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This paper presents two kinds of applications of the Jaynes-Cummings model to improve detection schemes
for the binary phase-shift-keyed signals of the coherent statesua& and u2a&. The first application raises the
amount of exact retrodiction of a mixture made by choosing at random fromua& and u2a&. The second
application is concerned with realizing the optimum receiver to achieve a low decision error. Instead of optical
detection, atomic level detection after mapping from them to two-level states of an atom will be proposed.

PACS number~s!: 03.65.Bz, 42.50.2p

I. INTRODUCTION

How to differentiate between nonorthogonal states is a
central issue in quantum communication science. Nonor-
thogonality of quantum states identified as information sig-
nals causes finite error probability in the detection process.
Even if orthogonal states are transmitted as signals, they eas-
ily lose orthogonality under energy loss in the channel of
communication systems. In almost all cases, the signal states
are received as nonorthogonal ones. From a technological
point of view, it is important to control received quantum
states before detection in order to improve receiving perfor-
mance. This idea is called the received quantum-state control
@1,2#.

In this paper we show some schemes of quantum state
control based on the Jaynes-Cummings model~JCM!. The
JCM is the simplest mathematical description of the interac-
tion between a single atom and a quantum field, such as an
optical or microwave field, and has been studied extensively
both theoretically and experimentally. Although many of
these works are related to quantum-state preparation, for ex-
ample, generation of the squeezed state, Schro¨dinger cat
state, and so on, only a few works deal with the received
quantum-state control. Here applications will be shown for
two kinds of issues.

The first is the following: A mixture of quantum systems
is prepared by choosing at random~with equal probability!
from a set in stateuf0& and a set inuf1&. How many times can
we exactly retrodict the state from the inspected signal se-
quences? We consider the total amount of exact state retrod-
ictions or, equivalently, a fraction of its cases per each detec-
tion in the sequences. This has been discussed by Ivanovic
@3# and Peres@4#. They showed an improved scheme achiev-
ing the maximum amount of exact retrodiction. This scheme
is based on orthogonalization between the statesuf0& and
uf1& by the use of an interaction with an additional probe
system. However, physical realizations have never been
mentioned. We show how the JCM plays a role.

The second issue is concerned with the optimum decision
process giving lower error probability when nonorthogonal

quantum statesuf0& and uf1& are transmitted. The statesuf0&
and uf1& are conditioned by hypothesesH0 andH1, respec-
tively. At the receiver, the hypothesis is based on the mea-
surement results. The lowest error limit known so far is the
one given by Helstrom, which is now called Helstrom’s
bound. He showed a mathematical solution for the optimum
decision@5#. After his work, the realization problem of the
optimum decision process continues to be studied. Dolinar
proposed a way of realizing this process@6#. It is a feedback
measurement based on photon counting. Unfortunately, there
is a difficulty in realizing it in an actual device, that is, im-
mediate response to sending a feedback signal just after pho-
ton counting is required. A simpler and more practical
method is desired for quantum communication. As the first
step toward this goal, we shall present another view for the
realization of Helstrom’s bound. It is the mapping from the
signal statesuf0& and uf1& to other simpler states. A mapping
scheme using the JCM is presented.

Here it is worth mentioning the relationship between these
two issues. The first one can also be thought of as a decision
problem. The decision error arises from the detection that
fails the exact retrodiction. However, Ivanovic and Peres’s
scheme, which realizes the maximum amount of exact ret-
rodiction, does not give the minimum error probability in
binary decision. It is merely the optimization of the probabil-
ity for orthogonalization betweenuf0& and uf1& to occur in
the interaction between the signal and probe systems. The
second issue is realizing the minimum error probability in
binary decision.

II. EXACT RETRODICTION

A simple way for exact retrodiction is direct measurement
to distinguish uf̄0& from uf0&, where uf̄0& is defined as
uf̄0&^f̄0u5 Î2uf0&^f0u with unit operatorÎ . If uf̄0& is de-
tected, we can be sure that the state isuf1&. If uf0& is detected,
there are still two possibilities: The state isuf0& itself, or
the state isuf1& because of the finite overlap^f1uf0& ~[k!. A
fraction of cases of exact retrodiction is12~12k2! in this
method.

