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In the present work, we propose the method of state-dependent diagonalization to find the energy eigenval-
ues and eigenstates of a quantum anharmonic oscillator. The example of a cubic-quartic anharmonic oscillator
is used to illustrate its validity. Unlike the conventional exact diagonalization, this method is shown to be very
efficient for calculating the energy eigenvalues of the excited states as well as the corresponding eigenfunc-
tions. That is, no huge matrix needs to be diagonalized in this approach.

PACS number~s!: 03.65.Ge

In recent years the problem of quantum oscillators has
been a very active area of research@1#. The anharmonic os-
cillator model has the characteristic of being a rather simple
model where many nontrivial features that are essential to
understanding quite complicated systems may be imple-
mented, and thus it has played a very significant role in the
theoretical understanding of many branches of physics, e.g.,
nuclear and particle physics, atomic and molecular physics,
solid-state physics, etc. This model also exhibits algebra-
ically simple yet highly interesting properties so that various
approximation schemes can be tested. For instance, it has
been demonstrated by Bender and Wu that the application of
a conventional perturbation method gives a divergent pertur-
bation series for all values of the anharmonic coupling con-
stant for a quartic anharmonic oscillator@2#. Besides, the
problem of finding exact solutions for the anharmonic oscil-
lator model is of considerable importance as well. Not only it
is essential to some model field theories, but it is also useful
in various applied contexts.

In the present work we develop the method of state-
dependent diagonalization to determine the energy eigenval-
ues and eigenstates of a quantum anharmonic oscillator. Un-
like the conventional numerical exact diagonalization, this
approach is a very efficient method for calculating the energy
eigenvalues of the excited states as well as the corresponding
eigenfunctions. In other words, no huge matrix needs to be
diagonalized in the method of state-dependent diagonaliza-
tion. The basic idea of the method is very simple. Instead of
diagonalizing the Hamiltonian of the anharmonic oscillator
with a fixed basis set, we select different basis sets for dif-
ferent energy levels according to some optimization
schemes, e.g., the operator method@3# or the variational prin-
ciple of the ‘‘measure of nondiagonality@4#.’’ With these
optimal basis sets, the off-diagonal matrix elements of the
Hamiltonian drop off very rapidly for each level. Even for
the highly excited states, the size of the matrix is easily man-
ageable. In the following sections we shall demonstrate the
validity of the method of state-dependent diagonalization via
the example of a cubic-quartic anharmonic oscillator.

To begin with, we consider the one-dimensional cubic-
quartic anharmonic oscillator described by the Hamiltonian,
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where A2 , A3 , and A4 are the coupling constants. By a
simple change of variables,y5x2s, as well as the introduc-
tion of the annihilation operator,a5(my1 ipy)/A2\m, the
Hamiltonian can be written in the formH5H01V, with
H0 being the diagonal part andV the off-diagonal part:
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It is obvious that the eigenstates of the diagonal termH0 are
basically the eigenstates of the simple harmonic oscillator
associated with the HamiltonianHSHO5\m(a†a1 1

2). If V
can be treated as a small perturbation, thenH0 will be an
approximation to the HamiltonianH. Besides, the oscillation
theorem@5# states that the wave function of thenth excited
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state of a bound system has exactlyn nodes, and thus the
nth excited stateun& of H0 can be regarded as a first approxi-
mation to the correspondingnth excited stateucn& of H. In
accordance to this approximation, the zeroth-order estimate
of the energy eigenvalue of ucn& is given by
En
(0)5^nuH0un&, and the first-order correction

DEn
(1)5^nuVun& vanishes. So far the two parameterss and

m remain undetermined. Therefore, we now discuss how to
fix these parameters according to three different optimization
schemes, namely, the operator method, the variational prin-
ciple of the ‘‘measure of nondiagonality,’’ and the extremiza-
tion method:

~i! Operator method.If we assume that the most impor-
tant contribution of the off-diagonal termV comes from the
terms V1 and V2 , the operator method requires that
V1un&5V2un&50 so that the zeroth-order estimate of the
energy eigenvalueEn

(0) may be improved. The two~coupled!
algebraic equations will determine the two parameterss and
m. In previous studies of the anharmonic oscillators this
method has proven to be able to give very good estimates of
the energy eigenvalues@3#.

