.8797899 145861003 1.65768281 1.458 61003
2 5718668 5.7135149 57103217 5.727911-90.1613831 —0.2513483 —0.307 097 3
3 8.9758673 8.9769685 8.9422852 9.003 4185.3060075 —0.293 7772 —0.6790011
4 1259102 12.60657 12.518644 12.6233250.2559139 —0.1327311 —0.8292651
5 16.504 369 16.535132 16.382681 16.5317330.1655208 0.020564 92—0.901 607 4
10 39.463855 39.530482 38.9924 39.384652 0.20110118 0.37027+4849959515
30 165.27465 165.10216 162.58179 164.24201 0.628 72542 0.523 704520108416
50 324.65354 324.01134 319.03612 322.28307 0.73552502 0.536 266 4®07 483 3
70 507.233 67 506.00495 498.23212 503.29065 0.78344858 0.539 31698050917
100 814.69446 812.43568 799.96393 808.06717 0.82014103 0.5406122®027927
500 6946.2621 6922.2263 6816.4141 6885.016 7 0.88954535 0.540 4426496 4049
1000 17 499.589 17437.506 17171.246 17 343.835 0.89803758 0.54008109951041

applied to a number of examples quite successfully, and thely(s,, ) associated with the energy lewel In terms of
estimates of the energy eigenvalues are remarkably ffflod this basis we can expand the actual state vectay)
Furthermore, it should be noted that in all these threeas a linear combination of the basis vectors:
approaches, the optimal parameterand u as well as the |y,)=3;_,Ci|dw(S,,1n)). Since we expect thdiy,) has
resultant HamiltoniarH, are all state-dependent. the largest overlap witfyp, (s, £4)), Cy should be small for
The above three methods give us criteria for selectingarge k. Then the summation can be truncated at a large
optimal values ofs and . for each energy level, and they enough value ofk; in other words, we can write
enable us to obtain good estimates of the exact energy eigenf,n>:§E: 1CW bi(Sn,mn)). The time-independent Schro
values. To further improve the results, we shall apply theginger equation becomes
method of state-dependent diagonalization. Suppose that we
are interested in determining the energy eigenvalue of the
level n and the corresponding wave function. We first define

a basis sef| ¢(sn,un));k=1,2,3, .. } as follows: (Hm—EdmdCm=0, k=1.23,.. K. (4)

1

IM =

In+(—1)%]), if ks2n+1

| B1(Sn+1an)) = k1), if k>2n+1,

Hnk is aK XK symmetric matrix whose matrix elements are
HmkE_<¢m(Snuun)|_H|¢k(S_nan))ZEEr?)(Sp’/—Ln) Omkt Vinks
where [k/2] equals the integral part ok/2. The states an I ciar|1 be (:;agonahzed vteré/te%sny b(lelcellfuse ;he Sﬁ'
{lk);k=1,2,3, .. } are the eigenstates of the diagonal term lagonal elementsy, are expected to be smail. [T we denote
the eigenvalues of H,, in ascending order by
TABLE I1ll. The dimensions of the matrices of the state- A1,A2 A3, .. Ak, and the normalized e_lgenfunctlons b_y
dependent diagonalization method required for the energy eigenvah501>'|‘»°2>'|‘93>' ... | @), then the approximate energy ei-
ues to converge to five significant figures. The potential is
(x?/2+4x3+2x*. The schemes OM, MN, and EX are used to  TABLE IV. Same as in Table Ill except for the potential

determines, and u,, . (X224 2x3+2x%).

State oM MN EX State OM MN EX
0 13 13 13 0 11 13 13
1 15 15 17 1 13 13 13
2 17 17 17 2 13 13 13
3 17 17 17 3 15 15 15
4 21 21 19 4 15 15 17
5 17 17 15 5 17 17 15
10 23 23 23 10 21 21 21
30 25 25 33 30 29 29 29
50 45 41 41 50 37 33 41
70 53 53 53 70 41 41 53
100 49 53 77 100 49 53 73
500 181 191 291 500 181 181 281

1000 311 331 531 1000 301 321 521
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genvalue for the statpy,) and the corresponding approxi-  TABLE V. State-dependent diagonalization with, &) fixed at

mate eigenfunction will be given by their ground-state values given by the extremization method. The
“matrix size” is the dimension of the matrix required for the energy
Nev1, If n>r eigenvalue to converge to five significant figures. Results are
Enk= [ A if n<r shown for two potentials: A,,A3,A;)=(1/2,4,2) and
n+is (Ay,Az,A,)=(1/2,2,2).
and o
Matrix size
[|¢,+1>, if n>r State Az=4 Ay=2
im0 lens1), if n<r, 0 13 13
respectively, wherer=[(K—1)/2]. When K increases, ii 12
En k and| ¢, k) will converge to the exact results. Unlike the 19 23
conventional exact diagonalization, the approximate estimatg 23 19
E, k is, in general, not an upper boundBf. Nevertheless,
whenK is so large that the staté) is included in the sum- 19 21
mation, the state-dependent diagonalization becomes exac 3l 35
the same as the conventional exact diagonalization. The 3 101
E, « will be an upper bound oE,. Furthermore, it should 50 ;‘l"i ;31