Ivanovic@3# and Peres@4# showed that this amount can be
raised by the following method. First, the signal system un-
der investigation is correlated to a probe system by means of
a unitary evolution in the extended space of the signal and
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probe systems. One then measures the probe that is in the
specified state. The signal states are reduced by this measure-
ment and result in orthogonal states under certain conditions.
Let $uf0&, uf1&% be projected onto a orthonormal set$ue0&,
ue1&% as

uf0&5S 11k

2 D 1/2ue0&1S 12k

2 D 1/2ue1& ~1a!

and

uf1&5S 11k

2 D 1/2ue0&2S 12k

2 D 1/2ue1&. ~1b!

And let $u↑&, u↓&% be an orthonormal set for the probe system.
Two-dimensional space is enough to be considered as the
probe system. It will correspond to the upper- and lower-
level states of a two-level atom in the example that is ex-
plained later. Peres pointed out that the unitary evolution
required is a simple rotation in the subspace spanned by$ue0&
u↓&, ue1& u↓&%. The unitary operator for this rotation can be
expressed as

U~u!5exp u~ ue0&u↑&^↓u^e1u2ue1&u↓&^↑u^e0u!. ~2!

Taking the input probe state asu↑& and setting u
5tan21A2k/(12k), we see that the states are transformed
into the following:

U~u!u↑&uf0&5S 12k

2 D 1/2u↑&~ ue0&1ue1&)2Aku↓&ue1&
~3a!

and

U~u!u↑&uf1&5S 12k

2 D 1/2u↑&~ ue0&2ue1&)2Aku↓&ue1&.
~3b!

As seen, if the probe state is found inu↑&, two signal states
are always orthogonal, which can be distinguished unam-
biguously. The probability of this occurring is 12k, which is
greater than that in direct measurement1

2~12k2!. Essential is
the state reduction due to the probe measurement, which
brings nonunitarity to the signal system. Such a state is often
calleda posteriori state. We adopt the terminologya poste-
riori state methodfor controlling the overlap between signal
states by measuring the probe.

The question here is how to realize the unitary process of
Eq. ~2!. Let signals be the binary coherent statesua& and
u2a&, which are commonly used in optical communication.
The bases of the signal space$ue0&,ue1&% are now

ue0&5
1

A2~11k!
~ ua&1u2a&), ~4a!

ue1&5
1

A2~12k!
~ ua&2u2a&). ~4b!

They are so-called even and odd coherent states@7#. What
then is the process of Eq.~2!, which is confined in the sub-
space spanned$ue0&u↑&,ue1&u↓&%? It is not so obvious. How-

ever, it is not necessary to make a process exactly the same
as Eq.~2!. Rather, only the final states, Eqs.~3a! and ~3b!,
are required. In this direction, we demonstrate that the JCM
plays a role very close to this purpose.

To begin, we briefly summarizea posteriori state method
in terms of operator formalism. The Hamiltonian of the
Jaynes-Cummings model is expressed as the following:

Ĥ5\vâ†â1 1
2\n~ u↑&^↑u2u↓&^↓u!

1\g~ â†u↓&^↑u1âu↑&^↓u!, ~5!

where â ~â†! is an annihilation~creation! operator for a
single-mode optical field with the angular frequencyv; u↑&
and u↓& have the meaning of the upper- and lower-level
states, respectively; andn is the angular frequency corre-
sponding to the atomic level separation. The coupling con-
stantg between the optical field and the atom is taken to be
real. The initial states of signal and probe systems are as-
sumed to beua&F andus&A ~s5↑ or ↓!, respectively. Hereafter
the indicesF andA for the states are used to represent signal
field and atomic probe, respectively, for the sake of clarity.
Let HF andHA be the Hilbert spaces for the signal and
probe systems, respectively. The unitarity for the whole
spaceHF^HA is an essential requirement for real physical
processes. The unitary evolution operator on the extended
space isÛ (F^A)5exp~2iĤ t/\!. The state of the whole sys-
tem after the interaction is expressed as

ucout&F^A5Û ~F^A!ua&Fus&A . ~6!

One measures atomic state by the atomic level detector@8#.
If the atomic state is specified asus8&A , then the signal state
reduces to the state

ufout&F5S 1

AcD A^s8ucout&F^A

5S 1

AcD A^s8uÛ ~F^A!us&Aua&F

5S 1

AcD t̂~s8us!ua&F , ~7!

wherec is an appropriate normalization constant and

t̂~s8us![A^s8uÛ ~F^A!us&A . ~8!

It is easy to see that this normalization constantc is the
probability that the transition fromus&A to us8&A will occur in
the probe system, under the initial stateua&F of the signal
system. Therefore we denote it asP~s8us;a!:

P~s8us;a![F^au t̂†~s8us! t̂~s8us!ua&F . ~9!

