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We present a general theory that connects the pump process in multilevel lasers with the statistics of the laser
field. The key ingredient in our approach is the derivation of an effective master equation that involves only the
two laser levels and that contains a non-Markovian pump term. This pump term gives rise to a narrowing of the
photon-number distribution in steady state. The qualitative features of this dynamic noise reduction can be
inferred from the eigenvalues of the pump term, which are known analytically. As the mechanism that is
responsible for the noise reduction, we identify a correlated excitation process in which the effective excitation
rate from the lower to the upper laser level depends on the photon number. This correlated excitation process
is very different from an excitation at equidistant times, such as in lasers with periodic external injection. We
stress that our approach is general and the treatment nonlinear because we do not resort to approximations such
as an adiabatic elimination of atomic variables or the linearization of a Fokker-Planck equation. It is therefore
particularly relevant for the description of systems where the active medium consists of a few atoms only and
where the field losses are not negligible on the time scale of the atomic relaxations. This would be the case in
an ion-trap laser. For such a situation our results are substantially different from those obtained by a linearized
treatment.

PACS number~s!: 42.50.2p, 42.55.2f, 32.80.2t

I. INTRODUCTION

In recent years, the possibility of intensity-noise reduction
in lasers below the shot-noise limit has received considerable
attention. A particularly interesting mechanism where the
pump-noise suppression is generated by the lasing medium
itself rather than by some external control has been studied
by Ritschet al. @1#, Ralph and Savage@2#, and others@3#.

In their work, Ritschet al. @1# investigate the ‘‘recycling’’
process of the active electron in a multilevel medium from
the lower to the upper laser level. The excitation process via
a sequence of intermediate levels is identified as a mecha-
nism that leads to amplitude squeezing. In the limit of infi-
nitely many intermediate levels, the system is found to be-
have similar to a maser with a regular~external! injection of
atoms in the upper state, for which sub-Poissonian noise re-
duction has been found earlier@4–6#. This result is particu-
larly relevant for active media such as semiconductors,
which involve a cascade-type relaxation when being
pumped.

In this paper, we present a different approach, which pro-
vides new insights into the problem of noise reduction in
general. We find that the key mechanism responsible for the
intensity-noise quenching is given by a correlated excitation
scheme where the effective excitation rate of the atom from
the lower to the upper level depends on the number of pho-
tons in the field. The quantitative dependence of the excita-
tion rate on the field variables is obtained in terms of the
eigenvalues of a general pump operator@7# for an effective
two-level laser.

We find that the concept of correlated atomic excitation

explains the mechanism of noise reduction inherently, that is
from the dynamic equations themselves rather than assuming
the pump process to be a separate stochastic process that can
be more or less regular. This mechanism is quite different
from lasers with a regular injection of atoms in the excited
state.

Apart from its mathematical transparence, this approach is
also quite general insofar as no assumptions or approxima-
tions such as an adiabatic elimination or the linearization of
a Fokker-Planck equation are necessary. This is particularly
relevant for the treatment of the laser process with single
trapped ions@8–10#, where the recycling process, the loss
process, and the emission process may have comparable time
scales. Even for high-finesse mirrors the loss out of the mir-
rors during the ‘‘dead period’’ of the ion, when it is reexcited,
is appreciable. Here, a weak-pump-field approximation is not
applicable either, and the ground state will be depleted most
of the time. In such a situation, the atom and the field have to
be treated as a single coherent object, and the full density
matrix equation has to be considered.

In a direct numerical treatment of the density matrix equa-
tions, Mu and Savage@8# showed that a four-level pump
scheme can lead to sub-Poissonian output for such a one-
atom laser. In our approach, we can give an analytical expla-
nation for this numerical result. In addition, we are able to
treat the general multilevel system on the same footing and
without an approximation. By this we confirm the predicted
enhancement of noise reduction for the multilevel excitation
on the basis of the exact single-atom master equation. In
particular, we can investigate the system for any parameters
and are not restricted to the situation far above threshold. If
one wishes to go beyond the single-atom case, one could
employ the standard method by Risken@11#, where correla-
tions between different atoms are neglected consistently;*Unité de recherche associe´e au CNRS~URA 282!.
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other approximations would not be required.
The paper is organized as follows. In Sec. II we start with

the full density-matrix description of the four-level laser and
introduce the notion of the pump system and the laser system
as two open subsystems of the composed laser model. The
pump system involves the classical external field that drives
the atom. It replaces the ‘‘hot reservoir’’ in standard reservoir
theory@12# and can be reduced to such a simplified descrip-
tion under certain conditions to be stated. The laser system
describes the coupling of the laser levels to the quantized
field mode. It is coupled both to a cold reservoir, due to the
cavity losses, and to the pump system. In Sec. II C we elimi-
nate the variables of the pump system from the description
without resorting to any approximations. In the master equa-
tion for the laser system, this leads to a non-Markovian term
that accounts for the atomic memory during the reexcitation.
In steady state, this non-Markovian term reduces to a pump
operator, which is a function of the field variables. The ei-
genvalues of this operator can easily be found in the
damping-basis representation. From the spectrum of eigen-
values, we can draw qualitative conclusions on noise reduc-
tion. In addition, we see how the non-Markovian master
equation contains corrections to standard reservoir theory
and in which limits the standard theory is recovered. In Sec.
III we look at the pump operator in the number-state repre-
sentation and identify correlated excitation as the key mecha-
nism responsible for dynamic noise reduction. The elimina-
tion of the pump levels into a pump operator can also be
done in the general case of arbitrarily many incoherent seg-
ments involved in the pumping process, which is done in
Sec. IV. There, we also treat the limit of infinitely many
intermediate levels, in which the non-Markovian pump term
of the master equation reduces to an explicit retardation
term. This is an appropriate place to come back to the inter-
pretation of the mechanism of noise reduction. In Sec. V we
summarize the results. In three appendices, we supply addi-
tional material and state some of the results of the main text
in more generality.

