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We present a general theory that connects the pump process in multilevel lasers with the statistics of the laser
field. The key ingredient in our approach is the derivation of an effective master equation that involves only the
two laser levels and that contains a non-Markovian pump term. This pump term gives rise to a narrowing of the
photon-number distribution in steady state. The qualitative features of this dynamic noise reduction can be
inferred from the eigenvalues of the pump term, which are known analytically. As the mechanism that is
responsible for the noise reduction, we identify a correlated excitation process in which the effective excitation
rate from the lower to the upper laser level depends on the photon number. This correlated excitation process
is very different from an excitation at equidistant times, such as in lasers with periodic external injection. We
stress that our approach is general and the treatment nonlinear because we do not resort to approximations such
as an adiabatic elimination of atomic variables or the linearization of a Fokker-Planck equation. It is therefore
particularly relevant for the description of systems where the active medium consists of a few atoms only and
where the field losses are not negligible on the time scale of the atomic relaxations. This would be the case in
an ion-trap laser. For such a situation our results are substantially different from those obtained by a linearized
treatment.

PACS numbsgs): 42.50—p, 42.55-f, 32.80~t

I. INTRODUCTION explains the mechanism of noise reduction inherently, that is
from the dynamic equations themselves rather than assuming

In recent years, the possibility of intensity-noise reductionthe pump process to be a separate stochastic process that can
in lasers below the shot-noise limit has received considerablee more or less regular. This mechanism is quite different
attention. A particularly interesting mechanism where thefrom lasers with a regular injection of atoms in the excited
pump-noise suppression is generated by the lasing mediustate.
itself rather than by some external control has been studied Apart from its mathematical transparence, this approach is
by Ritschet al.[1], Ralph and Savagg?], and otherg3]. also quite general insofar as no assumptions or approxima-

In their work, Ritschet al.[1] investigate the “recycling” tions such as an adiabatic elimination or the linearization of
process of the active electron in a multilevel medium froma Fokker-Planck equation are necessary. This is particularly
the lower to the upper laser level. The excitation process viaelevant for the treatment of the laser process with single
a sequence of intermediate levels is identified as a mecharapped iond8-10], where the recycling process, the loss
nism that leads to amplitude squeezing. In the limit of infi- process, and the emission process may have comparable time
nitely many intermediate levels, the system is found to bescales. Even for high-finesse mirrors the loss out of the mir-
have similar to a maser with a regulgxternal injection of  rors during the “dead period” of the ion, when it is reexcited,
atoms in the upper state, for which sub-Poissonian noise rds appreciable. Here, a weak-pump-field approximation is not
duction has been found earlipt—6]. This result is particu- applicable either, and the ground state will be depleted most
larly relevant for active media such as semiconductorsef the time. In such a situation, the atom and the field have to
which involve a cascade-type relaxation when beingbe treated as a single coherent object, and the full density
pumped. matrix equation has to be considered.

In this paper, we present a different approach, which pro- In a direct numerical treatment of the density matrix equa-
vides new insights into the problem of noise reduction intions, Mu and Savagg8] showed that a four-level pump
general. We find that the key mechanism responsible for thecheme can lead to sub-Poissonian output for such a one-
intensity-noise quenching is given by a correlated excitatioratom laser. In our approach, we can give an analytical expla-
scheme where the effective excitation rate of the atom frommation for this numerical result. In addition, we are able to
the lower to the upper level depends on the number of photreat the general multilevel system on the same footing and
tons in the field. The quantitative dependence of the excitawithout an approximation. By this we confirm the predicted
tion rate on the field variables is obtained in terms of theenhancement of noise reduction for the multilevel excitation
eigenvalues of a general pump operdtof for an effective  on the basis of the exact single-atom master equation. In
two-level laser. particular, we can investigate the system for any parameters

We find that the concept of correlated atomic excitationand are not restricted to the situation far above threshold. If

one wishes to go beyond the single-atom case, one could
employ the standard method by Riskdrd], where correla-
“Unite de recherche assoei@u CNRSURA 282). tions between different atoms are neglected consistently;
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other approximations would not be required. monic time dependence expiwpct). From this level,
The paper is organized as follows. In Sec. Il we start withwhich lies energetically higher than the upper laser |¢Ag|
the full density-matrix description of the four-level laser andthere is again a spontaneous decajAo Together, this con-
introduce the notion of the pump system and the laser systestitutes an effective pump process frdB) to |A). The fre-
as two open subsystems of the composed laser model. Thgiency spacing between the levels as well as the decay rates
pump system involves the classical external field that drivegre indicated by the symbols, . and R, , respectively,
the atom. It replaces the “hot reservoir” in standard reservoirwith subscripts L,L.=A,B,C,D. For simplicity, we assume
theory[12] and can be reduced to such a simplified descripthat the laser transition is resonant with the mode,
tion under certain conditions to be stated. The laser systeny ,. =, and the pump transition is resonant with the clas-
describes the coupling of the laser levels to the quantizedica] field, wpc= wpp+ w+ wge. Also, we do not consider
field mode. It is Coupled both to a cold reservoir, due to th%pontaneous decay frot‘@) to |C> in order to keep the no-
cavity losses, and to the pump system. In Sec. Il C we elimitation transparent. None of these restrictions is essential for
nate the variables of the pump system from the descriptioghe following. In Appendix B, we state some of the results
without resorting to any approximations. In the master equafor more general parameters. In the following, we will refer

tion for the laser system, this leads to a non-Markovian termg the levels|A) and |B) as laser levels in contrast to the
that accounts for the atomic memory during the reexcitationpymplevels |C) and D).

In steady state, this non-Markovian term reduces to a pump
operator, which is a function of the field variables. The ei-
genvalues of this operator can easily be found in the The dynamics of the composed atom-field system is de-
damping-basis representation. From the spectrum of eigerscribed by a master equation of the form

values, we can draw qualitative conclusions on noise reduc-
tion. In addition, we see how the non-Markovian master
equation contains corrections to standard reservoir theory
and in which limits the standard theory is recovered. In Secwith a unitary and a nonunitary part.

lll we .|00k at Fhe pump operator in _the_ nhumber-state repre- The unitary part contains the coupling of the laser levels
sentation and identify correlated excitation as the key mechaénd the pump levels to the laser and the pump field, respec-

r}ism responsible for dy”f”‘mic noise reduction. The e“min"’l‘[ively. The Hamilton operatoH for this interaction can, in
tion o_f the pump levels into a pump operatpr can also bean interaction picture, be written as

done in the general case of arbitrarily many incoherent seg-
ments involved in the pumping process, which is done in /= — g(a|A)(B|+af|B)(A|)— £|D)(C|— £*|C)(D|,

Sec. IV. There, we also treat the limit of infinitely many (2.2)
intermediate levels, in which the non-Markovian pump term

of the master equation reduces to an explicit retardatiomvhere the Rabi frequencies and ¢ measure the coupling
term. This is an appropriate place to come back to the interstrengths to the laser transition and the pump transition, re-
pretation of the mechanism of noise reduction. In Sec. V wespectively.

summarize the results. In three appendices, we supply addi- The nonunitary part involves the photon damplhgand
tional material and state some of the results of the main texthe spontaneous decays between the atomic levels. The
in more generality. first term reads

A. Pump levels and laser levels

J_ 1
i P= 7 [H.PI+LP+LsP, 2.1

Il. THE FOUR-LEVEL LASER LP= — 2(” 1)(a'aP—2aPa’+ Pa'a)

The scheme to which we refer in the following is shown
in Fig. 1. The laser transition is between the leéls and
|B) and couples to a quantized laser mode of frequangy
which is described by the ladder operata’sanda. The
lower level spontaneously decays to the ground $@tevith ~ whereA denotes the free relaxation rate of the mean photon
the rateRgc from where the atom is excited to an upper number (a'a) towards its thermal equilibrium value
(pump level |D) by a classical coherent field with a har- (a'a)..=». The second term has the form

A
- EV(azma— 2a'Pa+Paa’), (2.3
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AB where we have introduced the anti-Hermitean polarization
LsP=——~ |AXAIP+PIAXA|-2[BXA|PAXBI) term mep=“pcp— £* ppc. The corresponding Hermitean
combination satisfies the separate equation

R
_TBC( |B)(B|P+PIB)B|—2|C)(B|PBXC]) 9 1 o
(E_La‘l' ERDA)((”(I)CD_FC( poc)=0 (2.8

RDA

2 (DXDIP-+PDXD|=-2/AXDIRDXAD. 24 and vanishes for large times. The equationsdgg, pap .

s, pep and their adjoints are decoupled from the equations
tated above. Thesp’s involve pairs of levels between
which there is no coherent connection, so the dissipation
makes them vanish for large times, too, and they are not of
interest for the present purpose.