Then we can express a transition in the signal system by an
operator when the probe system is found in the stateus8&A
after the measurement. That is, by defining

T̂~s8us;a!5
1

AP~s8us;a!
t̂~s8us!, ~10!
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the transition is described by

ufout~s8us;a!&F5T̂~s8us;a!ua&F , ~11!

where the symbol ‘‘~s8us;a!’’ is added to the output state in
order to show explicitly that this state is created by an ob-
servation of the transition ‘‘us&A→us8&A’’ in the probe sys-
tem. We emphasize that theT̂~s8us;a! is in general a non-
unitary operator and includes a transition probability in the
probe system under the given initial signal stateua&F . The
unitarity for the whole spaceHF^HA is expressed as

15(
s

P~s8us;a!T̂†~s8us;a!T̂~s8us;a!. ~12!

The operatorT̂~s8us;a! is called the conditional isometric
operator in quantum information science@9,10#. The prob-
ability related to the process caused by this operator is con-
ditioned by each signal state. It might be a natural expression
for quantum channelin a communication system.

Now we discuss the behavior of the overlap between sig-
nal statesua& and u2a& in the resonant JCM withv5n. We
take the initial probe state asu↑&; t̂~↑u↑! and t̂~↓u↑! are ex-
pressed as

t̂~↑u↑ ![ (
n50

`

exp@2 i ~n1 1
2 !vt#cos~gtAn11!un&^nu

~13a!

and

t̂~↓u↓ ![2 i(
n50

`

exp@2 i ~n1 1
2 !vt#

3sin~gtAn11!un11&^nu, ~13b!

where the stateun& is the photon-number eigenstate of the
signal field. The probabilities of the atomic transitionsu↑& to
u↑& and u↑& to u↓& are

P~↑u↑;a!5exp~2uau2! (
n50

`

cos2~gtAn11!
uau2n

n!
~14a!

and

P~↓u↑;a!5exp~2uau2! (
n50

`

sin2~gtAn11!
uau2n

n!
.

~14b!

Note thatP(su↑;a)5P(su↑;2a), ~s5↑,↓!. The overlap af-
ter the interaction is

K~↑ ![^2auT̂8~↑u↑;2a!T̂~↑u↑;a!ua&

5
1

P~↑u↑;a!
e2uau2H (

n5even
cos2~gtAn11!

uau2n

n!

2 (
n5odd

cos2~gtAn11!
uau2n

n! J ~15a!

or

K~↓ ![^2auT̂†~↓u↑;2a!T̂~↓u↑;a!ua&

5
1

P~↓u↑;a!
e2uau2H (

n5even
sin2~gtAn11!

uau2n

n!

2 (
n5odd

sin2~gtAn11!
uau2n

n! J , ~15b!

depending on which state of the probe atom is detected,u↑&
or u↓&, respectively. Orthogonalization of the signal states,
that is,K~↑!50, orK~↓!50, occurs at the interaction param-
etersgt, which satisfy

(
n5even

cos2~gtAn11!
uau2n

n!
5 (

n5odd
cos2~gtAn11!

uau2n

n!
,

~16a!

(
n5even

sin2~gtAn11!
uau2n

n!
5 (

n5odd
sin2~gtAn11!

uau2n

n!
,

~16b!

respectively. Let us set the parametergt to satisfy Eq.~16a!.
Then the exact retrodiction is possible when the atom is de-
tected asu↑&, giving K~↑!50. We want a fraction of those
cases,

P~↑u↑;a!52 (
n5even

cos2~gtAn11!
uau2n

n!
, ~17!

to be as large as possible.
A numerical example of the casea51 is shown in Fig. 1.