II. THE FOUR-LEVEL LASER

The scheme to which we refer in the following is shown
in Fig. 1. The laser transition is between the levelsuA& and
uB& and couples to a quantized laser mode of frequencyv,
which is described by the ladder operatorsa† and a. The
lower level spontaneously decays to the ground stateuC& with
the rateRBC from where the atom is excited to an upper
~pump! level uD& by a classical coherent field with a har-

monic time dependence exp(2ivDCt). From this level,
which lies energetically higher than the upper laser leveluA&,
there is again a spontaneous decay touA&. Together, this con-
stitutes an effective pump process fromuB& to uA&. The fre-
quency spacing between the levels as well as the decay rates
are indicated by the symbolsvLL8 andRLL8, respectively,
with subscripts L,L85A,B,C,D. For simplicity, we assume
that the laser transition is resonant with the mode,
vAB5v, and the pump transition is resonant with the clas-
sical field,vDC5vDA1v1vBC. Also, we do not consider
spontaneous decay fromuD& to uC& in order to keep the no-
tation transparent. None of these restrictions is essential for
the following. In Appendix B, we state some of the results
for more general parameters. In the following, we will refer
to the levelsuA& and uB& as laser levels in contrast to the
pumplevels uC& and uD&.

A. Pump levels and laser levels

The dynamics of the composed atom-field system is de-
scribed by a master equation of the form

]

]t
P5

1

i\
@H,P#1LaP1LSP, ~2.1!

with a unitary and a nonunitary part.
The unitary part contains the coupling of the laser levels

and the pump levels to the laser and the pump field, respec-
tively. The Hamilton operatorH for this interaction can, in
an interaction picture, be written as

H/\52g~auA&^Bu1a†uB&^Au!2E uD&^Cu2E* uC&^Du,
~2.2!

where the Rabi frequenciesg andE measure the coupling
strengths to the laser transition and the pump transition, re-
spectively.

The nonunitary part involves the photon dampingLa and
the spontaneous decaysLS between the atomic levels. The
first term reads

LaP5 2
A

2
~n11!~a†aP22aPa†1Pa†a!

2
A

2
n~aa†P22a†Pa1Paa†!, ~2.3!

whereA denotes the free relaxation rate of the mean photon
number ^a†a& towards its thermal equilibrium value
^a†a&`5n. The second term has the form

FIG. 1. Schematic representation of the
four-level atom consisting of the laser sys-
tem and the pump system.
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LSP52
RAB

2 S uA&^AuP1PuA&^Au22uB&^AuPuA&^Bu!

2
RBC

2 S uB&^BuP1PuB&^Bu22uC&^BuPuB&^Cu!

2
RDA

2
~uD&^DuP1PuD&^Du22uA&^DuPuD&^Au!, ~2.4!

in which the three terms on the right-hand side describe the
relaxations fromuA&, uB&, anduD& into the lower-lying levels
uB&, uC&, and uA&, respectively, by emission of photons into
the modes of free space.

In the following, we will not make further assumptions on
the relative strengths of the parametersg, E , A, andRLL8.
For the ion-trap laser, it will be a challenge to implement
mirrors with a finesse that is sufficiently high. The lifetime of
the photon has to be at least so long that it does not get lost
during the finite reexcitation time of the ion. This is, in ad-
dition to a strong atom-field coupling, necessary to keep the
microlaser going. Theoretically, this situation corresponds
neither to a good-cavity limit nor a bad-cavity limit. Rather,
the cavity is ‘‘just good enough.’’ The parameters will, there-
fore, typically be all of the same order of magnitude.

In a first step, we expand the composed state P into the
bare atomic states, that is

P5(
LL8

rLL8uL&^L8u, ~2.5!

with indices L,L85A,B,C,D, wherein the coefficients
rLL85rLL8(t,a

†,a) are still functions of the photon variables
a† anda. For instance,rAA5^AuPuA& describes the state of
the laser fieldgiventhat the atom is in stateuA&. We therefore
sometimes call the quantitiesrLL8 conditional states of the
field.

Upon inserting~2.5! into ~2.1!, one obtains the following
equations

S ]

]t
2La1RABD rAA52 ig~rABa

†2arBA!1RDArDD ,

S ]

]t
2La1RBCD rBB52 ig~rBAa2a†rAB!1RABrAA ,

S ]

]t
2La1

RAB1RBC

2 D rAB52 ig~rAAa2arBB!,

S ]

]t
2La1

RAB1RBC

2 D rBA5 ig~a†rAA2rBBa
†!, ~2.6!

as well as

S ]

]t
2LaD rCC52 ipCD1RBCrBB ,

S ]

]t
2La1RDAD rDD5 ipCD,

S ]

]t
2La1

1

2
RDAD ipCD52uE u2~rCC2rDD!, ~2.7!

where we have introduced the anti-Hermitean polarization
term pCD5ErCD2E* rDC. The corresponding Hermitean
combination satisfies the separate equation

S ]

]t
2La1

1

2
RDAD ~ErCD1E* rDC!50 ~2.8!

and vanishes for large times. The equations forrAC , rAD ,
rBC, rBD and their adjoints are decoupled from the equations
stated above. Theser ’s involve pairs of levels between
which there is no coherent connection, so the dissipation
makes them vanish for large times, too, and they are not of
interest for the present purpose.

In summary, the problem reduces to the solution of the
seven coupled equations~2.6! and ~2.7!. The four ‘‘laser
equations’’~2.6! describe the interaction of the laser transi-
tion uA&↔uB& with the quantized field. The system of these
equations is closed except for the inhomogeneous term
RDArDD in the first equation, which involves the upper pump
level. This gain term, which is proportional torDD , de-
scribes the rate of change of the conditional staterAA due to
transitions from the pump leveluD& to the laser leveluA&.