~ii ! Variational principle of the ‘‘measure of nondiagonal-
ity.’’ If un& is taken to approximateucn&, then the non-
negative definite quantity Dn[A^nu@H2^nuHun&#2un&
5A^nuH2un&2En

(0)2 simply tells us how good the approxi-
mate wave function is. In the case whereDn vanishes,un&
indeed coincides withucn&. Accordingly, we can minimize
Dn by varying the parameterss andm. With these optimal
values ofs andm we can expect thatEn

(0) provides a better
estimate of the exact energy eigenvalue.

~iii ! Extremization method.This method is a straightfor-
ward extension of the variational method for the ground-state
energy in the sense that the parameterss andm are chosen to
extremizeEn

(0) . In other words, we vary the parameters to
make the first-order variation ofEn

(0) vanish. Unlike the case
of the ground state, the resultant estimate of the energy ei-
genvalue of an excited state does not give any upper bound
to the exact energy. Nevertheless, this approach has been

FIG. 1. ~a! The cubic-quartic anharmonic oscillator potential
V(x)5x2/214x312x4; ~b! the cubic-quartic anharmonic oscillator
potentialV(x)5x2/212x312x4.

TABLE I. Comparison of the exact energy eigenvalues of the potential (x2/214x312x4), with the
zeroth-order approximations based on three schemes: the operator method~OM!, the variational principle of
the measure of nondiagonality~MN!, and the extremization method~EX!.

Error of Error of Error of
State OM MN EX Exact OM~%! MN ~%! EX ~%!

0 20.579 361 20.542 866 20.579 36 20.671 324 213.698 88 219.135 07 213.698 826
1 1.228 8059 1.189 4281 1.145 501 8 1.294 922 525.105 835 28.146 777 211.538 966
2 3.483 898 3.461 298 3.417 077 6 3.529 314 121.286 825 21.927 174 23.180 121 8
3 6.293 668 6.268 174 8 6.199 765 2 6.370 084 921.199 622 21.599 823 22.673 742 4
4 9.511 7038 9.501 273 6 9.367 823 8 9.588 141 620.797 212 20.905 994 22.297 815 6
5 13.060 149 13.068 733 12.852 358 13.124 74720.492 19 20.426 78 22.075 382 2
10 34.459 627 34.507 706 33.823 237 34.375 905 0.243 546 4 0.383 408 621.607 718 3
30 155.647 67 155.391 16 152.544 26 154.485 39 0.752 353 6 0.586 311 921.256 513 6
50 311.383 96 310.597 11 305.169 1 308.794 33 0.838 625 8 0.583 81321.173 996
70 490.781 7 489.356 31 481.022 33 486.544 7 0.870 836 1 0.577 872 821.135 018 1
100 793.984 39 791.460 82 778.283 88 786.965 73 0.891 863 0.571 192 721.103 205 7
500 6 886.744 2 6 861.853 2 6 754.029 7 6 824.260 4 0.915 612 5 0.550 869 9621.029 132 5
1000 17 405.395 17 341.941 17 072.504 17 247.66 0.914 532 29 0.546 633 8921.015 533 4

53 1281STUDY OF QUANTUM ANHARMONIC OSCILLATORS BY . . .



applied to a number of examples quite successfully, and the
estimates of the energy eigenvalues are remarkably good@6#.

Furthermore, it should be noted that in all these three
approaches, the optimal parameterss andm as well as the
resultant HamiltonianH0 are all state-dependent.

The above three methods give us criteria for selecting
optimal values ofs andm for each energy level, and they
enable us to obtain good estimates of the exact energy eigen-
values. To further improve the results, we shall apply the
method of state-dependent diagonalization. Suppose that we
are interested in determining the energy eigenvalue of the
level n and the corresponding wave function. We first define
a basis set$ufk(sn ,mn)&;k51,2,3, . . .% as follows:

ufk(sn ,mn)&5H un1(21)k[ k2 ] &, if k<2n11

uk21&, if k.2n11,

where @k/2# equals the integral part ofk/2. The states
$uk&;k51,2,3, . . .% are the eigenstates of the diagonal term

H0(sn,mn) associated with the energy leveln. In terms of
this basis we can expand the actual state vectorucn&
as a linear combination of the basis vectors:
ucn&5(k51

` Ckufk(sn ,mn)&. Since we expect thatucn& has
the largest overlap withuf1(sn ,mn)&, Ck should be small for
large k. Then the summation can be truncated at a large
enough value of k; in other words, we can write
ucn&5(k51

K Ckufk(sn ,mn)&. The time-independent Schro¨-
dinger equation becomes

(
m51

K

~Hmk2Edmk!Cm50, k51,2,3, . . .K. ~4!