In summary, the problem reduces to the solution of the
seven coupled equation®.6) and (2.7). The four “laser
equations”(2.6) describe the interaction of the laser transi-
tion |A)«—|B) with the quantized field. The system of these
7(cétquations is closed except for the inhomogeneous term

during the finite reexcitation time of the ion. This is, in ad- : . . S
y . . ! R in the first equation, which involves the upper pum
dition to a strong atom-field coupling, necessary to keep th?eI\D/Aéﬁ).D-DrhiS gain tercr]n, which is proportional tpff, d?a- P

microlaser going. Theoretically, this situation corresponds_ . . s
neither to a good-cavity limit nor a bad-cavity limit. Rather scribes the rate of change of the conditional sfale due to

LT ; . ’ transitions from the pump levéD) to the laser levelA).
the cavity is “just good enough.” The parameters will, there- The three “pump equations2.7) describe the interaction

forﬁ; Zg.'f;"gtge alleogthear?gr[lheeogg%r %fs:anda%?;cidg.'nto thOf the pump transition|C)«|D) with the classical field.
bare atolm'c staﬁé;v tha)t(ps P ! Fhese are the Bloch equations for the conditional states of
! ' : the laser field that involve the pump levels. Again, these
/ equations are closed except for an inhomogeneous term
P=2 polLXL], 25 2 P g
LL

in which the three terms on the right-hand side describe thé
relaxations fronjA), |B), and|D) into the lower-lying levels
[B), |C), and|A), respectively, by emission of photons into
the modes of free space.

In the following, we will not make further assumptions on
the relative strengths of the parametgrs, A, andR, .
For the ion-trap laser, it will be a challenge to implement
mirrors with a finesse that is sufficiently high. The lifetime of
the photon has to be at least so long that it does not get lo

Rgcpgg In the first equation of(2.7), which accounts for

transitions from the lower laser level to the ground state.
with indices LL'=AB,C,D, wherein the coefficients  Equations(2.6) and (2.7) thus describe two subsystems,
puL=pu(t,a’,a) are still functions of the photon variables the laser system and the pump system, which are coupled.
a' anda. For instancepaa=(A|P|A) describes the state of The losses out of the laser system, with g, appear as
the laser fieldgiventhat the atomis in staﬁé). We therefore an inhomogeneous gain term for the pump system, and the
sometimes call the quantitigs, » conditional states of the |osses out of the pump system, with r&&g, , give an inho-
field. mogeneous gain term for the laser system.

Upon inserting(2.5) into (2.1), one obtains the following Since the details of the pump process are generally not of
equations interest, it would be natural to eliminate the equations of
J (2.7 from the description by solving them ferpp and in-
<__|_a+ RAB)pAA: —ig(paga’—apga) + Roapon serting the result into the first equation @.6). This is, in

ot fact, what we are going to do.

In the situation of conventional laser theory where the
field does not change appreciably on the time scale of the
atomic excitation and, in particular, the losses out of the
mirrors are negligible, this elimination can easily be done.
Upon setting.,=0 in (2.7) (which means.[<Rp,, |#] for
all relevant eigenvaluek; of L,), we find in steady state
P Ras+ Rac pDID=-(R?]C/|I§DA.)prB. fThr? correspondri]ngRtimegjepT?{?ent

Z_ _AB _ BC —ia(atp. . — t relation holds if we further assume thg{Rgc< | &

(&t 2 2 )pBA '9(@'pm—peea). (26 holds, which means that the excitationgfrdBﬁ% toD|/jA> is
faster than all other time scales. The first two laser equations
of (2.6) then read

pes=—19(pgad—a’pag) +Ragpan .

a
ﬁ_ La+ RBC

gt @ 2

pas= —ig(ppa@—apsgs),

as well as

d )
(E‘La) pcc= —Imcpt Recpes d , .
i LatRag|paan=—id(pasgd’ —apga) + Racpes
d .
(5"—{" RDA>pDD:|7TCDa P
(E —La+ RBC) pes=—i9(pgaa—a’pap) + Ragpan .

iWCD:2|g|2(PCC_PDD)y 2.7 (2.9

and the equations fgrg, andp,g remain unchanged.

ot 2

d 1
— ~Lat 5Rpa
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|A> normally ordered Laguerre polynomials as functionsabd
as is shown in Refl14]. For zero temperature;=0, these
eigenstates are explicitly given by

n+|k|

K T
( ):aT(|k|+k)/2(_1)a a+n aTa+|k|

Pn

)a(k—sz

R
BA (2.12)

=
=
[ws]
@

and

Y ~ (k) _ n! (k| —k)/2
|B> Pn _(n+|k|)!a Ik
FIG. 2. Schematic representation of the standard heat-batpjegse note that the definition of a left eigenstaté2in0
model for the two-level laser. refers to the trace, analogous to an inner product for “bras”
and “kets” in unitary quantum mechani¢45].
Now the system of equations involving the levis and The set of these states is complete in the sense that we
|B) is closed. The substitutioRpappp= Rgcpeg Means that  may write
the losses out ofB) appear as simultaneous gain into the o o
upper levelA) without a further change in the field. This we _ k)
chFI) the Iin|1it of “instantaneous pungnping." It reduces the p(t)_zo k:z_m a”k(t)pi‘ (213
four-level model of Fig. 1 to the standard “heat-bath model” o
for the laser, where the pump process is determined by ¥ith coefficients
single excitation rat&®gs=Rgc, given phenomenologically, o (t)=tr{b(k)p(t)} (2.14
as shown in Fig. 2. WheRgs>R,g, the atom can, due to nk "
an external heat bath, be inverted and the lasing process fisr any statep(t) which is a function ofa” anda. The basis

—_—————————— =

A

a'a

alk*oz (2,19

possible[13]. states also satisfy the duality relation
In the present paper we are, however, interested in sys- < (k)
tems in which it isnot possible to neglect photon damping in t{pn P '+ = Snnr Sk (219

(2.7), since the losses out of the mirrors during the time of q il | the th | ;fé?é d its dual
recycling may be significant. When this is the case, we can??o)_SpeC'a examples are the thermal S and its dua

not setL,=0 in (2.7). Please note that, in (2.7) is an PO
operator acting on conditional statpg . The dependence
of all functionsp,, -, including L,L'=C,D, on the photon
variablesa” anda indicates that the dynamics of the pump
process depends on the state of the laser field, Wvere a
number, we could again easily integrd®7) and solve for ,
po. gain casly integrai? (Lapu (D=3 1AM+ KI2)al o

At this point it is helpful to remember that,, in fact, is ' (2.16
essentially a number on certain states, namely its eigenstates.
As has been shown ifiL4], these eigenstates form a com- When we further modify Eqs(2.6) and (2.7) in the next
plete set into which any function of the photon variables, sosection, we will treatl, as if it were an ordinary number,
for instance, the functionp,, ., may be expanded. Conse- remembgnng that functions df, are evaluated in accor-
quently, any operator function df, is well defined in terms ~ dance with Eq(2.16.
of the spectral representation bf. In the following treat-
ment, we will therefore not care about the operator nature of
L, and treat it as if it were a number. C. Elimination of the pump levels

Before we proceed, let us briefly review the damping-
basis formalism in the next section. For a detailed treatment
the reader should consult R¢l4].