Figure 1~a! shows the behaviors ofK~↑! andK~↓!, varying
the interaction parametergt. The solid and dotted lines rep-
resentK~↑! andK~↓!, respectively. The horizontal one-dotted
line shows the inner product without the interaction,^2aua&.
It can be seen that the signal states are orthogonalized at
certain parametersgt whereK~↑! or K~↓! crosses over thegt
axis. Figure 1~b! shows the behaviors ofP~↑u↑;a! ~solid line!
andP~↓u↑;a! ~dotted line!. Those kinds of state evolution in
the JCM do not exactly correspond to the one in Eqs.~3a!
and ~3b!. In the JCM, the signal state whose initial state is
ua& or u2a& may run over the infinite dimensional space
spanned by the Fock states$un&;n51,2, . . .%, while the unitary
evolution described by Eq.~2! is confined in the two-
dimensional subspace of the signal and probe states. The
optimum amount of exact retrodiction predicted by Ivanovic
and Peres’s method for the case ofa51 is about 12k
50.864 67. In our scheme with the JCM, it is not obvious
how to pick up the interaction parametergt for realizing the
same value. A closer value obtained in the range of 0,gt
,20 is about 0.834 176 atgt515.687 8 asP~↑u↑;a! whenu↑&
is specified. The behaviors expanded around this point, indi-
cated by the arrow, is presented in Fig. 2. The definition of
lines are the same as in Fig. 1. It is an absolute requirement
that the number ofP~↑u↑;a! should be less than the value
12k. The larger Hilbert space cannot make the probability of
orthogonalization any larger.

It is worth mentioning that their behaviors obey the uni-
tarity condition

^2aua&5P~↑u↑;a!K~↑ !1P~↓u↑;a!K~↓ !. ~18!
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Usuda discussed the details about them@11#. This relation
prevents the inner productsK~↑! andK~↓! to be orthogonal-
ized for the same interaction parameter.

III. OPTIMUM DECISION PROCESS

Let us move to the second issue. The optimum decision
process derived by Helstrom is expressed in terms of the
probability operator measure~POM! @12–17#, which is de-
fined as a non-negative Hermitian operator satisfying the
resolution of identity,

P̂i5P̂i
†>0 ~ i50,1!, ~19a!

P̂01P̂15 Î , ~19b!

where Î is a unit operator of the two-dimensional signal
space. For the case of linearly independent signals, they can
be written in the form of orthogonal spectral measure
~Kennedy’s lemma@18#!:

P̂05uv0&^v0u, ~20a!

P̂15uv1&^v1u, ~20b!

where$uv0&,uv1&% is a complete orthonormal set of the signal
space to whichuf0& and uf1& belong. Therefore, the decision
process is mathematically described as merely a projection to

the basis$uv0&,uv1&%. The error probability in the optimum
decision process becomes

Pe~opt!5j z^v1uf0& z21~12j!z^v0uf1& z2

5 1
2 @12A124j~12j!z^f1uf0& z2#, ~21!

wherej and 12j are prior probabilities for the signal states
uf0& and uf1&, respectively.

Now let us consider the optimum decision for a particular
case of the binary coherent signalsua& and u2a& with the
same a priori probabilities, i.e.,j51

2. The channel model is
depicted in Fig. 3. The solid lines represent correct decision
channels, while the dotted lines represent error channels. The
concrete expressions foruv0& anduv1 & were derived by Osaki
and Hirota@19# as

uv0&5S 11A12k2

2~12k2!
D 1/2ua&2S 12A12k2

2~12k2!
D 1/2u2a&

~22a!

FIG. 1. A numerical example of the received quantum-state con-
trol with the resonant Jaynes-Cummings model in the case of
a51. ~a! The overlapsK~↑! andK~↓! varying the interaction pa-
rametergt, which is dimensionless.~b! The probabilities of the
atomic transitions. The solid and dotted lines correspond to the
atomic transition channelsu↑& to u↑& and u↑& to u↓&, respectively. The
horizontal one-dotted line in~a! shows the initial value of the over-
lap ^2aua&.

FIG. 2. The behaviors in Fig. 1 are magnified around the near
optimum point, indicated by the arrow. The probability of orthogo-
nalization closest to the theoretical maximum 12k50.864 67, in
the range of 0,gt,20, is about 0.834176 atgt515.687 8 as
P~↑u↑;a! when u↑& is specified.

FIG. 3. Channel model for the optimum decision process. The
solid lines represent correct decision channels, the dotted lines error
channels.
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and

uv1&5S 12A12k2

2~12k2!
D 1/2ua&2S 11A12k2

2~12k2!
D 1/2u2a&,

~22b!

where k5^au2a&5exp~22uau2!. They are the so-called
Schrödinger cat states made of the signal statesua& andu2a&.
~Ban, Osaki, and Hirota recently provided a systematic deri-
vation method of the decision operatorP̂ i for the general
case ofn dimensional signals being linearly independent
@20#. The method consists of orthogonalization of the signal
states and unitary transformation from these orthogonal
bases to appropriate bases. It is instructive to understand the
structure of the optimum decision process!. The optimum
decision in this case is equivalent toalternative observation
of these two kinds of Schro¨dinger cat states. The error prob-
ability is

Pe~opt!5 1
2 ~12A12k2!. ~23!