Hmk is aK3K symmetric matrix whose matrix elements are
Hmk[^fm(sn ,mn)uHufk(sn ,mn)&5Em

(0)(sn ,mn)dmk1Vmk ,
and it can be diagonalized very easily because the off-
diagonal elementsVmk are expected to be small. If we denote
the eigenvalues of Hmk in ascending order by
l1 ,l2 ,l3 , . . . ,lK , and the normalized eigenfunctions by
uw1&,uw2&,uw3&, . . . ,uwK&, then the approximate energy ei-

TABLE II. Same as in Table I except for the potential (x2/212x312x4).

Error of Error of Error of
State OM MN EX Exact OM~%! MN ~%! EX ~%!

0 0.810 862 7 0.815 034 6 0.810 862 7 0.791 295 7 2.472 768 53 2.999 998 73 2.472 768 53
1 2.921 794 8 2.927 527 7 2.921 794 8 2.879 789 9 1.458 610 03 1.657 682 81 1.458 610 03
2 5.718 668 5.713 514 9 5.710 321 7 5.727 911 920.161 383 1 20.251 348 3 20.307 097 3
3 8.975 867 3 8.976 968 5 8.942 285 2 9.003 418 520.306 007 5 20.293 777 2 20.679 001 1
4 12.591 02 12.606 57 12.518 644 12.623 32520.255 913 9 20.132 731 1 20.829 265 1
5 16.504 369 16.535 132 16.382 681 16.531 73320.165 520 8 0.020 564 9220.901 607 4
10 39.463 855 39.530 482 38.992 4 39.384 652 0.201 101 18 0.370 271 4420.995 951 5
30 165.274 65 165.102 16 162.581 79 164.242 01 0.628 725 42 0.523 704 5221.010 841 6
50 324.653 54 324.011 34 319.036 12 322.283 07 0.735 525 02 0.536 260 4621.007 483 3
70 507.233 67 506.004 95 498.232 12 503.290 65 0.783 448 58 0.539 310 9821.005 091 7
100 814.694 46 812.435 68 799.963 93 808.067 17 0.820 141 03 0.540 612 2621.002 792 7
500 6 946.262 1 6 922.226 3 6 816.414 1 6 885.016 7 0.889 545 35 0.540 442 6420.996 404 9
1000 17 499.589 17 437.506 17 171.246 17 343.835 0.898 037 58 0.540 081 1920.995 104 1

TABLE III. The dimensions of the matrices of the state-
dependent diagonalization method required for the energy eigenval-
ues to converge to five significant figures. The potential is
(x2/214x312x4). The schemes OM, MN, and EX are used to
determinesn andmn .

State OM MN EX

0 13 13 13
1 15 15 17
2 17 17 17
3 17 17 17
4 21 21 19
5 17 17 15
10 23 23 23
30 25 25 33
50 45 41 41
70 53 53 53
100 49 53 77
500 181 191 291
1000 311 331 531

TABLE IV. Same as in Table III except for the potential
(x2/212x312x4).

State OM MN EX

0 11 13 13
1 13 13 13
2 13 13 13
3 15 15 15
4 15 15 17
5 17 17 15
10 21 21 21
30 29 29 29
50 37 33 41
70 41 41 53
100 49 53 73
500 181 181 281
1000 301 321 521
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genvalue for the stateucn& and the corresponding approxi-
mate eigenfunction will be given by

En,K5H l r11 , if n.r

ln11 , if n<r

and

ucn,K&5H uw r11&, if n.r

uwn11& , if n<r ,

respectively, wherer5@(K21)/2#. When K increases,
En,K anducn,K& will converge to the exact results. Unlike the
conventional exact diagonalization, the approximate estimate
En,K is, in general, not an upper bound ofEn . Nevertheless,
whenK is so large that the stateu0& is included in the sum-
mation, the state-dependent diagonalization becomes exactly
the same as the conventional exact diagonalization. Then
En,K will be an upper bound ofEn . Furthermore, it should
be noted that if the anharmonic oscillator potential does not
contain the cubic term, i.e.,A350, the potential will be an
even function ofx and the eigenfunctions will have definite
parity. Hence, the numerical diagonalization can be simpli-
fied by choosing the subspace of basis vectors with appro-
priate parity.