With the eigenstates d2.10 at hand, we find the action
of L, on the conditional states | - in Egs.(2.6) and(2.7). In
particular, expansions of the for(@.13 are employed when
an arbitrary function oL, is acting, as is exemplified by

For further treatment we writ€.7) in the form

9 Pcc Pcc Recres
B. The damping basis 2| Poo =%\ popo |+ 0 (2.17
The damping operator satisfies the following eigenvalue i i7cp 0
equations
with the (Bloch) matrix
Lap=—A(n+ K20, (Bloch)
i " L, 0 -1
p'La=—A(n+[kl/2)p, (2.10 _
, 0  La—Rpa 1
M= . (2.18
forn=0,1,2, ... ank=0, =1, *2, ... with right and 2|42 —2|#4? La_ERDA

left eigenstateqz)gk) and bff’, whose explicit forms involve
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FIG. 3. Schematic representation of the multilevel atom as al
effective two-level atom with pumping described by an operator.

This matrix, which contains as an entry also the dampin
Cthe upper laser level. Roughly speaking, the temporally non-

operatorlL ., is defined as an ordinary humber matrix on th
eigenstates ok ,. Any operations on# are therefore op-

erations with an ordinary matrix when applied to these states.

To integrate(2.17) explicitly,

pcdt) pcclto)
pop(t) | =t ppp(ty) |+ | dt/et-t)
imrep(t) i mep(to) fo
Recpes(t’)
X 0 , (2.19
0

one has to diagonalizeZ.
For the componentpp(t)

t
pDD(t):f_wdt/FBD(t_t,)pBB(t,)

with a kernel
Z |2RBC

Fgp(t—t’)

d

ot

J
E_ La+ RBC

“A7=R%,016 ©
12— R3/16(t—1")],

X sirf[
which does not vanish identically for-t’. In doing this, we
choose the initial state at timtg= —o, whose contribution
vanishes since the matrix#Z has only eigenvalues with
negative real parts, as can be seendr26 below. Upon I .
inserting(2.20 in (2.6), we arrive at the laser equations
!

PBB™ —

, in particular, one obtains

(2.20

Xd (La—Rpa/2)(t—1")]

Lot RAB) pan=—19(pagd’ —apga)

t
+ fﬁ dt’Rgf/fx(t_t’)PBB(t’)a

ig(pgad—a'pag) + Ragpaa
(2

(2.21

22

1.0
08
0.6
R§Y/Rpc 1 .

0.4+

0.2+ 1

15 20

25

0.0 7
0
n

FIG. 4. Eigenvalue spectrum of the pump operator for the pa-
rametersRp, /A=10 and (1) |#]/A=2, (2) |#]/A=10, and(3)

| #11A=50.

supplemented by the equations fotg and pga, Which are
the same as if2.6). The time integral i2.22 accounts for
Yhe delay involved in pumping the atom from the lower to

local kernel

ReA(t—t")=Tgp(t—t')Rpa (2.23

represents an effective transition rate into the ldvel at
timet, which depends on the population|B), and thus on

the state of the field, at the earlier timhe This temporally
nonlocal or non-Markovian behavior is significant in a re-
gime where the time scales of the pump process and the laser
process are comparable. If on the other hand the pump acts
very fast compared to the laser transition, it can be adiabati-
cally eliminated from the description, which is done in Ap-

pendix A.
In steady state, whepgg(t')=p5e,

(2.22 can be evaluated and yields

the time integral in

Reﬁ=focdt’Re“(t’):R 2(+€|2R (2.24
BA o BA BC _ det/Z DA .
25 1.5
N\
I L
t A
20 oo 1.4
! \
! \ L
] \
154 ’l L 1.3
<aTa> 1 ,’ \\ B F
10 ! X 1.2
AY
/ N I
54, \\\\ -1.1
1, B N ittty
0 T . T T T T T T 1.0
0 2 4 6 8 10

€]

FIG. 5. The mean photon numbéa'a) (solid curve and the
Fano factorF (dashed cunjeas functions of the pump strength
|#] for the four-level atom with the parameters-0.01, A=0.07,
Rag=1, Regc=Rpa=10, and a decay ratBpc=1 on the pump
transition(as in Appendix B. All rates are given in units aof.
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with .7 of (2.18). The evaluation of the integral can be seen (—La+Rag)pan=—ig(paga’ —apga) + Rgf/ngB
most easily from(2.19 directly, which involves the inverse
of the Bloch matrix.#. The inverse of the determinant is

explicitly given by (—Lat+Rec)pee=—i9(pead—a’pag) + Raspan »
oo 1 0 (2.29 .
detzZPn )\gok))\g;))\ﬁ)p” ' [—Lat(Rag+Rec)/2]pas=—i9(pasd—apgs),

with the eigenvalues . T
[—Lat(Rag+Rec)/2]pga=ig(a’ paa—pesa’), (2.27)
AY=—A(n+|k|/2)— (1/2)Rpa,
. _ (s9) C . .
7\51?= — A(n+ |K|/2) = (L/2)Rpp = (1/4)RE>A—4 2 with PLLI=PLL The_ exc!tatlon process via the Iev¢(§>
(2.26 and|D) is now comprised in theump operator Ig,&, which
effectively describes the transition from the lower to the up-
of .7. ForRpa, |#]>0, all eigenvalues are surely nonzero per laser leve[16] as illustrated in Fig. 3. The rate of these
and Rgf,i is well defined in(2.24). Putting things together, we transitions, however, depends also on the state of the photon

find the steady-state equations field as can be seen from the eigenvalue spectrum

RBC2|;9(12RDA
212+ (12)RBATAN+ (312 Roa(AN) 2+ (An) 3"

Reff (0) _

— (0)=R(n0) ,(0) 22
BAPn 2|;§12RDA+[4 n BA Pn > ( 8)

here explicitly reported fok=0. Fork+0, the correspond- and the state of the photon field are correlated according to
ing expression foR{Y) has the same appearance wih  (2.28. The effective pump rates dR.28, in some sense,
replaced byA(n+|k|/2) everywhere in the denominator. ~ @ccount for the “dead period” of the laser process during
The appearance @ in the denominator indicates that the Which the atom stays in one of the pump levi or [D).
pump is sensitive to the losses of the field during the reexciPuring that time, the field is damped, and this damping is
tation. Sincen labels the statistical moments of the field in Stronger for components with a largey corresponding to a

o 131225 et ey 2 e rumber, T Gea e ot o cotan
ratesRyyY) from level |B) to level |A) is correlated with the b y

) . . .. _relative strengths of the ratésn on one side, an¢i?|, R
state of the laser field. Roughly speaking, different statistica v 9 ! ], Roa