The three ‘‘pump equations’’~2.7! describe the interaction
of the pump transitionuC&↔uD& with the classical field.
These are the Bloch equations for the conditional states of
the laser field that involve the pump levels. Again, these
equations are closed except for an inhomogeneous term
RBCrBB in the first equation of~2.7!, which accounts for
transitions from the lower laser level to the ground state.

Equations~2.6! and ~2.7! thus describe two subsystems,
the laser system and the pump system, which are coupled.
The losses out of the laser system, with rateRBC, appear as
an inhomogeneous gain term for the pump system, and the
losses out of the pump system, with rateRDA , give an inho-
mogeneous gain term for the laser system.

Since the details of the pump process are generally not of
interest, it would be natural to eliminate the equations of
~2.7! from the description by solving them forrDD and in-
serting the result into the first equation of~2.6!. This is, in
fact, what we are going to do.

In the situation of conventional laser theory where the
field does not change appreciably on the time scale of the
atomic excitation and, in particular, the losses out of the
mirrors are negligible, this elimination can easily be done.
Upon settingLa50 in ~2.7! ~which meansLa8!RDA , uE u for
all relevant eigenvaluesLa8 of La), we find in steady state
rDD5(RBC/RDA)rBB . The corresponding time-dependent
relation holds if we further assume thatg,RBC!RDA ,uE u
holds, which means that the excitation fromuC& to uA& is
faster than all other time scales. The first two laser equations
of ~2.6! then read

S ]

]t
2La1RABD rAA52 ig~rABa

†2arBA!1RBCrBB ,

S ]

]t
2La1RBCD rBB52 ig~rBAa2a†rAB!1RABrAA ,

~2.9!

and the equations forrBA andrAB remain unchanged.
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Now the system of equations involving the levelsuA& and
uB& is closed. The substitutionRDArDD5RBCrBB means that
the losses out ofuB& appear as simultaneous gain into the
upper leveluA& without a further change in the field. This we
call the limit of ‘‘instantaneous pumping.’’ It reduces the
four-level model of Fig. 1 to the standard ‘‘heat-bath model’’
for the laser, where the pump process is determined by a
single excitation rateRBA[RBC, given phenomenologically,
as shown in Fig. 2. WhenRBA.RAB , the atom can, due to
an external heat bath, be inverted and the lasing process is
possible@13#.

In the present paper we are, however, interested in sys-
tems in which it isnotpossible to neglect photon damping in
~2.7!, since the losses out of the mirrors during the time of
recycling may be significant. When this is the case, we can-
not setLa50 in ~2.7!. Please note thatLa in ~2.7! is an
operator acting on conditional statesrLL8. The dependence
of all functions rLL8, including L,L85C,D, on the photon
variablesa† anda indicates that the dynamics of the pump
process depends on the state of the laser field. IfLa were a
number, we could again easily integrate~2.7! and solve for
rDD .

At this point it is helpful to remember thatLa , in fact, is
essentially a number on certain states, namely its eigenstates.
As has been shown in@14#, these eigenstates form a com-
plete set into which any function of the photon variables, so,
for instance, the functionsrLL8, may be expanded. Conse-
quently, any operator function ofLa is well defined in terms
of the spectral representation ofLa . In the following treat-
ment, we will therefore not care about the operator nature of
La and treat it as if it were a number.

Before we proceed, let us briefly review the damping-
basis formalism in the next section. For a detailed treatment
the reader should consult Ref.@14#.

B. The damping basis

The damping operator satisfies the following eigenvalue
equations

Larn
~k!52A~n1uku/2!rn

~k! ,

řn
~k!La52A~n1uku/2!řn

~k! , ~2.10!

for n50, 1, 2, . . . andk50, 61, 62, . . . with right and
left eigenstatesrn

(k) and řn
(k) , whose explicit forms involve

normally ordered Laguerre polynomials as functions ofa†a
as is shown in Ref.@14#. For zero temperature,n50, these
eigenstates are explicitly given by

rn
~k!5a†~ uku1k!/2~21!a

†a1nS n1uku
a†a1uku Da~ uku2k!/2

~2.11!

and

řn
~k!5

n!

~n1uku!!
a†~ uku2k!/2S a†an Da~ uku1k!/2. ~2.12!

Please note that the definition of a left eigenstate in~2.10!
refers to the trace, analogous to an inner product for ‘‘bras’’
and ‘‘kets’’ in unitary quantum mechanics@15#.

The set of these states is complete in the sense that we
may write

r~ t !5 (
n50

`

(
k52`

`

ank~ t !rn
~k! ~2.13!

with coefficients

ank~ t !5tr$řn
~k!r~ t !% ~2.14!

for any stater(t) which is a function ofa† anda. The basis
states also satisfy the duality relation

tr$řn
~k!rn8

~k8!%5dnn8dkk8, ~2.15!

and special examples are the thermal stater0
(0) and its dual

ř0
(0)51.
With the eigenstates of~2.10! at hand, we find the action

of La on the conditional statesrLL8 in Eqs.~2.6! and~2.7!. In
particular, expansions of the form~2.13! are employed when
an arbitrary function ofLa is acting, as is exemplified by

f ~La!rLL8~ t !5(
n,k

f „2A~n1uku/2!…ank
LL8~ t !rn

~k! .

~2.16!

When we further modify Eqs.~2.6! and ~2.7! in the next
section, we will treatLa as if it were an ordinary number,
remembering that functions ofLa are evaluated in accor-
dance with Eq.~2.16!.

C. Elimination of the pump levels

For further treatment we write~2.7! in the form

]

]t S rCC

rDD

ipCD

D 5MS rCC

rDD

ipCD

D 1S RBCrBB

0

0
D ~2.17!

with the ~Bloch! matrix

M[S La 0 21

0 La2RDA 1

2uE u2 22uE u2 La2
1

2
RDA

D . ~2.18!

