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Applications of the Jaynes-Cummings model for the detection of nonorthogonal quantum states
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This paper presents two kinds of applications of the Jaynes-Cummings model to improve detection schemes
for the binary phase-shift-keyed signals of the coherent stajeand |—«). The first application raises the
amount of exact retrodiction of a mixture made by choosing at random feonand |—«). The second
application is concerned with realizing the optimum receiver to achieve a low decision error. Instead of optical
detection, atomic level detection after mapping from them to two-level states of an atom will be proposed.

PACS numbeg(s): 03.65.Bz, 42.506-p

I. INTRODUCTION quantum statefp,) and|¢,) are transmitted. The statés)
and |¢,) are conditioned by hypothesék, andH,, respec-
How to differentiate between nonorthogonal states is dively. At the receiver, the hypothesis is based on the mea-
central issue in quantum communication science. Nonorsurement results. The lowest error limit known so far is the
thogonality of quantum states identified as information sig-one given by Helstrom, which is now called Helstrom’s
nals causes finite error probability in the detection procesgoound. He showed a mathematical solution for the optimum
Even if orthogonal states are transmitted as signals, they eadecision[5]. After his work, the realization problem of the
ily lose orthogonality under energy loss in the channel ofoptimum decision process continues to be studied. Dolinar
communication systems. In almost all cases, the signal staté0posed a way of realizing this procd$g. It is a feedback
are received as nonorthogonal ones. From a technologic&leasurement based on photon counting. Unfortunately, there
point of view, it is important to control received quantum is a dlfflCU'ty in realizing it in an actual device, that is, im-
states before detection in order to improve receiving performediate response to sending a feedback signal just after pho-
mance. This idea is called the received quantum-state contr§n counting is required. A simpler and more practical
[1,2]. method is desired for quantum communication. As the first
In this paper we show some schemes of quantum statgep toward this goal, we shall present another view for the
control based on the Jaynes-Cummings mddélM). The realization of Helstrom’s bound. It is the mapping from the
JCM is the simplest mathematical description of the interacSignal state$e,) and|¢,) to other simpler states. A mapping
tion between a single atom and a quantum field, such as a¥theme using the JCM is presented.
optical or microwave field, and has been studied extensively Here it is worth mentioning the relationship between these
both theoretically and experimentally. Although many of two issues. The first one can also be thought of as a decision
these works are related to quantum-state preparation, for ej@.l’Oblem. The decision error arises from the detection that
ample, generation of the squeezed state, Sfihger cat fails the exact retrodiction. However, Ivanovic and Peres’s
state, and so on, 0n|y a few works deal with the receivedSCheme, which realizes the maximum amount of exact ret-
quantum-state control. Here applications will be shown forfodiction, does not give the minimum error probability in
two kinds of issues. binary decision. It is merely the optimization of the probabil-
The first is the following: A mixture of quantum systems ity for orthogonalization betweefiy) and|¢,) to occur in
is prepared by choosing at randdmith equal probability ~ the interaction between the signal and probe systems. The
from a set in staté,) and a set ifigs,). How many times can  Second issue is realizing the minimum error probability in
we exactly retrodict the state from the inspected signal sebinary decision.
guences? We consider the total amount of exact state retrod-
ictions or, equivalently, a fraction of its cases per each detec-
tion in the sequences. This has been discussed by Ivanovic
[3] and Pere$4]. They showed an improved scheme achiev- A simple way for exact retrodiction is direct measurement
ing the maximum amount of exact retrodiction. This schemeo distinguish |¢) from |y, where |¢y) is defined as
is based on orthogonalization between the stags and | po){ do| =1—|Po){ Po| With unit operatorl. If |po) is de-
|y by the use of an interaction with an additional probetected, we can be sure that the statis. If |¢,) is detected,
system. However, physical realizations have never beethere are still two possibilities: The state|is,) itself, or
mentioned. We show how the JCM plays a role. the state i¢,) because of the finite overldj,|¢o) (=«). A
The second issue is concerned with the optimum decisiofraction of cases of exact retrodiction &1—«?) in this
process giving lower error probability when nonorthogonalmethod.
Ivanovic[3] and Pere$4] showed that this amount can be
raised by the following method. First, the signal system un-
“Permanent address: Ayase LS| Research Center of NKK, Ayasder investigation is correlated to a probe system by means of
252, Japan. a unitary evolution in the extended space of the signal and