. n the other side. If the pump process is fast compared to the
moments(or componentsof the field feel a pump that acts relaxation of the field, that i&\n <|#|,Rpa, then the de-

with different strength. In particular, higher statistical mo- ., minator of(2.28 can be replaced, in zeroth order, by the

ments(related to larger photon numbgrre less supported |eading term, and one obtains again the heat-bath model
than lower moments. A quantity such as the Fano factor for
the photon-number distribution, which involves ratios of its

statistical moments, can thereby become smaller than one, 4
indicating sub-Poissonian statistics.
In Fig. 4, thek=0 part of the spectrun2.28 is shown. 1.2 I
One observes that the dependence of the pump ratesi®n | e
strongest for small values ¢f]|. This gives rise to the ex- 7

istence of a minimum observed in the curves for the Fano F 1.04~_."
factor when plotted against’|, as is further pointed out in
the discussion of Figs. 5 and 6 in the following section.
To get a feeling for the consequenceg2P9), let us look 0.8
at the special casg=0 first. Forg=0 when the atom and
the field are decoupled, the field relaxes towards the vacuum
or the thermal statg{”’, on which the operatdRgh is iden- 7
tical to the numbeRgc. In this situation, the pump does not 0.0 03 10 15
feel the presence of the field nor its losses. The inversion of €]
the atom is then uncorrelated with the state of the field and
only determined by the relative strengths of the atomic re- F|G. 6. The Fano factoF as a function of the pump strength
laxation rates and the pump. |#] for the four-level atom with the parameters=0, A=0.02,
For g#0, however, the atom and the field constitute arR,g=0.01, Rgc=1, andRp,=2. All rates are given in units of
single coherent object and the transition rates ftBjrto |A) (solid curve and in units of 1 (dashed curve
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(2.9). The first-order correction to this approximation is pro- @
portional to the ratio of these rates and introduces ate- PAAZEIZ( ®nkPn " s
pendence into the effective pump rates: For components of "
the field corresponding to larger indicas the pump has to
be strongefaste) in order to compensate for the losses. PE= > ,Bnkpﬂ‘),
The correlation of the effective pump rates with different n.k
statistical components of the field is ultimately responsible
for the phenomenon of noise reduction in multilevel lasers.
In Sec. Il the physical interpretation of this correlation is
further illuminated by looking at the number-state represen-
tation of the pump operator.

k-1
PABZE ’)’nkPEm ) )

pBA=n2k Ty Y, (2.29

D. Numerical treatment which are similar to those in Ref14], produce a matrix

To evaluatg2.27), we expand the conditional density op- equation that is the coordinate representation227). In
erators into the damping basis, as explained in Sec. Il B. Theteady state, the only nonvanishing components are those for
expansions k=0, for which we obtaif17]

. . V
(AN+Rag) = —ig(N+1)(¥y= 70) =iGN——= (-1~ 70— 1) + RGN By,

(An+Rgc) Br=ig(N+1)(yq— 70) +igN(yn-1— 7n-1) —Rasan,
[A(N+1/2)+(Rag+Rec)/2] yn= —ig(v+ 1) an+igvB,—ig(v+1)(anr1— Bny1),

[A(N+1/2)+ (Rag+ Rec) /2] 7 =ig (v+ 1) an—ig vBa+ig(v+ 1) (s 1= Bur 1), (2.30

where we have suppressed the index0. These are the has a maximum. Above threshold the mean photon number
equations that we can solve with a matrix eigenvalue algo¢a'a) increases first linearly with the strength of the pump
rithm along the lines of Ref9]. field and eventually shows saturation. The Fano factor then
The difference to a real two-level laser is here given byapproaches a value that exceeds the Poissonian Faiue
the fact that the total trace of P involves also the intermediat®y a few percent. As one can see, these features are not as
pump levels. In(2.30 this has to be taken into account as apronounced as for a conventional laser. In particular, the
subsidiary condition, which can be written in the form threshold is not as clearly defined as in the macroscopic case.
The fact that has a minimum after which it increases again
slightly has its origin in the non-Markovian character of the
(2.3D pump. Qualitatively, this effect can be explained from the
eigenvalue spectrum of the pump operator, E28 and
Let us emphasize that the numerical effort to solve theig. 4. As discussed above, the dependence of the pump rates
steady-state equatioli®.27) does not depend on the number 0N the state of the field, which is the origin of noise reduc-
N of pump levels involved. The dimension of the matricestion, is most pronounced for low values|ef|. On the other
describing(2.30 is the same for a thousand levels as for twohand,|#] has to be large enough to get above threshold. The
levels, since the numbe\t of levels only enters the definition competition between these two tendencies gives rise to a
of the rateR{Y in (2.30 and does not influence the number Minimum at some intermediate region.
of equations as will be shown in Sec. IV. This represents a This can be seen more clearly in Fig. 6, where the Fano
substantial simplification as compared to a brute-force nufactor is plotted for two different sets of parameters. For a

merical treatment, for which the expense increases with th&trong atom-field coupling the value & remains below
number of levels. unity, whereas for a weak coupling there is only a small

In F|g 5, the |asing property of a sing|e atom is demon_region in which the statistics is sub-Poissonian. Both cases
strated. As for a conventional four-level laser one can see &xhibit, however, a minimum as in Fig. 5. The parameters in
threshold, a region of linear gain, and saturation. At threshFig. 6 agree with those in Fig. 7 of R¢8], where the output
old, which is accompanied by large fluctuations in the photorfield was plotted.
number, the Fano factor

1:Tr{P}:C¥0+ Bo 1+ RBC

2 R
2, Roall
Roa  4]7]

[ll. CORRELATED EXCITATION SCHEME

_ ((a'a)?)—(a'a)? (2.32 To gain more intuitive insight into the dynamic action of
(a'a) ' the pump, let us look at the rate of change of the conditional
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statepaa in the number representation. The change, R%"Am’]/RBc

due to the action of the pump during the tirdeis given by
1.0 )

Span=REAPBaA, (3.1

with RE" as in(2.24. SupposeRST were a numbemRg, , as
in the heat-bath model. Then, in number representation, we
would find

5PAm,Am: RBAPBm,Bmat: (3.2

where

Pam.Am={M|paa|m) (3.3

is the joint probability for the atom being excited in the
upper statgA) and the field being in a number stgim)
with exactly m photons. Equatior(3.2) expresses that the
number of transitions fronB) to |A) is proportional to the
population in the stat¢B), and the proportionality factor
does not depend on the state of the field, that indn (3.2). FIG. 7. Matrix elements of the pump operator in the number

eff
In the present model, hOWEVERBA Is not a number bl_Jt representation for the parameters of Fig. 4, curve|@:=Rp
an operator. Correspondingly3.2) changes into a matrix _qga

equation
: RUY = Rg(1—en), 3.6
5pAm,Am:2 R[Brgm ]me’,Bm’é\t (3-4) BA BC( € ) ( )
m where
with matrix elements 2A  ARpa
€=——+——m. (3.7
Rpoa 4%
[mm']_ (0) (N0) /71 % (0)] e’ _ . . .
Rga ; (mlpp”’|m)Rga (m’|py”[m’) Inserting(3.6) into (3.5) and employing the relation
n ! , m’
n\/m’ > Xn(—l)mm( =xM(1—x)m ™" )
:2 Rg}f\))(_l)mﬁ-n( m)( o0l (35) n m n m
n
=fm(X), (3.8
as implied by(2.11) and(2.12 for v=0. Equation(3.4) now one finds
states that the number of transitions from lej&) to level
|A) within the time incremenst depends on the number of — d
photons in the field. More precisely, there are also transitions Rea =Rec/ | 1— EX& f e (X)
between the product statefB)|m’) and |A)|m) for x=1
m<m’, that is, transitions between the laser levels that are =Rp[(1— €M) Sy + €(M+1) 6 1]
accompanied by a decrease in the number of photons in the
field due to the cavity losses. In Fig. 7, the correlated exci- 3.9

tation rates are plotted as a functionmmfandm’ for some . . ]
fixed values of the other parameters. The diagonal of thid his correlates, to first order i, the pump rates between

plot, specified byn=m’, reproduces curve 2 in Fig. 4, since B) and|A) to field states with neighboring photon-number
mm']_ componentan and m+ 1. The first-order approximation in