In Dolinar’s method, this process is realized by a kind of
stochastic treatment, i.e., feedback measurement depending
on the photon-counting results. However, we wish to find a
more systematic design theory of the receiver realizing the
optimum decision process. For this purpose, it might be ben-
eficial to decompose the optimum decision process, if any,
into the ones with clear physical correspondence.

As an example, we show that the alternative observation
of the statesuv0& and uv1& can be mapped into binary detec-
tion of two-level states of an atom. The mapping process is
mainly composed of two steps, each of which is constructed
with unitary evolutions.

The first step is a generation of even and odd coherent
states by use of the nonresonant atom-optical field interac-
tion. This generation scheme was originally proposed by
Bruneet al. @21# and Haroche@22#. It can be described by a
unitary evolution operatorÛ1 in the extended space of the
optical signal field and the atom. That is, after receiving the
signal state—let it beua& for clarity—it is correlated with an
atomic superposition state 1/&~u↑&1u↓&! via Û1. The output
state is fully entangled as

Û1

1

&

~ u↑&1u↓&)ua&5S 11k

2 D 1/2u↑&ua1&

1S 12k

2 D 1/2u↓&ua2&, ~24a!

where

ua6&5
1

A2~16k!
~ uae2 i ~p/2!&6uaei ~p/2!&). ~24b!

The statesua6& are the even and odd coherent states. The
details onÛ1 will be explained in the Appendix.

The second step is a rotation in tensor space spanned by
composite basisu↑&ua1& andu↓&ua2&. An evolution operator is

Û25exp
p

4
~ u↑&ua1&^a2u^↓u2u↓&ua2&^a1u^↑u!.

~25!

The final state is the following:

uc~a!&5Û2Û1

1

&

~ u↑&1u↓&)ua&

5
A11k1A12k

2
u↑&ua1&

2
A11k2A12k

2
u↓&ua2&. ~26!

When the received signal isu2a&, the final state is

uc~2a!&5Û2Û1

1

&

~ u↑&1u↓&)u2a&

5
A11k2A12k

2
u↑&ua1&

2
A11k1A12k

2
u↓&ua2&. ~27!

In detection, only measurement of the atom is made by the
level detector. The optical field components are not con-
cerned. Therefore, the states reduce to the following mixed
states, by tracing out the optical field components:

r̂A~a!5TrF@ uc~a!&^c~a!u#

5
11A12k2

2
u↑&^↑u

1
12A12k2

2
u↓&^↓u, ~28a!

r̂A~2a!5TrF@ uc~2a!&^c~2a!u#

5
12A12k2

2
u↑&^↑u

1
11A12k2

2
u↓&^↓u. ~28b!

They are the mapped states. The processes are schematically
summarized in Fig. 4. Thus the binary decision of the signal
statesua& and u2a& with the decision operatorsP̂05uv0&^v0u
andP̂15uv1&^v1u can be mapped into the atomic statesr̂4~a!
and r̂4~2a! with the decision operatorsP̂ 0

m5u↑&^↑u and
P̂ 1

m5u↓&^↓u, respectively. The channel model is shown in Fig.
5. The error probability is written as

Pe~opt!5 1
2 ^↓ur̂A~a!u↓&1 1

2 ^↑ur̂A~2a!u↑&

5 1
2 ~12A12k2!. ~29!

The first step of the mapping process can be realized by a
current technique in the cavity QED, as explained in the
Appendix. However, physical correspondence to the second
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step is not yet clear. The state evolution in the second step is
exactly the same as the one for the Ivanovic and Peres
scheme to realize the optimum amount of exact retrodiction
as discussed in Sec. II@see Eqs.~2! and ~25!#. As shown
there, the state control with the resonant JCM can achieve
the amount of exact retrodiction to a closer value to the op-
timum point. But how to realize exactly the state evolution of
Eq. ~2! or ~25!, a rotation of the composite basis, is a remain-
ing problem. Required are further studies of how much
closer one can come to the result of that rotation by use of
the JCM.

IV. SUMMARY

Two kinds of applications of the JCM to the received
quantum state control were presented. The first application is
concerned with the exact retrodiction of an ensemble of two
nonorthogonal states. It was shown that the state control with
the resonant JCM can achieve the amount of the retrodiction
close to the optimum value, which can theoretically be pos-
sible in the Ivanovic and Peres scheme.