FIG. 2. Schematic representation of the standard heat-bath
model for the two-level laser.
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This matrix, which contains as an entry also the damping
operatorLa , is defined as an ordinary number matrix on the
eigenstates ofLa . Any operations onM are therefore op-
erations with an ordinary matrix when applied to these states.
To integrate~2.17! explicitly,

S rCC~ t !

rDD~ t !

ipCD~ t !
D 5eM~ t2t0!S rCC~ t0!

rDD~ t0!

ipCD~ t0!
D 1E

t0

t

dt8eM~ t2t8!

3S RBCrBB~ t8!

0

0
D , ~2.19!

one has to diagonalizeM.
For the componentrDD(t), in particular, one obtains

rDD~ t !5E
2`

t

dt8GBD~ t2t8!rBB~ t8! ~2.20!

with a kernel

GBD~ t2t8!5
uE u2RBC

uE u22RDA
2 /16

exp@~La2RDA/2!~ t2t8!#

3sin2@AuE u22RDA
2 /16~ t2t8!#, ~2.21!

which does not vanish identically fort.t8. In doing this, we
choose the initial state at timet052`, whose contribution
vanishes since the matrixM has only eigenvalues with
negative real parts, as can be seen in~2.26! below. Upon
inserting~2.20! in ~2.6!, we arrive at the laser equations

S ]

]t
2La1RABD rAA52 ig~rABa

†2arBA!

1E
2`

t

dt8RBA
eff ~ t2t8!rBB~ t8!,

S ]

]t
2La1RBCD rBB52 ig~rBAa2a†rAB!1RABrAA ,

~2.22!

supplemented by the equations forrAB andrBA , which are
the same as in~2.6!. The time integral in~2.22! accounts for
the delay involved in pumping the atom from the lower to
the upper laser level. Roughly speaking, the temporally non-
local kernel

RBA
eff ~ t2t8!5GBD~ t2t8!RDA ~2.23!

represents an effective transition rate into the leveluA& at
time t, which depends on the population inuB&, and thus on
the state of the field, at the earlier timet8. This temporally
nonlocal or non-Markovian behavior is significant in a re-
gime where the time scales of the pump process and the laser
process are comparable. If on the other hand the pump acts
very fast compared to the laser transition, it can be adiabati-
cally eliminated from the description, which is done in Ap-
pendix A.

In steady state, whenrBB(t8)5rBB
(SS), the time integral in

~2.22! can be evaluated and yields

RBA
eff 5E

0

`

dt8RBA
eff ~ t8!5RBC

2uE u2

2detM
RDA ~2.24!

FIG. 3. Schematic representation of the multilevel atom as an
effective two-level atom with pumping described by an operator.

FIG. 4. Eigenvalue spectrum of the pump operator for the pa-
rametersRDA /A510 and ~1! uE u/A52, ~2! uE u/A510, and ~3!
uE u/A550.

FIG. 5. The mean photon number^a†a& ~solid curve! and the
Fano factorF ~dashed curve! as functions of the pump strength
uE u for the four-level atom with the parametersn50.01,A50.07,
RAB51, RBC5RDA510, and a decay rateRDC51 on the pump
transition~as in Appendix B!. All rates are given in units ofg.
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withM of ~2.18!. The evaluation of the integral can be seen
most easily from~2.19! directly, which involves the inverse
of the Bloch matrixM. The inverse of the determinant is
explicitly given by

1

detM
rn

~k!5
1

lnk
~0!lnk

~2 !lnk
~1 ! rn

~k! ~2.25!

with the eigenvalues

lnk
~0!52A~n1uku/2!2~1/2!RDA ,

lnk
~6 !52A~n1uku/2!2~1/2!RDA6A~1/4!RDA

2 24uE u2
~2.26!

of M. ForRDA , uE u.0, all eigenvalues are surely nonzero
andRBA

eff is well defined in~2.24!. Putting things together, we
find the steady-state equations

~2La1RAB!rAA52 ig~rABa
†2arBA!1RBA

eff rBB

~2La1RBC!rBB52 ig~rBAa2a†rAB!1RABrAA ,

@2La1~RAB1RBC!/2#rAB52 ig~rAAa2arBB!,

@2La1~RAB1RBC!/2#rBA5 ig~a†rAA2rBBa
†!, ~2.27!

with rLL85rLL8
(SS). The excitation process via the levelsuC&

and uD& is now comprised in thepump operator RBA
eff , which

effectively describes the transition from the lower to the up-
per laser level@16# as illustrated in Fig. 3. The rate of these
transitions, however, depends also on the state of the photon
field as can be seen from the eigenvalue spectrum

RBA
eff rn

~0!5
RBC2uE u2RDA

2uE u2RDA1@4uE u21~1/2!RDA
2 #An1~3/2!RDA~An!21~An!3

rn
~0![RBA

~n0!rn
~0! , ~2.28!

here explicitly reported fork50. For kÞ0, the correspond-
ing expression forRBA

(nk) has the same appearance withAn
replaced byA(n1uku/2) everywhere in the denominator.

The appearance ofA in the denominator indicates that the
pump is sensitive to the losses of the field during the reexci-
tation. Sincen labels the statistical moments of the field in
the expansion~2.13!, ~2.28! means that the effective pump
ratesRBA

(n0) from level uB& to level uA& is correlated with the
state of the laser field. Roughly speaking, different statistical
moments~or components! of the field feel a pump that acts
with different strength. In particular, higher statistical mo-
ments~related to larger photon numbers! are less supported
than lower moments. A quantity such as the Fano factor for
the photon-number distribution, which involves ratios of its
statistical moments, can thereby become smaller than one,
indicating sub-Poissonian statistics.

In Fig. 4, thek50 part of the spectrum~2.28! is shown.
One observes that the dependence of the pump rates onn is
strongest for small values ofuE u. This gives rise to the ex-
istence of a minimum observed in the curves for the Fano
factor when plotted againstuE u, as is further pointed out in
the discussion of Figs. 5 and 6 in the following section.