be noted that if the anharmonic oscillator potential does not©
contain the cubic term, i.eA;=0, the potential will be an 100 301 421
even function ofx and the eigenfunctions will have definite
parity. Hence, the numerical diagonalization can be simpli- ) ) ]
fied by choosing the subspace of basis vectors with apprdhe eigenenergies of the first 50 states can be accurately cal-
priate parity. culated by simply diagonalizing a maitrix of thg size Iess_than
To illustrate the validity of the method of state-dependent0% 50. On the other hand, by using the basis of the simple
diagonalization, we perform the explicit numerical calcula-harmonic oscillatoH = p/2+ A x?, the conventional exact
tions for two special cases of the cubic-quartic anharmonigliagonalization will need a 5050 matrix in order to give
potential model, namelyi) A,=3, A;=4, andA,=2, and the energy eigenvalues of the first eight leiélk Therefore,
(i) A,=%, A;=2, andA,=2. As shown in Fig. 1, the f@nding the eigenenergies of the_ higher levels by the conven-
é|_onal approach seems not feasible at all because a very huge
matrix is needed, whereas our approach is able to accomplish
the task with very modest effort. Furthermore, it should be
oted that for low-lying eigenstates all the three different
ptimization schemes provide equally good basis sets for

former case corresponds to that of an asymmetrical doubl
well potential, while the latter is essentially a single-well
potential with a shallow hump at the center of the well. First,
we apply the three optimization schemes to determine th8
zeroth-order estimates of the energy eigenvalues of the! S A
cubic-quartic anharmonic oscillator and tabulate the result lagonalization, but the performance of the extremization

in Tables | and Il. Then we evaluate the exact eigenenergie@‘EthOd starts to deteriorate as we go to the higher levels. It

and eigenfunctions by the method of state-dependent diag(§_eems to suggest that the matrix size required to achieve the

nalization. For easy comparison, we list the exact energies i onE/hergled r|e§ults tlstnot lse?sn;vgfttohthe paramatemsd,uf th
Tables | and Il as well. It is clear that the zeroth-order esti-0f € 10W-lyIng states. in 1act, It those parameters ot the

mates are satisfactory for all energy levels, especially for thground state determined by the extremization method are

highly excited states. The discrepancies that occur in th sed for all energy Ievels,_ the s_peed of convergence is about
low-lying eigenstates are due to the fact that the asymmetr € same for the Iow—lylng e|_genstates. Nevertheless, as
of the potential well becomes significant for these states, an hown in Table V the matrix size ”eed?d for convergence
our approximation of the potential well by a simple harmonic'"cr€ases dramatically as we go to th? higher levels.
oscillator potential thus fails, no matter how we tune the In summary, we have propgsed a _cj|ffgrent app_roach—the
parameters and . The numerical results also indciate that methoc_i of state-depend_ent diagonalization—to find the en-
for the low-lying eigenstates the operator method is able t§'9Y eigenvalues and eigenstates of a quantum anharmo_nlc
give better estimates of the eigenenergies than the other tv\%sc!llator, and the example_of a cubllc-qua_lrt.lc anharmonic
methods, whereas the variational method of the “measure chscnlator has bgen used to ||Ius_trate Its Val'd'.ty' It hgs bgen
nondiagonality” proves to be a better approach for the highlyshown that unlike the conventional exact diagonalization,

excited states. Besides, both the operator method and tﬁgis approach is a very efficient method for calculating the

extremization method give exactly identical ground-state reSNeray eigenvalues of the excited states, as well as the cor-

sults; in fact, both methods yield the same set of tWoresponding eigenfunctions. The method of state-dependent

(coupled algebraic equations imandu, as well as the same dlagonal|zat!on Is so simple t.hat It cgan be easny applied to
. ©) Tpic : . ._more complicated anharmonic oscillator potentials. We are
expression foEy™. This interesting feature was observed in

revious studies of the quartic anharmonic oscillator as wel urrently pursuing this direction, and the results will be pub-
F3] vious studi quart ! ! Wellished elsewhere.
Tables Ill and IV show the matrix size required to achieve This work is partially supported by the Direct Grant for
the converged results for each energy level by the method dResearch from the Research Grants Council of the Hong
state-dependent diagonalization. It is remarkable that each &fong Government.
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