II. EXACT RETRODICTION
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probe systems. One then measures the probe that is in tleeer, it is not necessary to make a process exactly the same
specified state. The signal states are reduced by this measues Eq.(2). Rather, only the final states, Eq8a and (3b),

ment and result in orthogonal states under certain conditiongre required. In this direction, we demonstrate that the JCM
Let {|¢y), |1} be projected onto a orthonormal sge), plays a role very close to this purpose.

le))} as To begin, we briefly summarize posteriori state method

in terms of operator formalism. The Hamiltonian of the

|¢O>:(1J2FK>1/2| eo) + 1;" 1/2|91> (1a Jaynes-Cummings model is expressed as the following:
g H=rhwa'a+ 3 v(|1)(11=1){(1])
an
+hg(at +3
e o RO(@T 1)(TI+alT)(LD, (5)
|p1)= leo)—|—5—| lew). (1b)  wherea (a) is an annihilation(creation operator for a
2 2

single-mode optical field with the angular frequensy|T)
And let{|1), ||)} be an orthonormal set for the probe system.and ||) have the meaning of the upper- and lower-level
Two-dimensional space is enough to be considered as th#ates, respectively; and is the angular frequency corre-
probe system. It will correspond to the upper- and lower-sponding to the atomic level separation. The coupling con-
level states of a two-level atom in the example that is exStantg between the optical field and the atom is taken to be
plained later. Peres pointed out that the unitary evolutiorféal. The initial states of signal and probe systems are as-
required is a simple rotation in the subspace spannefepy ~ Sumed to bga)e and|a), (0=1 or |), respectively. Hereafter

11}, le)) |1)}. The unitary operator for this rotation can be the indicess andA for the states are used to represent signal
expressed as field and atomic probe, respectively, for the sake of clarity.

Let .7 and .7, be the Hilbert spaces for the signal and
U(8)=exp 0(leg)|T)(I{er|—len)|1)(TI{eo]). (20  probe systems, respectively. The unitarity for the whole
spaceZg®.7, is an essential requirement for real physical

Taking the input probe state agl) and setting 6 rocesses. The unitary evolution operator on the extended
=tan 1\2«/(1- k), we see that the states are transforme pace isJ(F® =exp(—iHt/4). The state of the whole sys-
into the following: tem after the interaction is expressed as
1—x\ Y2 —()(Fon)
DI =[ T3] dlen ey - VFble anren=UT=la)el o)a- ©

(33 One measures atomic state by the atomic level deté8ior
If the atomic state is specified &s'),, then the signal state

and reduces to the state
1—k 1/2
U(9)|T>|¢1>=<_) 11)(leoy—lew)) =Vl )ley). 1 ,
2 |¢out>F_ = A<U |‘/’out>F®A
(3b) Je
As seen, if the probe state is found|ir), two signal states 1 I EOA)
are always orthogonal, which can be distinguished unam- = E alo’|U | o) al @)e
biguously. The probability of this occurring is-k, which is
greater than that in direct measuremgfit— «). Essential is 1
the state reduction due to the probe measurement, which =<—> t(o'|o)|a)g, (7
brings nonunitarity to the signal system. Such a state is often Ve

calleda posteriori state We adopt the terminologg poste-
riori state methodor controlling the overlap between signa
states by measuring the probe. S nFeA)

The question here is how to realize the unitary process of t(o'|o)=p(c"|U o)A (8)
Eg. (2). Let signals be the binary coherent stajes and
|—a), which are commonly used in optical communication.
The bases of the signal spafde,),|e;)} are now

| wherec is an appropriate normalization constant and

It is easy to see that this normalization constanis the
probability that the transition frorfor), to |o”) will occur in
the probe system, under the initial statée of the signal
system. Therefore we denote it B$o’|o;q):