To get a feeling for the consequences of~2.28!, let us look
at the special caseg50 first. Forg50 when the atom and
the field are decoupled, the field relaxes towards the vacuum
or the thermal stater0

(0) , on which the operatorRBA
eff is iden-

tical to the numberRBC. In this situation, the pump does not
feel the presence of the field nor its losses. The inversion of
the atom is then uncorrelated with the state of the field and
only determined by the relative strengths of the atomic re-
laxation rates and the pump.

For gÞ0, however, the atom and the field constitute a
single coherent object and the transition rates fromuB& to uA&

and the state of the photon field are correlated according to
~2.28!. The effective pump rates of~2.28!, in some sense,
account for the ‘‘dead period’’ of the laser process during
which the atom stays in one of the pump levelsuC& or uD&.
During that time, the field is damped, and this damping is
stronger for components with a largern, corresponding to a
larger photon number. This dead time constitutes a certain
fraction of the whole process whose size is measured by the
relative strengths of the ratesAn on one side, anduE u, RDA
on the other side. If the pump process is fast compared to the
relaxation of the field, that isAn !uE u,RDA , then the de-
nominator of~2.28! can be replaced, in zeroth order, by the
leading term, and one obtains again the heat-bath model

FIG. 6. The Fano factorF as a function of the pump strength
uE u for the four-level atom with the parametersn50, A50.02,
RAB50.01,RBC51, andRDA52. All rates are given in units ofg
~solid curve! and in units of 10g ~dashed curve!.
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~2.9!. The first-order correction to this approximation is pro-
portional to the ratio of these rates and introduces ann de-
pendence into the effective pump rates: For components of
the field corresponding to larger indicesn, the pump has to
be stronger~faster! in order to compensate for the losses.

The correlation of the effective pump rates with different
statistical components of the field is ultimately responsible
for the phenomenon of noise reduction in multilevel lasers.
In Sec. III the physical interpretation of this correlation is
further illuminated by looking at the number-state represen-
tation of the pump operator.

D. Numerical treatment

To evaluate~2.27!, we expand the conditional density op-
erators into the damping basis, as explained in Sec. II B. The
expansions

rAA5(
n,k

ankrn
~k! ,

rBB5(
n,k

bnkrn
~k! ,

rAB5(
n,k

gnkrn
~k21! ,

rBA5(
n,k

hnkrn
~k11! , ~2.29!

which are similar to those in Ref.@14#, produce a matrix
equation that is the coordinate representation of~2.27!. In
steady state, the only nonvanishing components are those for
k50, for which we obtain@17#

~An1RAB!an52 ig~n11!~gn2hn!2 ign
n

n11
~gn212hn21!1RBA

~n0!bn ,

~An1RBC!bn5 ig~n11!~gn2hn!1 ign~gn212hn21!2RABan ,

@A~n11/2!1~RAB1RBC!/2#gn52 ig~n11!an1 ignbn2 ig~n11!~an112bn11!,

@A~n11/2!1~RAB1RBC!/2#hn5 ig~n11!an2 ignbn1 ig~n11!~an112bn11!, ~2.30!

where we have suppressed the indexk50. These are the
equations that we can solve with a matrix eigenvalue algo-
rithm along the lines of Ref.@9#.

The difference to a real two-level laser is here given by
the fact that the total trace of P involves also the intermediate
pump levels. In~2.30! this has to be taken into account as a
subsidiary condition, which can be written in the form

15Tr$P%5a01b0F11RBCS 2

RDA
1

RDA

4uE u2D G . ~2.31!

Let us emphasize that the numerical effort to solve the
steady-state equations~2.27! does not depend on the number
N of pump levels involved. The dimension of the matrices
describing~2.30! is the same for a thousand levels as for two
levels, since the numberN of levels only enters the definition
of the ratesRBA

(n0) in ~2.30! and does not influence the number
of equations as will be shown in Sec. IV. This represents a
substantial simplification as compared to a brute-force nu-
merical treatment, for which the expense increases with the
number of levels.

In Fig. 5, the lasing property of a single atom is demon-
strated. As for a conventional four-level laser one can see a
threshold, a region of linear gain, and saturation. At thresh-
old, which is accompanied by large fluctuations in the photon
number, the Fano factor

F5
^~a†a!2&2^a†a&2

^a†a&
~2.32!

has a maximum. Above threshold the mean photon number
^a†a& increases first linearly with the strength of the pump
field and eventually shows saturation. The Fano factor then
approaches a value that exceeds the Poissonian valueF51
by a few percent. As one can see, these features are not as
pronounced as for a conventional laser. In particular, the
threshold is not as clearly defined as in the macroscopic case.
The fact thatF has a minimum after which it increases again
slightly has its origin in the non-Markovian character of the
pump. Qualitatively, this effect can be explained from the
eigenvalue spectrum of the pump operator, Eq.~2.28! and
Fig. 4. As discussed above, the dependence of the pump rates
on the state of the field, which is the origin of noise reduc-
tion, is most pronounced for low values ofuE u. On the other
hand,uE u has to be large enough to get above threshold. The
competition between these two tendencies gives rise to a
minimum at some intermediate region.

This can be seen more clearly in Fig. 6, where the Fano
factor is plotted for two different sets of parameters. For a
strong atom-field coupling the value ofF remains below
unity, whereas for a weak coupling there is only a small
region in which the statistics is sub-Poissonian. Both cases
exhibit, however, a minimum as in Fig. 5. The parameters in
Fig. 6 agree with those in Fig. 7 of Ref.@8#, where the output
field was plotted.