—-m’ [ (mO) i - . - .
for m=m’ (3.5 reduces 1R, '=Rgs . The first, sec (3.9 means that we consider a situation where the loss of the

ond, etc. side diagonal in Fig. 7 corresponds to the loss of 1,5yity during the excitation amounts to maximally one pho-
2, ... photons out of the cavity during the time the atomiy: see Fig. 8.

spends in the pump levels. Please note that for the standard |t s jlluminating to establish a connection between the
two-level laser the values d?[B”)\m'] vanish form#m’ and  pump-operator approach for a multilevel laser used in this
are constant on the main diagonal. This can be seen fropaper and the standard theory of an atomic-injection laser. It
(3.5 by replacing the rateQ(E{}f) by the constanRga=Rgc  tUrNS out that we can _|nclud(=3.9) in a detailed-balance
and the remaining summation of the binomials yields Kro-€quation and thereby find an analytical expression for the
neckerss,, . first-order noise quenching. . _

Consider now the first-order expansion of the rate matrixg Tﬁ df sot; we p{pce;ad I[lom the séa'uonary version of the
(3.5 if the damping rateA is small compared to the rates cully-Lamb equation for the masi8],
|£], Rge, andRp, involved in the recycling process. For
weak damping2.28 reduces to 0=[rK+Lalp. (3.10
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|A,m-1) |A,m) |A, m+1)
AANAAN
[B,m=1) |B,m) |B,m+1) .-
(b)
|A,m=1) |A,;m) |A,m41) .- |A)
A A A T
|B,m-1) [|B,m) |B,m+1l) |B)

1151

- A(m+2) .
TR (A 2 (me2) | (Mt DPmiime

B A(m+1)
1+ (B2 (m+1

)[1— em+1)]pmm, (3.14

where we have introduced the linear-gain coefficient

24=2r(gly)? (3.15
and the self-saturation coefficient
B=4(gly)2 4 (3.16

as well asZz=A for notational analogy with Ref18].
Far above threshold, the solution {®.14) is given by

%2)"‘ 1

A2
PmmZPoo<ﬁ—Z H<1—E

m(m+1)
2 M

) (3.19

FIG. 8. () Schematic representation of the pump transitions tof© first order ine. The normalization op to unit trace de-
first order in the feedback parametey i.e., at most one photon t€rminespgy. This corresponds to a quenched Poisson-type

leaves the cavity during the recycling time of the atdb).In the

good-cavity limit, the pump transitions can be described by a single

pump rate between the lower and upper lasing level.

distribution with a mean photon number

Here, r describes the injection rate of the atoms into the@"d & Fano factor

cavity and the change of the field state due to the interaction

with a single atom is given bXp. For a fixed interaction
time 7, the number representation (&.10 reads

O=-r Sinz(gTVm+1)Pmm+A(m+ 1pm+1m+1

+r Sinz(QT\/E)mel,mfl_Ampmm’ (3.1

where we have again restricted ourselves to zero tempera-
ture. Applied to the atomic-injection model, a correlated ex-

(a'ay=(a'a) (1-¢) (3.18
(afa)?)—(a'a)?
FE< <a>Ta)< ) =1—e(aTa>P, (3.19

where(a'a) =.7 ?/(.77) denotes the Poissonian mean for
e=0. This result tells us that the quenching of the photon
number fluctuations gets stronger for an increasing feedback
parametere and is proportional to the zeroth-order photon
number(a'a) .

Please note that the derivation of the detailed-balance

citation scheme means that the state of the maser field giv&duation relies on the first-order expansion of the pump op-

a feedback on the injection rate. Formally, the rabe (3.10
is then an operator as (3.9

(3.12

Mo =T (1—em) Sy +re(m+1) 6 mr—1,

and € measures the strength of the feedback. We take for

granted thaem<1 holds for all relevant values aofi. Using
(3.12 in the number representation (8.10, we obtain

0=—r[1—e(m+1)]sif(g7Vm+1)pmm
+[A—er Sirlz(QTVm+2)](m+l)Pm+1,m+l
+1(1— em)sirP(gTVm) py_1m-1

—[A—er sirf(grym+1)IMpmm (3.13

instead of(3.11). If the interaction timer is a fixed quantity,
as in the situation of the micromagdr], (3.13 leads to a

erator, so all results given here are only meaningful for small
€. The purpose of the previous derivations was mainly to
establish a link to the well-known Scully-Lamb approach
and to provide further insight into the correlated excitation
scheme when regarded as a feedback-type pump control.

IV. THE MULTILEVEL LASER

In the multilevel configuration, as depicted in Fig. 9, the
“pump electron” [20] will undergo a cascade of transitions
before it reaches the upper laser leya). In the work of
Ritsch et al. [1], it is argued thata simplified version of
such a multistep recycling process leads to a regularization
of the electron’s arrival times dA\). In analogy to a maser
with regular external injection, this would then explain the
noise-reduction effect in the multilevel scheme.

In our present approach, where we do not use an adiabatic
approximation, our strategy is again to eliminate the whole
cascade of intermediate levels and find the corresponding
effective pump operator for the reduced laser system. The

detailed-balance equation. If the atoms decay with a yate correlated excitation rates, which we obtain as eigenvalues,
before they leave the cavity, as is typical for optical transi-will then contain the information about the influence of the

tions, one should take the average(8fl3 over the atomic
lifetime. Detailed balance then yields

cascade.
The same applies to the limit of infinitely many interme-
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D) — Again, this straightforward elimination is possible since
\‘RMH we knowlL, in terms of its spectral decomposition, that is,
- we can treal , essentially like a number. At this point, we
have reduced the description to four levels.
Now we proceed as in Sec. |l to derive the pump operator

B corresponding t@2.24). The result is
N ‘RN_I
e RgL2|#|2REl
- = (4.4)
£ Rap 1| g BAT T _det// :
—— ) | _
‘/ R, with the effective rates
M-1 R.
Reff = R ] 4
=Rl R (4.5
4
) Y& Baas and
N—1 R
FIG. 9. Schematic representation of the multilevel atom. R%ﬁAE Ry 41 H i (4.6)
ji=M+2 Rj—Lj

diate levels. The pump operator in steady state acquires then

a particularly simple exponential form. In the time- and with .7 as in (2.18 if Rp, therein is replaced by
dependent equations, the corresponding non-Markovian terfly 4 1 -

introduces a time retardation into the pump dynamics. The The eigenvalues dﬂg‘} for k=0, viz.,

interpretation of this time retardation shows that the analogy

of the multilevel laser with the regular injection laser, where REZpEOE R;/[1+c;An+cy(An)%+ - -

“fresh” atoms are injected in a well-prepared state at equi- _

distant times, is very vague. Different from an injection laser +ey— 1 (AmN I]PEO)

the responsible mechanism for noise reduction in the multi- n0)_(0)

level laser is a correlated excitation process. =Rga'Pn”s 4.7)

with some real constants, . . . ,Ccy_1, Which depend on the

electric field and the atomic relaxation rates, now involve a
The dependence of the conditional statg_; -1 —the  polynomial inAn of degreeN—1.

bottom rung of the lower cascade in Figg— on thestate In (4.7), the dependence of these pump rates on the index

pes=p11 — the top rung of that cascade — can easily ben, and thus on the photon number, is enhanced with an in-

calculated. Since there are no coherences in steady state, #y@asing number of cascade levels. As for the four-level la-

A. Simple cascades

equations for the cascade levels read ser, the pump acts less efficiently for a large photon number.
In addition, due to the powdd—1 in the denominator, the
(=LatRu-1)pm-1m-1=Ru-2Pm-2m-2; dependence on the photon number is stronger in the multi-
level situation and increases with the numiberof atomic
(=LatRm-2)pm-2m-2=Rm-3pm-3M-3, levels.