1
€)= V2(1+ k) (la)+]=a), 49 P((T’|a';a)E,:<a|fT(o"|0')f(o"|0')|a>,:. (9
Then we can express a transition _in the sig_nal system by an
o= T 1 D her the measurbmant. That s, by defiing
They_are so-called even and o_dd _cohere_nt s@}aswhat i 1 A
hen i the process of S0, which s confiried n the sl o)~ s il 0
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the transition is described by K(D=(—a|TTUT: =) T[T 2)|a)
oo a =T(o" oa)la)e, 11 1 2n

|¢out( | )>F ( | )| >F ( ) _ P(“Ta) e_az[ E sz(gt\/nT) |
where the symbol (o’'|o;a)” is added to the output state in ’ n=even
order to show explicitly that this state is created by an ob- |2n
servation of the transition|g)a—|o’)a” in the probe sys- — > sirA(gtyn+ ) } (15b)
tem. We emphasize that thigo”’|o;a) is in general a non- n=odd

unitary operator and includes a transition probability in the

probe system under the given initial signal stati-. The
unitarity for the whole spaceZ:®.7, is expressed as

122 P((T’|0';a)'AI'T(0"|a';a)'i'(0"|a;a). (12

The operator'i’(o’|a;a) is called the conditional isometric n=even

operator in quantum information scienf®,10]. The prob-

ability related to the process caused by this operator is con-
ditioned by each signal state. It might be a natural expressmnE

for quantum channgh a communication system.

Now we discuss the behavior of the overlap between sig-

nal statega) and|—a) in the resonant JCM witlo=v». We
take the initial probe state d$); t(1|1) andt(||T) are ex-
pressed as

E(Tngo exd —i(n+3) wtlcoggtyn+1)[n)(n|

(1339
and
f(lll)E—inZO exf —i(n+3)owt]
X sin(gtyn+1)|n+1)(n|, (13b

depending on which state of the probe atom is detedtéd,
or |]), respectively. Orthogonalization of the signal states,
that is,K(1)=0, orK(])=0, occurs at the interaction param-
etersgt, which satisfy

> cof(gtyn+1 )

|2n |2n

_de co(gtyn+1)
(168)

|2n |2n

sirf(gtyn+1 )

de sirf(gtyn+ )

n=even

(16b)

respectively. Let us set the paramegérto satisfy Eq.(1639).
Then the exact retrodiction is possible when the atom is de-
tected asT), giving K(1)=0. We want a fraction of those
cases,

|2n

P(TIT;a)=2n;eve cog(gtyn+1 > (17)

to be as large as possible.

A numerical example of the cage=1 is shown in Fig. 1.
Figure Xa) shows the behaviors d€(1) andK(]), varying
the interaction parametgrt. The solid and dotted lines rep-
resentk (1) andK(]), respectively. The horizontal one-dotted
line shows the inner product without the interactiéna|a).

where the statén) is the photon-number eigenstate of the It can be seen that the signal states are orthogonalized at

signal field. The probabilities of the atomic transitidfsto
1) and|1) to ||) are

* 2n
P11 Ti=exi~|al) S cod(gtyn+ 1) '
(146?
and
2n
P(LIT;a)= eXp(—IaIZ)E sirf(gtyn+1) |
(14b

Note thatP (o[ 1;@)=P(o]|1;—
ter the interaction is

KM =(—a|T'(1|T;= ) T(1]1; )| )