III. CORRELATED EXCITATION SCHEME

To gain more intuitive insight into the dynamic action of
the pump, let us look at the rate of change of the conditional

53 1149DYNAMIC NOISE REDUCTION IN MULTILEVEL LASERS: . . .



staterAA in the number representation. The changedrAA
due to the action of the pump during the timedt is given by

drAA5RBA
eff rBBdt, ~3.1!

with RBA
eff as in~2.24!. SupposeRBA

eff were a number,RBA , as
in the heat-bath model. Then, in number representation, we
would find

drAm,Am5RBArBm,Bmdt, ~3.2!

where

rAm,Am5^murAAum& ~3.3!

is the joint probability for the atom being excited in the
upper stateuA& and the field being in a number stateum&
with exactlym photons. Equation~3.2! expresses that the
number of transitions fromuB& to uA& is proportional to the
population in the stateuB&, and the proportionality factor
does not depend on the state of the field, that is onm in ~3.2!.

In the present model, however,RBA
eff is not a number but

an operator. Correspondingly,~3.2! changes into a matrix
equation

drAm,Am5(
m8

RBA
@mm8#rBm8,Bm8dt ~3.4!

with matrix elements

RBA
@mm8#5(

n
^murn

~0!um&RBA
~n0!^m8uřn

~0!um8&

5(
n

RBA
~n0!~21!m1nS nmD Sm8

n D , ~3.5!

as implied by~2.11! and~2.12! for n50. Equation~3.4! now
states that the number of transitions from leveluB& to level
uA& within the time incrementdt depends on the number of
photons in the field. More precisely, there are also transitions
between the product statesuB&um8& and uA&um& for
m,m8, that is, transitions between the laser levels that are
accompanied by a decrease in the number of photons in the
field due to the cavity losses. In Fig. 7, the correlated exci-
tation rates are plotted as a function ofm andm8 for some
fixed values of the other parameters. The diagonal of this
plot, specified bym5m8, reproduces curve 2 in Fig. 4, since

for m5m8 ~3.5! reduces toRBA
@mm8#5RBA

(m0) . The first, sec-
ond, etc. side diagonal in Fig. 7 corresponds to the loss of 1,
2, . . . photons out of the cavity during the time the atom
spends in the pump levels. Please note that for the standard

two-level laser the values ofRBA
@mm8# vanish formÞm8 and

are constant on the main diagonal. This can be seen from
~3.5! by replacing the ratesRBA

(n0) by the constantRBA[RBC

and the remaining summation of the binomials yields Kro-
necker’sdmm8.

Consider now the first-order expansion of the rate matrix
~3.5! if the damping rateA is small compared to the rates
uE u, RBC, andRDA involved in the recycling process. For
weak damping~2.28! reduces to

RBA
~n0!5RBC~12en!, ~3.6!

where

e5
2A

RDA
1
ARDA
4uE u2

. ~3.7!

Inserting~3.6! into ~3.5! and employing the relation

(
n

xn~21!m1nS nmD Sm8
n D5xm~12x!m82mSm8

m D
[ f mm8~x!, ~3.8!

one finds

RBA
@mm8#5RBCF S 12ex

]

]xD f mm8~x!G
x51

5RBC@~12em!dmm81e~m11!dm,m821#.

~3.9!

This correlates, to first order ine, the pump rates between
uB& and uA& to field states with neighboring photon-number
componentsm andm11. The first-order approximation in
~3.9! means that we consider a situation where the loss of the
cavity during the excitation amounts to maximally one pho-
ton; see Fig. 8.

It is illuminating to establish a connection between the
pump-operator approach for a multilevel laser used in this
paper and the standard theory of an atomic-injection laser. It
turns out that we can include~3.9! in a detailed-balance
equation and thereby find an analytical expression for the
first-order noise quenching.

To do so, we proceed from the stationary version of the
Scully-Lamb equation for the maser@18#,

05@rK1La#r. ~3.10!

FIG. 7. Matrix elements of the pump operator in the number
representation for the parameters of Fig. 4, curve 2:uE u5RDA

510A.
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Here, r describes the injection rate of the atoms into the
cavity and the change of the field state due to the interaction
with a single atom is given byKr. For a fixed interaction
time t, the number representation of~3.10! reads

052r sin2~gtAm11!rmm1A~m11!rm11,m11

1r sin2~gtAm!rm21,m212Amrmm, ~3.11!

where we have again restricted ourselves to zero tempera-
ture. Applied to the atomic-injection model, a correlated ex-
citation scheme means that the state of the maser field gives
a feedback on the injection rate. Formally, the rater in ~3.10!
is then an operator as in~3.9!

rmm85r ~12em!dmm81r e~m11!dm,m821 , ~3.12!

and e measures the strength of the feedback. We take for
granted thatem!1 holds for all relevant values ofm. Using
~3.12! in the number representation of~3.10!, we obtain

052r @12e~m11!#sin2~gtAm11!rmm

1@A2er sin2~gtAm12!#~m11!rm11,m11

1r ~12em!sin2~gtAm!rm21,m21

2@A2er sin2~gtAm11!#mrmm ~3.13!

instead of~3.11!. If the interaction timet is a fixed quantity,
as in the situation of the micromaser@19#, ~3.13! leads to a
detailed-balance equation. If the atoms decay with a rateg
before they leave the cavity, as is typical for optical transi-
tions, one should take the average of~3.13! over the atomic
lifetime. Detailed balance then yields

FC2e
A~m12!

11~B/A!~m12!G~m11!rm11,m11

5
A~m11!

11~B/A!~m11!
@12e~m11!#rmm, ~3.14!

where we have introduced the linear-gain coefficient

A52r ~g/g!2 ~3.15!

and the self-saturation coefficient

B54~g/g!2A ~3.16!

as well asC[A for notational analogy with Ref.@18#.
Far above threshold, the solution to~3.14! is given by

rmm5r00S A2

BC
Dm 1

m! S 12eFm~m11!