The steady-state equation for the laser is still given by
(2.27 where now the pump operat6t.4) rather than(2.24)
is to be used. In Fig. 10, we plot the dependence of the Fano
(—LatRa)p2=Ripes. (4D factor on|#] for various numbersl of atomic levels. As one

&
can see, the noise reduction becomes stronger with increas-
ing N. For N=50, however, the process has reversed; see
Ru_» Fig. 10b). This is because with a growing number of inter-
mediate levels the dead time of the atom increases, so that
the pump cannot compensate for the loss out of the cavity.
The mean number of photons therefore drops and the region
_ Ru-2--"Ry of linear gain shrinks to zero; see Fig. 11.
(Rw_1—La)- - (Rp—Ly) B8 Figures 10 and 11 show the statistics of the laser field that
(4.2 is produced by a single atom. In particular, one can see how
o , . ) the choice of different excitation channels affects the noise of
Similarly, the statey .,y -1 involving the level prior to the e output field. As a rule, a cascade of pump levels is favor-
upper laser leve]A) can be expressed in terms of the stategpe to a three- or four-level scheme, although if a certain
PDD=PM+1M+1- intensity is required, there is an optimum value of pump
levels. A more realistic model, which also considers parallel
PNL No1= Rn-2'-"Rv+1 pop. (4.3 decay and pump channels, for instance, when magnetic sub-
’ (Ry-1—La) - (Rus2—La) levels are involved, is worked out in Sec. IV B.

We solve this recursion iteratively and obtain

prl,Mfl:RM Laprz,M72:"'
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€] €l
1.0 FIG. 11. The mean photon numbga'a) as a function of the
(b) pump strength#| for the parameters of Fig. 10.
0.9~
not surprising, since for small values &f the adiabatic
0.8 elimination does not claim to hold in a regime whétiA is
h not very large compared to unity; for lardg on the other
F ] side, the cooperativity parameter2g%/I'A goes to zero
0.7 100 and a linearization in this regime is not adequate.
For weaker damping, shown in Fig. 3, the Fokker-
0.6 Planck curves approximate the exact curves in a larger range
' %0 of values of the pump strength. In the semiclassical re-
gime, withA/g<<1 and a correspondingly large mean photon
0.5 — T 7T T number, all curves approachthresholdlessstep function at
0.0 0.2 0.4 0.6 0.8 1.0

the origin. Note, however, that the Fokker-Planck curves al-
€] ways have a singularitypole) if c=1, that isT'=2g%/A,
whereas the exact curves smoothly appro&ckl for
I'—»w (andv=0).

Although it may appear that the system would saturate
with increasing pump ratE, as is the case in Fig. 5, this is
not true here as is demonstrated in Fig. 14. Sihcalso
affects the decay of the optical polarization on the lasing

We now compare our results with a Fokker-Planck tregtiransition, the laser gets below threshold again; this phenom-

ment as presented in Réfl] and sketched in Appendix C,
where the atomic variables are adiabatically eliminated from

FIG. 10. The Fano factdf as a function of the pump strength
|#] for the parameters v=0, A=0.02, R,=0.01,
Ri=R,=---=Ry_;=1, andRy;; = Ryi» = -+ = Ry_1=1
(in units ofg). The curve labeledll corresponds to aN-level atom.

the description. To facilitate the comparison with Rjf], 10
we replace the Rabi frequency that is associated with the
coherent pump field by an incoherent pump rtand vary 0.9 4

all rates (1/2R;=R,=---=Ry\_;=I" simultaneously. This

ensures that the mean number of photons does not drop with 4
an increasing number of pump levels.

In Fig. 12, we see that the noise reduction increases F
monotonically with the numbeN of levels and the Fano 0.7
factor appears to approach an optimal valud-ef0.5. Al-
though this qualitative behavior is predicted also in R&f, 0.6
a detailed comparison shows a severe deviation of the exact
curves from the results obtained within a linearized Fokker- 05

10
20
100

1000

Planck-type treatment.

In Fig. 13a), we plot the curves of Fig. 12 fdd=4 and
N=10, which are calculated with the damping-basis method,
and the corresponding curves obtained fronfliaearized

T/N

Fokker-Planck treatment. There are several observations to FIG. 12. The Fano factdf as a function of the pump and decay

be made. For strong damping as in Fig(d3there is no

ratel'=(1/2)R,=R,=---=Ry_4 for v=0, A=0.5, andR,z=0.

match between the Fokker-Plancidashed and dotted Here all rates are given in units afVN. The curve labeledN

curves and the damping-basis resu(solid curves. This is

corresponds to aN-level atom.
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15 25
12 L
| -2.0
9 [
(afa) ] 15 F
6 I
3_- 1.0
05 0 , ——— 0.5
0.0 05 10 15 2.0 0 20 40 60 80
/N r/4
10 FIG. 14. The mean photon numbg'a) (solid curve and the
(b) Fano factor- (dashed curveas functions of’/N for N=4 and the
0.9+ parameters of Fig. 12. All rates are given in unitsgof/N=g/2.
0.8 field and, in particular, its noise properties.
. \ Our considerations are not restricted to simple cascades
. either, but may, as in real atoms, also involve several parallel
0.79 Y L decay channels, e.g., via magnetic sublevels. Similarly one
] | can describe broadband excitation. These situations are illus-
e I T trated in Fig. 15. Compared to the situation of Fig. 9, we now
"""""""""""""""" have to replace the product rate
°e 05 10 15 2.0 R R
0.0 . _
L2 - 4.9
T/N Ri—LaRi+1—La

FIG. 13. The Fano factoF as a function ofl’'/N with N=4
(upper curvesand N=10 (lower curve$ for (a) A=0.5 and(b)
A=0.1. The other parameters are the same as in Fidrat@s in
units of g/\/N). The results of the damping-basis approgsblid
curveg are compared with approximate Fokker-Planck solutions
(dashed and dotted curyegiven by Egs.(C3) and (C5), respec-
tively.

enon is called self-quenching by Mu and Savé@E In the
present scheme this is only due to a simplified model where
all rates are varied simultaneously. In a real laser, e.g., in an
ion-trap laser, the relaxation rates would be fixed, and the
pumping is controlled by an external field on one segment of
the cycle. In this situation we will always see saturation as
illustrated in Fig. 5.

B. General cascades

If for the transition|C)—|D) we choose an incoherent
excitation rather than the coherent pump field, then the de-
gree of the polynomial in4.7) will be N—2 rather than
N—1. In this situation, the degred—2 is just determined
by the number of pump levelgxcluding|A) and|B)). The
additional power in the case of a coherent pump field arises
from the elimination of the polarization-p as an additional
variable in the Bloch equation®.17 as compared to rate
equations for an incoherent excitation.

As a further observation we may thus state that a coherent
pump field will additionally contribute to noise reduction.

for a simple cascadg. —1)—|L)—|L+1) by the sum

RLfl,l RI

R-L;R 1L 4.9
I I anL+1 a
(a) !
1
1
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A |L - 1)
e S
Pid ] s
e 1 S
// 1 \\
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\\ 1 //
\\ 1 //
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From this it is also clear that several coherent segments in- FIG. 15. Schematic representation of parallel decay chaitaels
volved in the pump process will influence the state of theand broadband excitatiaft).
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in which the indexl runs over all sublevelfl) within the in the limit N—c. One can show that the trace pft) in
intermediate manifold. An application of these results to a4.15 is conserved in time, a result which can be seen more
model of an experiment with an ion-trap laser is the intendectasily in the differential equatiof@®.14). The time integral in

subject of a forthcoming paper. (4.15 accounts for the fraction of time that the atom spends
in the pump levels. Note that far—0 the integral vanishes
C. The limit of infinitely many pump levels and(4.12 reduces to the standard heat-bath model discussed
in Sec. Il A.