a), (6=1,]). The overlap af-

|2n

1 2
-~ ald
P(TT ) © (2 cosaty+ 1)
2n
— _de cog(gtyn+1) l } (159

or

certain parameteigt whereK (1) or K(|]) crosses over thgt
axis. Figure 1b) shows the behaviors &(1|1;a) (solid line)
andP(||T;a) (dotted ling. Those kinds of state evolution in
the JCM do not exactly correspond to the one in Egs)
and (3b). In the JCM, the signal state whose initial state is
|@) or |[-a) may run over the infinite dimensional space
spanned by the Fock statge);n=1,2,..}, while the unitary
evolution described by Eq(2) is confined in the two-
dimensional subspace of the signal and probe states. The
optimum amount of exact retrodiction predicted by Ivanovic
and Peres’'s method for the case @f1 is about +«
=0.864 67. In our scheme with the JCM, it is not obvious
how to pick up the interaction parametgr for realizing the
same value. A closer value obtained in the range ©fjo
<20 is about 0.834 176 gtt=15.687 8 a$(1|T;@) when|T)
is specified. The behaviors expanded around this point, indi-
cated by the arrow, is presented in Fig. 2. The definition of
lines are the same as in Fig. 1. It is an absolute requirement
that the number oP(1|1;@) should be less than the value
1-«. The larger Hilbert space cannot make the probability of
orthogonalization any larger.

It is worth mentioning that their behaviors obey the uni-
tarity condition

(—ala)=P(1|T;0)K(M)+P(|T;0)K(]). (18
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FIG. 1. Anumerical example of the received quantum-state con- |G, 2. The behaviors in Fig. 1 are magnified around the near
trol with the resonant Jaynes-Cummings model in the case Ofptimum point, indicated by the arrow. The probability of orthogo-
a=1. (a) The overlapsK(1) andK(]) varying the interaction pa- pajization closest to the theoretical maximum #=0.864 67, in
rametergt, which is dimensionlessib) The probabilities of the he range of egt<20, is about 0.834176 agt=15.687 8 as
atomic transitions. The solid and dotted lines correspond to the(|1:4) when|1) is specified.
atomic transition channel$) to |1) and|7) to ||), respectively. The
horizontal one-dotted line ifa) shows the initial value of the over- he basis{|w),|w,)}. The error probability in the optimum

lap (o). decision process becomes

Usuda discussed the details about thgih]. This relation Pe(0pt) = £[{ w1 o) P+ (1— &) wo| 1) [?
prevents the inner producks(T) andK(]) to be orthogonal-

ized for the same interaction parameter. =3[1-V1-4£1- (il po)P1, (2D

where¢ and 1-¢ are prior probabilities for the signal states
|#o) and|¢,), respectively.

Let us move to the second issue. The optimum decision Now let us consider the optimum decision for a particular
process derived by Helstrom is expressed in terms of thease of the binary coherent signat® and |—a) with the
probability operator measur@®OM) [12—-17, which is de- same a priori probabilities, i.eé&=3. The channel model is
fined as a non-negative Hermitian operator satisfying thelepicted in Fig. 3. The solid lines represent correct decision

Ill. OPTIMUM DECISION PROCESS

resolution of identity, channels, while the dotted lines represent error channels. The
A~ . concrete expressions fas,) and|w, ) were derived by Osaki
I=1I]=0 (i=0,D), (198 and Hirota[19] as
I +10,=1, (199 14+ 1= &2\ ¥ 1—\1—«2\ 12
. lwo) = 0= |a)— 0= |—a)
where | is a unit operator of the two-dimensional signal (223
space. For the case of linearly independent signals, they can
be written in the form of orthogonal spectral measure
(Kennedy’s lemmd18]): |a> S |(D()>
Io=|wo){wol, (209 :

H1:|wl><wl|a (20b) |-(X> ' |(01>

wheref|wy),|wy)} is a complete orthonormal set of the signal  FIG. 3. Channel model for the optimum decision process. The
space to whichey) and|¢,) belong. Therefore, the decision solid lines represent correct decision channels, the dotted lines error
process is mathematically described as merely a projection techannels.
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and N T
Up=exp 4 (ID]a)(a[(LI=|la)(a:|(T]).
o) (1—\/1—,2)1’2' > 1+ \/1—K2>1’2| > (25)
VAl v g sl B 02 (e v s sl B A2
2(1=«%) 2(1= %) (22b) The final state is the following:
~ ~ 1

whe_r_e.K=<a|—a>=exp(—2|a|2). They are the so-called |(a))y=UU; — (|T)+]1))]a)
Schralinger cat states made of the signal stét@snd|— a). V2
(Ban, Osaki, and Hirota recently provided a systematic deri- — —
vation method of the decision operatHr for the general - M 1)y
case ofn dimensional signals being linearly independent 2
[20]. The method consists of orthogonalization of the signal i
states and unitary transformation from these orthogonal _uuﬂa_)_ (26)
bases to appropriate bases. It is instructive to understand the 2

structure of the optimum decision proces$he optimum
decision in this case is equivalent atternative observation
of these two kinds of Schdinger cat states. The error prob-