2
2m

A 2

BC
G D ~3.17!

to first order ine. The normalization ofr to unit trace de-
terminesr00. This corresponds to a quenched Poisson-type
distribution with a mean photon number

^a†a&5^a†a&
P
~12e! ~3.18!

and a Fano factor

F[
^~a†a!2&2^a†a&2

^a†a&
512e^a†a&

P
, ~3.19!

where^a†a&
P
5A 2/(BC ) denotes the Poissonian mean for

e50. This result tells us that the quenching of the photon
number fluctuations gets stronger for an increasing feedback
parametere and is proportional to the zeroth-order photon
number^a†a&

P
.

Please note that the derivation of the detailed-balance
equation relies on the first-order expansion of the pump op-
erator, so all results given here are only meaningful for small
e. The purpose of the previous derivations was mainly to
establish a link to the well-known Scully-Lamb approach
and to provide further insight into the correlated excitation
scheme when regarded as a feedback-type pump control.

IV. THE MULTILEVEL LASER

In the multilevel configuration, as depicted in Fig. 9, the
‘‘pump electron’’ @20# will undergo a cascade of transitions
before it reaches the upper laser leveluA&. In the work of
Ritsch et al. @1#, it is argued that~a simplified version of!
such a multistep recycling process leads to a regularization
of the electron’s arrival times atuA&. In analogy to a maser
with regular external injection, this would then explain the
noise-reduction effect in the multilevel scheme.

In our present approach, where we do not use an adiabatic
approximation, our strategy is again to eliminate the whole
cascade of intermediate levels and find the corresponding
effective pump operator for the reduced laser system. The
correlated excitation rates, which we obtain as eigenvalues,
will then contain the information about the influence of the
cascade.

The same applies to the limit of infinitely many interme-

FIG. 8. ~a! Schematic representation of the pump transitions to
first order in the feedback parametere, i.e., at most one photon
leaves the cavity during the recycling time of the atom.~b! In the
good-cavity limit, the pump transitions can be described by a single
pump rate between the lower and upper lasing level.
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diate levels. The pump operator in steady state acquires then
a particularly simple exponential form. In the time-
dependent equations, the corresponding non-Markovian term
introduces a time retardation into the pump dynamics. The
interpretation of this time retardation shows that the analogy
of the multilevel laser with the regular injection laser, where
‘‘fresh’’ atoms are injected in a well-prepared state at equi-
distant times, is very vague. Different from an injection laser,
the responsible mechanism for noise reduction in the multi-
level laser is a correlated excitation process.

A. Simple cascades

The dependence of the conditional staterM21,M21 — the
bottom rung of the lower cascade in Fig. 9 — on thestate
rBB5r11 — the top rung of that cascade — can easily be
calculated. Since there are no coherences in steady state, the
equations for the cascade levels read

~2La1RM21!rM21,M215RM22rM22,M22 ,

~2La1RM22!rM22,M225RM23rM23,M23 ,

A

~2La1R2!r225R1rBB . ~4.1!

We solve this recursion iteratively and obtain

rM21,M215
RM22

RM212La
rM22,M225•••

5
RM22•••R1

~RM212La!•••~R22La!
rBB .

~4.2!

Similarly, the staterN21, N21 involving the level prior to the
upper laser leveluA& can be expressed in terms of the state
rDD[rM11,M11:

rN21, N215
RN22•••RM11

~RN212La!•••~RM122La!
rDD . ~4.3!

Again, this straightforward elimination is possible since
we knowLa in terms of its spectral decomposition, that is,
we can treatLa essentially like a number. At this point, we
have reduced the description to four levels.

Now we proceed as in Sec. II to derive the pump operator
corresponding to~2.24!. The result is

RBA
eff 5

RBC
eff 2uE u2RDA

eff

2detM
~4.4!

with the effective rates

RBC
eff [R1 )

j52

M21
Rj

Rj2La
~4.5!

and

RDA
eff [RM11 )

j5M12

N21
Rj

Rj2La
~4.6!

and with M as in ~2.18! if RDA therein is replaced by
RM11 .

The eigenvalues ofRBA
eff for k50, viz.,

RBA
eff rn

~0!5R1 /@11c1An1c2~An!21•••

1cN21~An!N21#rn
~0!

5RBA
~n0!rn

~0! , ~4.7!

with some real constantsc1 , . . . ,cN21 , which depend on the
electric field and the atomic relaxation rates, now involve a
polynomial inAn of degreeN21.

In ~4.7!, the dependence of these pump rates on the index
n, and thus on the photon number, is enhanced with an in-
creasing number of cascade levels. As for the four-level la-
ser, the pump acts less efficiently for a large photon number.
In addition, due to the powerN21 in the denominator, the
dependence on the photon number is stronger in the multi-
level situation and increases with the numberN of atomic
levels.

The steady-state equation for the laser is still given by
~2.27! where now the pump operator~4.4! rather than~2.24!
is to be used. In Fig. 10, we plot the dependence of the Fano
factor onuE u for various numbersN of atomic levels. As one
can see, the noise reduction becomes stronger with increas-
ing N. For N550, however, the process has reversed; see
Fig. 10~b!. This is because with a growing number of inter-
mediate levels the dead time of the atom increases, so that
the pump cannot compensate for the loss out of the cavity.
The mean number of photons therefore drops and the region
of linear gain shrinks to zero; see Fig. 11.

Figures 10 and 11 show the statistics of the laser field that
is produced by a single atom. In particular, one can see how
the choice of different excitation channels affects the noise of
the output field. As a rule, a cascade of pump levels is favor-
able to a three- or four-level scheme, although if a certain
intensity is required, there is an optimum value of pump
levels. A more realistic model, which also considers parallel
decay and pump channels, for instance, when magnetic sub-
levels are involved, is worked out in Sec. IV B.