In order to see how the system is described in the limit
N— o, we go back to the laser equatiof®s6) supplemented
by the time-dependent version @.1) and the corresponding
equations for the other cascade levels. The elimination of the Ref = R. elar (4.16
pump equations in th&-level situation can be done in a BATTTBCE T '

similar fashion as in Sec. Il C. : . . . .
For the kerneRE" (t—t') in (2.22 one obtains Incidentally, the same result is obtained if[the incoherent
BA analog(B4) with (B6) of] (4.4 the same limit as above is
[T(t—t)N-3 , performed. The origin of noise reduction is here again due to
(N_—S)'e“a‘F )=t (4.10 the fact that the operat®gc exp(,7) acts more weakly on
' components of the staig;g corresponding to large photon
numbers(or statistical momenjshan on components corre-
sponding to small photon numbers. This introduces the cor-

The retardation if4.12) is irrelevant in steady state, and
the pump operator is simply given by

REM(t—t')=Rgcl

if one assumes an incoherent pump fri@ to |D) (see Fig.

g)s gnd=fc|>:£ simplicity SetRp=Ry=---=Ry_1=T', as well o\ iion between the pump rates and the state of the field. In
BC— Tl . . other words: The noise reduction does not come about be-
In the limit of very largeN, the right-hand side of4.10 : )
turns into cause thepgg term in (4.12 is retarded, but because the

operator exf(,7) suppresses the higher statistical moments

Rgcd(t—t'—7)eta” 41y M Pes- _
Except for the exponential factor eg(t—t')], the kernel
if the pump rated” are increased with the number of pump (4.10 is essentially equal to th_e conditional probal_:)ilities
transitions, such that the average time (N—2)/T for the  used by Marte and Zolldi5] in their model for lasers with a
excitation from level[2) to |A) is kept constant. The time Non-Poissonian pump and later by Ritsatrel. [1] to explain

integral in (2.22 with the kernel(4.10 can then be evaly- Noise reduction in their treatment of multilevel lasers.
ated, which yields On the one hand, it is true that tid-dependent factor

I' exd —T(t—t)Tt—t)N"3(N-3)! in (4.10 is the effec-

_ tive transition rate of the atom into leveRA) at timet given
(5— Lat RAB)pAA: ~ig(pasa’—apga) that the atom is in the lower sta2) at the initial timet’.
According to(4.11), in the limit N—o this time-dependent
+ Rgce a’pgg(t— 1), transition rate isé peaked at the timé=t’'+7, and this

suggests the self-regularization of the whole excitation pro-
cess that is emphasized by Ritsehal. [1].
pea=—i0(ppad—a’pag) + Ragpaa . On the other hand, the time integral {®.22) reduces to
(4.12 the term involving a retarded time argument(#12. But
this retardation process, which is interesting enough in itself,

supplemented by the equations fogg and pga, which are  does not describe a periodicity in the actual excitation of the
the same as if2.6). The first equation of4.12 implies that ~ atom. This stands in marked contrast to a laser with explicit
the rate of change qfa, at timet is determined by the state Periodic injection where “fresh” atoms are injected in a
pes and thus the population ifB) at the retarded time Well-prepared state and at certain externally controlled times
t—1. [21]. To generate dynamics of this kind in the multilevel
The reduced state of the photon field laser, one would have to force the atom into the stadeat
regular, predetermined instants, perhaps by performing clev-
N erly designed measurements at these moments. But this is
p(t)= E pLL(t) (4.13 not the physical situation we are considering.

L=1 In summary, we conclude that the multilevel laser with a
closed pump cycle is not equivalent to an atomic beam laser
with regular injection. The physical mechanism that we find
responsible for noise reduction in the multilevel laser is cor-

p(1)=—ig([pas.a’1-[a,pgal). (4.14  related atomic excitation.

a
ﬁ_ La+ RBC

is obtained by summing over the atomic levels; it obeys

aL
a2

This equation can be integrated to produce V. CONCLUSIONS

. We have investigated a single-mode laser with multilevel

)= )+ +R dt’etat=t") t’ ex0|tat|on_ in a regime where the atomic d_ynamlcs is not
P =Paa(t)+ pes(t Bcftfr pes(t’) necessarily fast compared to the field dynamics. The effect of
(4.15 dynamic noise reduction in multilevel lasers, which has been
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predicted by Ritsclet al.[1] and otherg2,3], is here treated was supported by the Office of Naval Research, the Welch
within the framework of a theory that does not rely on adia-Foundation, and the Texas Advanced Research Program.
batic elimination or linearization of a Fokker-Planck equa-
tion.

The technical key point of our approach is the introduc- APPENDIXA: EFFECTIVE LIOUVILLE OPERATOR
tion of an effective pump operator and its analytical evalua- |t js important for the consistency of the method that the
tion with the aid of the damping basi$4]. The eigenvalue system of equation§2.27) is a representation of a genuine
spectrum of this pump operator provides the mathematicdliouville operator, which conserves the trace and has no ei-
expression for a physical mechanism which we call corregenvalues with a positive real part. First let us state that
lated excitation. Possible photon losses during the excitatiof?-27) may be written in the form
of the atom from the lower to the upper laser level give rise

to a correlation of the excitation rates with the number of ,:%pz_i[H,p]jLLa P+ L;erffpzo (A1)
photons in the field. Instead of a single rate one obtains a rate ih
matrix. with L, as in(2.3 and
This correlated excitation mechanism is different from a
regular pumping. If one wishes to establish a connection H:—ﬁg(a|A><B|+aT|B><A|)' (A2)

with an atomic-injection laser, the correlated excitation cor-
responds to a feedback mechanism which changes the aton)(?@ere the composed state
injection rate depending on the state of the field. Thereby, the
photon number fluctuations can be reduced below the shot- P=> pL|LXL] (A3)
noise level. LL’

From the eigenvalues of the pump operator one can drayny inyolves the levels L,L=A,B. The “atomic” operator
qualitative and quantitative conclusions about several feanzs the form
tures of the noise reduction. Examples épethe role of the
number of pump leveldji) the existence of an optimal pump off AB
strength such that the noise is minimized:; 4iid the obser- Lo P=———(IAXAIP+PAXA]) +Rag[B)(A|PA)(B|
vation that coherent pumping leads to stronger noise reduc-
tion than incoherent pumping. The latter has already been
noted in a numerical treatmeft].

When the atomic dynamics is not fast compared to the

R
~ - (BXBIP+PB)B)+REAA)(BPIB)(Al.

dynamics of the field and we are not necessarily far above (Ad)
threshold, our results differ substantially from a linearizedThe trace of this equation yields

treatment. An example for such a situation would be an ion-

trap laser operating with single atoms as an active medium. T{L"P} = tr{R§Apes} —Rectr{pea} =0,  (A5)

which is obtained from EQq.(2.28 in conjunction with
tr{ p1 = 5,064 Note that the partialatomiq trace of(A4)
does not vanish, sinde", different from the standard phe-
nomenological term, also acts on the photon variables in a
ACKNOWLEDGMENTS nontrivial manner.
To show the positivity of- L?Tﬁ, we solve the eigenvalue

We are grateful for stimulating and enlightening discus-equaﬂon

sions with M. Fleischhauer, A. Schenzle, M. O. Scully, and
H. Walther. H.-J.B. would like to thank the Alexander von
Humboldt Foundation for financial support. Part of this work which can be cast into the form

LeP=\P, (A6)

—Ras Rgf/f\ 0 0 Paa Paa
Ras —Rsc 0 0 PeB - PBB . A7)

0 0 —(Rag*+Rgc)/2 0 PAB PaB

0 0 0 —(Rag*+Rgc)/2/ |\ pea PBA

The characteristic polynomial has the zeros
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AR =2 =—(1/2)(Rag+Rgc),