When the received signal |s-a), the final state is

de .~ a1
ability is —a))=U,0, — + —a
(=) =UaUs — (IN+I1)|-a)
Pe(0pY) =3(1—V1-«?). (23 Trr-1-x
= Dlax)
In Dolinar’'s method, this process is realized by a kind of 2
stochastic treatment, i.e., feedback measurement depending M+ k+1—«k
on the photon-counting results. However, we wish to find a B — [[)]e ). (27

more systematic design theory of the receiver realizing the

optimum decision process. For this purpose, it might be benm detection, only measurement of the atom is made by the
eficial to decompose the optimum decision process, if anyleve| detector. The optical field components are not con-

into the ones with clear physical correspondence. ~ cerned. Therefore, the states reduce to the following mixed
As an example, we show that the alternative observatioRtates, by tracing out the optical field components:

of the stateswy) and|w;) can be mapped into binary detec-

tion of two-level states of an atom. The mapping process is pal@)=Tre[| (@) ()]
mainly composed of two steps, each of which is constructed
with unitary evolutions. _1+V1-&* B
The first step is a generation of even and odd coherent 2
states by use of the nonresonant atom-optical field interac- 5
tion. This generation scheme was originally proposed by " 1-Vi-« 1] (283
Bruneet al. [21] and Harochg22]. It can be described by a 2 '
unitary evolution operatot), in the extended space of the
optical signal field and the atom. That is, after receiving the pal—a)=Tre[ | (= a) )} p(— )]
signal state—let it béw) for clarity—it is correlated with an 5
atomic superposition statev®(|1)+|])) via U;. The output _ 1-Vl-« (7]
state is fully entangled as 2
1+1—«?
+ Il (28

~ 1 1+ k|12
U1E(|T>+|l>)|a>=<7) I)ey)

" They are the mapped states. The processes are schematically
1- K) ID|a), (248 summarized in Fig. 4. Thus the binary decision of the signal
2 " statega) and|—a) with the decision operatorld y=|wg){w|
andIl;=|w;)w,| can be mapped into the atomic stapaér)
where and pu(—a) with the decision operator$l g'=|1)X1| and
T'=|1)X1], respectively. The channel model is shown in Fig.
5. The error probability is written as

+

1 —i(m + i(m . R
)= T Jae ") Hlae")). - (240 Pe(0ph=3(1[pa(a) 1)+ K(T]pa(—a)[1)
=3(1-\1-«?). (29)

The stateda.) are the even and odd coherent states. The

details onU; will be explained in the Appendix. The first step of the mapping process can be realized by a
The second step is a rotation in tensor space spanned loyirrent technique in the cavity QED, as explained in the

composite basif)|a, ) and||)|a_). An evolution operator is Appendix. However, physical correspondence to the second
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FIG. 6. Experimental setup for generation of the even and odd
Atomic level detection coherent states. A cavity is located between two Ramsey z&jes,
andR,, where injected atoms are irradiated by a high-intensity laser
FIG. 4. The mapping process. It is mainly composed of twobeam. An atomic beam prepared in the upper-level state crosses
steps, each of which is described by the unitary operdtpand ~ successively zon®,, the cavity, and zon®,. At zoneR;, the
U,. After these interactions, only measurement of the atom is madguperposition state is produced. At the cavity, it interacts with the
by the atomic level detector. signal coherent field, generating the entangled state. After passage
of the atom through zon®,, another entangled state is made,
step is not yet clear. The state evolution in the second step ihose optical field components are the even and odd coherent
exactly the same as the one for the Ivanovic and Perelates.
scheme to realize the optimum amount of exact retrodiction
as discussed in Sec. [bee Egs(2) and (25)]. As shown second step is the rotation in the two-dimensional subspace
there, the state control with the resonant JCM can achievgpanned by the composite basis of the optical Stihger

the amount of exact retrodiction to a closer value to the opcat state and the atomic state, whose physical realization
timum point. But how to realize exactly the state evolution ofneeds to be studied further.