The second application is the realization of Helstrom’s
receiver, which gives the lowest decision error to date for
nonorthogonal quantum state signals. The mapping scheme
from binary coherent state signalsua& and u2a& to two-level
atomic statesu↑& and u↓& was proposed. It enables us to re-
place the complicated optical measurement required in Hel-
strom’s receiver with the simple atomic level detection. It
was shown that the mapping process can be described by
unitary process. We decomposed it into two steps. The first
step is the generation of the Schro¨dinger cat states of optical
coherent field with the nonresonant regime of the JCM. The

second step is the rotation in the two-dimensional subspace
spanned by the composite basis of the optical Schro¨dinger
cat state and the atomic state, whose physical realization
needs to be studied further.
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APPENDIX: GENERATION OF THE EVEN
AND ODD COHERENT STATES

The generation scheme of the even and odd coherent
states, proposed by Bruneet al. @21# and Haroche@22#, was
applied to the mapping process in Sec. III. Its physical de-
scription is given here. Figure 6 is an experimental setup. A
cavity is located between two Ramsey zones,R1 and R2,
where injected atoms are irradiated by a high-intensity laser
beam. An atomic beam prepared in the upper-level state
crosses successively zoneR1, the cavity, and zoneR2. The
beam is adjusted in such a way that only a single atom exists
inside the cavity, and this single atom interacts with the co-
herent field as the received signal state.

At the first zone, the atomic state is transformed from the
upper-level state to a superposition of the upper- and lower-
level states by pumping with the laser beam, which can be
treated as a classical field for the atom. It can be described by
the semiclassical JCM, derived by replacing the operatorgâ
with the c numberee2 int, wheret is the interacting period,
in Eq. ~5!. The driving field ee2 int is resonant with the
atomic transition. The Hamiltonian is

ĤR5 1
2\n~ u↑&^↑u2u↓&^↓u!1\~ee2 intu↑&^↓u

1e* eintu↓&^↑u!. ~A1!

FIG. 4. The mapping process. It is mainly composed of two
steps, each of which is described by the unitary operatorÛ1 and
Û2. After these interactions, only measurement of the atom is made
by the atomic level detector.

FIG. 5. Channel model for our mapping scheme. After the map-
ping, detection is made only for the atomic states being mixed. The
solid lines represent correct decision channels, the dotted lines error
channels.

FIG. 6. Experimental setup for generation of the even and odd
coherent states. A cavity is located between two Ramsey zones,R1
andR2, where injected atoms are irradiated by a high-intensity laser
beam. An atomic beam prepared in the upper-level state crosses
successively zoneR1, the cavity, and zoneR2. At zoneR1, the
superposition state is produced. At the cavity, it interacts with the
signal coherent field, generating the entangled state. After passage
of the atom through zoneR2, another entangled state is made,
whose optical field components are the even and odd coherent
states.
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By choosing the phase ofe as e5i ueu and settingueut5p/4
andnt5p, the evolution of the atomic state is described by
the operatorÛR as

ÛRu↑&52 i
u↑&1u↓&
&

. ~A2!

This atomic superposition state enters the cavity to interact
with the signal field, assumed to beua& for clarity. The inter-
action is in the nonresonant regime; that is, the detuning
d5n2v@g in the JCM@Eq. ~5!#. The effective Hamiltonian
is

ĤC5\vn̂1 1
2\~n1geff!~ u↑&^↑u2u↓&^↓u!

1\geff~ u↑&^↑u2u↓&^↓u!n̂, ~A3!

wheregeff5g2/d andn̂ is the photon-number operator for the
signal field. Lett be the interaction period in the cavity. By
adjustingnt5 3

2p and gefft5p/2, the state evolution in the
cavity is described by the operatorÛC as

ÛCua&ÛRu↑&5
i

&

~ u↑&uae2 ivte2 i ~p/2!&

1u↓&uae2 ivtei ~p/2!&). ~A4!

The atom exits the cavity and enters the second zoneR2,
whose effect is the same as the first one. Further operation of
ÛC to the state of Eq.~A4! leads to the following state:

ÛRÛCua&ÛRu↑&5 1
2 u↑&~ uae2 ivte2 i ~p/2!&1uae2 ivtei ~p/2!&)

1 1
2 u↓&~ uae2 ivte2 i ~p/2!&

2uae2 ivtei ~p/2!&), ~A5!

which is equivalent to the state of Eqs.~24a! and~24b!. The
operatorÛ1 in Sec. III corresponds to2iÛ RÛC .
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