MP=—(1/2)(Rag+ Rac) = V(1/4)(Rag + Rec)>— Rag(Rac— REX),

A== (1/2)(Rag+Rac) + V(1/4)(Rag + Rac)>— Rag(Rec— RIX) (A8)

forn=0,1,2... andk=0,+1,=2,... with Rg}i‘) of (2.28. character of this system-reservoir interaction. In this situa-
Since the inequalities @RU¥<Rgc hold for all n,k, all  tion the pump levels, although eliminated(ih22), still enter
eigenva'ues are, indeed’ negative or zero. The Stationallpe initial Sta.te. T.O see this eXp|iCit|y, |t|S expedient to look
state of this operator (alone is given by at the equations in Laplace space, defined by
(Rag+ Rac) “(Rec/AXA|+Rag|BXB|)pY”, that is, by the "
vacuum or thermal state of the field and an inversion of the ﬁ(s):f dte SP(t). (A9)
atom that is determined by the ratio of the rafs. and 0
RAB . ) )

SinceL®" has been shown to be a genuine Liouville op-Equations(2.22) then acquire the form
erator, % of (Al) is also one. The corresponding equation of

_ S (s at—a; eff o)
motion thus obeys the formal criteria of a master equation. (S~ Lat Rag)paa=—19(paga’ —apga) + Rea(S)pes(S)
Note, however, that the elimination of the pump equations in

L ) +pan(0)
the above manner was only possible in steady state, and in-
sofar the Liouville operatofZ may only be used to describe +1[pcc(0),ppp(0),i mep(0);s],

the stationary properties of the system. Nevertheless, positiv-

ity and trace conservation are important for consistency. I{s— L+ Rgc)pgs= —i9(ppad—a pag) + Ragpaa+ pes(0)

means that one can also usé as the semigroup generator (A10)

for the corresponding time-dependent equations of motion.

However, as we shall see below, the transient description i%ith the pump operator

only correct if the pump acts very fast. In that situation, an

adiabatic elimination of the pump levels is possible, which

will bring us back to the phenomenological heat-bath model.
For time-dependent phenomena, the pump term involves a

time integral as i2.22, which stresses the non-Markovian and an initial-value term

2|27
Rgf;& S) = RBCde

(S_ (//Z) RDA (All)

“12pcd0) +[(s—La) (5~ La+Rpal2) +2

ILpcc(0),ppp(0),imcp(0);s]= m(z “1?1ppp(0)

—(s—Lg)imcp(0)). (A12)

For convenience, we have chosen here0 as the Recpes(t’)

initial time rather thant=—o as in (2.22. In general, ft dt'e A1) 0

the initial values of the conditional density operators involv- e €

ing the pump levels enter the dynamics of ttteo-leve) 0

laser system via the terrA12). In this sense, the pump

levels cannot be completely eliminated from the description. Rgcpes(t)

This is obvious in the situation when the atom is initially in = 1 0 (A13)

the lower laser levelB). A short time later, the pump levels ) '

will be populated, and so the trace over the Igsabsystem

cannot be conserved. ] o )
However, when there are different time scales, aTh|s equation is valid as !ong as terms of the ortlgr y

complete elimination is possible. If the pump acts veryM@y be neglected(that is nA/y<1 jlor all relevant

fast compared to the dynamics of the laser system, thdl ~ 012 n ) .Thel_.a dependencg i IS thereforgin-

is y>g,A (we usey as a short-hand notation fdt, | ], significant within this aeﬁ)rommgtlon.and, instead.ef ™ -,

and all ratesR; ,, which involve a pump level L we could as well use/, o, which gives

or L"), then the time integral in(2.19 simplifies and

yields Roapop(t) =Recpop(t) (A14)

0



1158 BRIEGEL, MEYER, AND ENGLERT 53

and brings us back to the phenomenological heat-bath mod&Ve obtain for a coherent pump
(2.9), corresponding to the limit of instantaneous pumping.

On the other hand, if the photon losses are appreciable and Reo=2|412,
the slow time scale is set hy, that isy, A>g, then it is

necessary to keep the, dependence ofZ in (A13).

To account for both possible situations, we use the time- ~ M™=[4]|Z]?+Rpc(Ru1+Rpc) JA(N+]k|/2)
dependent equations - (Ry 11+ Roc+ Rh)A2(n+ [K|/2)2
(%_La"_RAB pan=—19(paga’—apea) + REhpes +AYNH[KI/2)* 42| £*Ru 44 (BS)
9 and for an incoherent pump
(ﬁ —La+Rac|pes=—i9(pead@—a'pas) + Ragpan »

(A15) Reo=T',

with the pump operato(2.24), when y>g holds (limit of (nk) _
fast pumping. In this regime, the fraction of time the atom MITO=[T+A(n+ |kl/2)J[Ru+1+ Roct A(n+[k|/2)]
spends in the pump levels is negligible compared to the time ~T'Rpe. (B6)
it spends in the two laser levels, and we can consistently

neglect the initial-value terrA12) in (A10). The additional phase decay on the lasing transition is ac-

counted for by includingRg, into the laser equations. In

order to model incoherent pumping that can be realized by
APPENDIX B: GENERALIZATIONS broadband excitation betwe#d) and|D), we simply have to
setRqep=T" andRpc=T"+ Apc with the Einstein coefficient
Apc describing the spontaneous emission rate and a bidirec-
ional pump ratd".

In order to account for additional polarization decay on
the laser transition, e.g., due to atomic collisions or stra
electric fields, and for relaxations on the pump transition, the
nonunitary part of the master equation has to be supple-

mented by APPENDIX C: FOKKER-PLANCK APPROACH
Rpc Adiabatic elimination of the atomic degrees of freedom,
LpcP=— T(|D><D|P+ PID)XD|—2|C)D|PIDXC|) valid for I'>>g, A, leads to a Fokker-Planck equatid®,23
(B1)
d d d 9? 92
and EP: 0"_|AI+£A¢ P+ ﬁTZDH_I—WDWP
2Rga—R 2
1l BA™ MBA 1%
LyP=— ————(IAXA|PIB)B|+[B)}BIPIAXA]) + me) P, (C1
ZREC_ RDC
— ——5— (IDXDIPICXC|+|CXCIPIDXD). with drift coefficients A, A, and diffusion coefficients
Dy, Dy,, Dy, for the intensityl and phasep of the laser

(B2)  field. Here,P is Glauber'sP function of the photon state
n N p=2p.L. Itis a function ofe andl.
HereRpc andRpc are the longitudinal and transverse relax-" | jnearization around the steady-state laser intensity
ation rate betweefD) and|C), respectively, andRg, is the  |_ata), valid far above threshold, leads to analytic expres-
transverse decay rate on the laser transition. For purely raons for the drift and diffusion coefficients, from which we

diative decayRg, is equal toRgal2. can calculate the Mand€) parameter,
With these generalizations, the eigenvalues of the pump

operator for theN-level laser of Fig. 9 are given by

(ata(a’a—1))—(a'a)? Dy |
ROKR . R(MK Q= T = [(dA /d] | (C2
(nky_ “BC "CDRDA (a'a) (dAdD] | 5
RBA VG (83)
M
with The Fano factoF =1+ Q is then found,
M-1 — )
R rr-n)—ns(N—1)(N-2
REC=R, [] =t Fopy L ATNIMNZDNZS) g
=2 Rj+A(n+k|/2) (N=1)[2n[T+(N—1)n]+X]

R; (B4) with the laser-induced stimulated emission rEteZgzl_/F

N—-1
R(nk):R -
DA MY :11\_/|I+2 Rj+A(n+1k|/2) and a residual term
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+

X= — .
g r I+n(N-1)

(C4
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. I'(2I'-n)—n?(N—1)(N—-2)

F=1 — —
2n(N—1)[T+(N—1)n]

(CH

Far above thresholdS can be neglected, which has beenFor smalll’, however, it is advantageous to keep the addi-
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