To illustrate the validity of the method of state-dependent
diagonalization, we perform the explicit numerical calcula-
tions for two special cases of the cubic-quartic anharmonic
potential model, namely,~i! A25

1
2, A354, andA452, and

~ii ! A25
1
2 , A352, and A452. As shown in Fig. 1, the

former case corresponds to that of an asymmetrical double-
well potential, while the latter is essentially a single-well
potential with a shallow hump at the center of the well. First,
we apply the three optimization schemes to determine the
zeroth-order estimates of the energy eigenvalues of the
cubic-quartic anharmonic oscillator and tabulate the results
in Tables I and II. Then we evaluate the exact eigenenergies
and eigenfunctions by the method of state-dependent diago-
nalization. For easy comparison, we list the exact energies in
Tables I and II as well. It is clear that the zeroth-order esti-
mates are satisfactory for all energy levels, especially for the
highly excited states. The discrepancies that occur in the
low-lying eigenstates are due to the fact that the asymmetry
of the potential well becomes significant for these states, and
our approximation of the potential well by a simple harmonic
oscillator potential thus fails, no matter how we tune the
parameterss andm. The numerical results also indciate that
for the low-lying eigenstates the operator method is able to
give better estimates of the eigenenergies than the other two
methods, whereas the variational method of the ‘‘measure of
nondiagonality’’ proves to be a better approach for the highly
excited states. Besides, both the operator method and the
extremization method give exactly identical ground-state re-
sults; in fact, both methods yield the same set of two
~coupled! algebraic equations ins andm, as well as the same
expression forE0

(0) . This interesting feature was observed in
previous studies of the quartic anharmonic oscillator as well
@3#.

Tables III and IV show the matrix size required to achieve
the converged results for each energy level by the method of
state-dependent diagonalization. It is remarkable that each of

the eigenenergies of the first 50 states can be accurately cal-
culated by simply diagonalizing a matrix of the size less than
50350. On the other hand, by using the basis of the simple
harmonic oscillatorH5px

2/21A2x
2, the conventional exact

diagonalization will need a 50350 matrix in order to give
the energy eigenvalues of the first eight levels@7#. Therefore,
finding the eigenenergies of the higher levels by the conven-
tional approach seems not feasible at all because a very huge
matrix is needed, whereas our approach is able to accomplish
the task with very modest effort. Furthermore, it should be
noted that for low-lying eigenstates all the three different
optimization schemes provide equally good basis sets for
diagonalization, but the performance of the extremization
method starts to deteriorate as we go to the higher levels. It
seems to suggest that the matrix size required to achieve the
converged results is not sensitive to the parameterss andm
for the low-lying states. In fact, if those parameters of the
ground state determined by the extremization method are
used for all energy levels, the speed of convergence is about
the same for the low-lying eigenstates. Nevertheless, as
shown in Table V, the matrix size needed for convergence
increases dramatically as we go to the higher levels.

In summary, we have proposed a different approach—the
method of state-dependent diagonalization—to find the en-
ergy eigenvalues and eigenstates of a quantum anharmonic
oscillator, and the example of a cubic-quartic anharmonic
oscillator has been used to illustrate its validity. It has been
shown that unlike the conventional exact diagonalization,
this approach is a very efficient method for calculating the
energy eigenvalues of the excited states, as well as the cor-
responding eigenfunctions. The method of state-dependent
diagonalization is so simple that it can be easily applied to
more complicated anharmonic oscillator potentials. We are
currently pursuing this direction, and the results will be pub-
lished elsewhere.

This work is partially supported by the Direct Grant for
Research from the Research Grants Council of the Hong
Kong Government.

TABLE V. State-dependent diagonalization with (s,m) fixed at
their ground-state values given by the extremization method. The
‘‘matrix size’’ is the dimension of the matrix required for the energy
eigenvalue to converge to five significant figures. Results are
shown for two potentials: (A2 ,A3 ,A4)5(1/2,4,2) and
(A2 ,A3 ,A4)5(1/2,2,2).

Matrix size
State A354 A352

0 13 13
1 15 15
2 17 19
3 19 23
4 23 19
5 19 21
10 31 35
30 73 101
50 141 181
70 211 271
100 301 421
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