Eq. (2) or (25), a rotation of the composite basis, is a remain-
ing problem. Required are further studies of how much
closer one can come to the result of that rotation by use of ACKNOWLEDGMENTS

the JCM. .
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IV. SUMMARY for their helpful discussions.

Two kinds of applications of the JCM to the received
guantum state control were presented. The first application is
concerned with the exact retrodiction of an ensemble of two APPENDIX: GENERATION OF THE EVEN
nonorthogonal states. It was shown that the state control with AND ODD COHERENT STATES

the resonant JCM can achieve the amount of the retrodiction The generation scheme of the even and odd coherent

close to the optimum value, which can theoretically be POSstates, proposed by Brum al. [21] and Harochd22], was
sible in the Ivanovic and Peres scheme. _applied to the mapping process in Sec. lIl. Its physical de-
The second application is the realization of Helstrom'sscription is given here. Figure 6 is an experimental setup. A
receiver, which gives the lowest decision error to date forcavity is located between two Ramsey zonBs,and R,,
nonorthogonal quantum state signals. The mapping schemgnere injected atoms are irradiated by a high-intensity laser
from binary coherent state signatg and|—a) to two-level  peam. An atomic beam prepared in the upper-level state
atomic statef) and||) was proposed. It enables us to re- crosses successively zoRg, the cavity, and zon®,. The

strom's receiver with the simple atomic level detection. ltinside the cavity, and this single atom interacts with the co-
was shown that the mapping process can be described Iyarent field as the received signal state.

unitary process. \We decomposed it into two steps. The first at the first zone, the atomic state is transformed from the
step is the generation of the Sctiager cat states of optical pper-level state to a superposition of the upper- and lower-

treated as a classical field for the atom. It can be described by

1) Pa(0) - 1Ty the semiclassical JCM, derived by replacing the opergéor
Mapping R Level detection with the c numberee™ """, wherer is the interacting period,
0.0, TN in Eq. (5). The driving field ee™'*" is resonant with the

I-c0) Pa-a) = )

atomic transition. The Hamiltonian is

FIG. 5. Channel model for our mapping scheme. After the map-
ping, detection is made only for the atomic states being mixed. The |:|R: %ﬁV(|T><T|—|l><l|)+ﬁ(€e_iW|T><l|
solid lines represent correct decision channels, the dotted lines error )
channels. +e* e [ ){T]). (A1)
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By choosing the phase af as e=i|el and settingle|7=mn/4 . A i o

and vr=1, the evolution of the atomic state is described by Ucla)UglTy=— (|1)]ae™'“te" (")

the operatotJ as V2

ITY+[1) +|l>|aeiiwtei(7ﬂ2)>)- (A4)
p—.

UglT)=— v (A2)

C'{he atom exits the cavity and enters the second #®ne
Whose effect is the same as the first one. Further operation of
éjc to the state of Eq(A4) leads to the following state:

This atomic superposition state enters the cavity to intera
with the signal field, assumed to he for clarity. The inter-
action is in the nonresonant regime; that is, the detunin
S=v—w>g in the JCM[Eq. (5)]. The effective Hamiltonian

is o X | | o
UrOc|a)URITY=11)(|ae~i@te (72 1 | geivtgi(mi2)yy

He=rwh+ 3i(v+ ge) (| (T~ 1)(LD) 3113 (|ae-wte (72

+hgen(|T(TI=1(LDA, (A3)

whereg.4=g%& andn is the photon-number operator for the

signal field. Lett be the interaction period in the cavity. By

adjusting vt=37 and gest=/2, the state evolution in the which is equivalent to the state of Eq24a and (24b). The
cavity is described by the operatoi: as operatorU, in Sec. Ill corresponds te-iUgU.

_|ae7iwtei(ﬂ'/2)>), (AS)
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