FIG. 9. Schematic representation of the multilevel atom.
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We now compare our results with a Fokker-Planck treat-
ment as presented in Ref.@1# and sketched in Appendix C,
where the atomic variables are adiabatically eliminated from
the description. To facilitate the comparison with Ref.@1#,
we replace the Rabi frequencyE that is associated with the
coherent pump field by an incoherent pump rateG and vary
all rates (1/2)R15R25•••5RN21[G simultaneously. This
ensures that the mean number of photons does not drop with
an increasing number of pump levels.

In Fig. 12, we see that the noise reduction increases
monotonically with the numberN of levels and the Fano
factor appears to approach an optimal value ofF>0.5. Al-
though this qualitative behavior is predicted also in Ref.@1#,
a detailed comparison shows a severe deviation of the exact
curves from the results obtained within a linearized Fokker-
Planck-type treatment.

In Fig. 13~a!, we plot the curves of Fig. 12 forN54 and
N510, which are calculated with the damping-basis method,
and the corresponding curves obtained from a~linearized!
Fokker-Planck treatment. There are several observations to
be made. For strong damping as in Fig. 13~a!, there is no
match between the Fokker-Planck~dashed and dotted
curves! and the damping-basis results~solid curves!. This is

not surprising, since for small values ofG the adiabatic
elimination does not claim to hold in a regime whereG/A is
not very large compared to unity; for largeG, on the other
side, the cooperativity parameterc52g2/GA goes to zero
and a linearization in this regime is not adequate.

For weaker damping, shown in Fig. 13~b!, the Fokker-
Planck curves approximate the exact curves in a larger range
of values of the pump strengthG. In the semiclassical re-
gime, withA/g!1 and a correspondingly large mean photon
number, all curves approach a~thresholdless! step function at
the origin. Note, however, that the Fokker-Planck curves al-
ways have a singularity~pole! if c51, that isG52g2/A,
whereas the exact curves smoothly approachF51 for
G→` ~andn50).

Although it may appear that the system would saturate
with increasing pump rateG, as is the case in Fig. 5, this is
not true here as is demonstrated in Fig. 14. SinceG also
affects the decay of the optical polarization on the lasing
transition, the laser gets below threshold again; this phenom-

FIG. 10. The Fano factorF as a function of the pump strength
uE u for the parameters n50, A50.02, RAB50.01,
R15R25•••5RM2151, andRM11 5 RM12 5 ••• 5 RN2151
~in units ofg!. The curve labeledN corresponds to anN-level atom.

FIG. 11. The mean photon number^a†a& as a function of the
pump strengthuE u for the parameters of Fig. 10.

FIG. 12. The Fano factorF as a function of the pump and decay
rateG5(1/2)R15R25•••5RN21 for n50, A50.5, andRAB50.
Here all rates are given in units ofg/AN. The curve labeledN
corresponds to anN-level atom.
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enon is called self-quenching by Mu and Savage@8#. In the
present scheme this is only due to a simplified model where
all rates are varied simultaneously. In a real laser, e.g., in an
ion-trap laser, the relaxation rates would be fixed, and the
pumping is controlled by an external field on one segment of
the cycle. In this situation we will always see saturation as
illustrated in Fig. 5.

B. General cascades

If for the transition uC&→uD& we choose an incoherent
excitation rather than the coherent pump field, then the de-
gree of the polynomial in~4.7! will be N22 rather than
N21. In this situation, the degreeN22 is just determined
by the number of pump levels~excludinguA& and uB&). The
additional power in the case of a coherent pump field arises
from the elimination of the polarizationpCD as an additional
variable in the Bloch equations~2.17! as compared to rate
equations for an incoherent excitation.

As a further observation we may thus state that a coherent
pump field will additionally contribute to noise reduction.
From this it is also clear that several coherent segments in-
volved in the pump process will influence the state of the

field and, in particular, its noise properties.
Our considerations are not restricted to simple cascades

either, but may, as in real atoms, also involve several parallel
decay channels, e.g., via magnetic sublevels. Similarly one
can describe broadband excitation. These situations are illus-
trated in Fig. 15. Compared to the situation of Fig. 9, we now
have to replace the product rate

RL21

RL2La

RL

RL112La
~4.8!

for a simple cascadeuL21&→uL&→uL11& by the sum

(
I

RL21,I

RI2La

RI

RL112La
~4.9!

FIG. 13. The Fano factorF as a function ofG/N with N54
~upper curves! andN510 ~lower curves! for ~a! A50.5 and~b!
A50.1. The other parameters are the same as in Fig. 12~rates in
units of g/AN). The results of the damping-basis approach~solid
curves! are compared with approximate Fokker-Planck solutions
~dashed and dotted curves! given by Eqs.~C3! and ~C5!, respec-
tively.

FIG. 14. The mean photon number^a†a& ~solid curve! and the
Fano factorF ~dashed curve! as functions ofG/N for N54 and the
parameters of Fig. 12. All rates are given in units ofg/AN5g/2.

FIG. 15. Schematic representation of parallel decay channels~a!
and broadband excitation~b!.
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in which the indexI runs over all sublevelsuI & within the
intermediate manifold. An application of these results to a
model of an experiment with an ion-trap laser is the intended
subject of a forthcoming paper.

C. The limit of infinitely many pump levels

In order to see how the system is described in the limit
N→`, we go back to the laser equations~2.6! supplemented
by the time-dependent version of~4.1! and the corresponding
equations for the other cascade levels. The elimination of the
pump equations in theN-level situation can be done in a
similar fashion as in Sec. II C.

For the kernelRBA
eff (t2t8) in ~2.22! one obtains

RBA
eff ~ t2t8!5RBCG

@G~ t2t8!#N23

~N23!!
e~La2G!~ t2t8! ~4.10!

if one assumes an incoherent pump fromuC& to uD& ~see Fig.
9! and for simplicity setsR25R35•••5RN215G, as well
asRBC[R1 .

In the limit of very largeN, the right-hand side of~4.10!
turns into

RBCd~ t2t82t!eLat ~4.11!

if the pump ratesG are increased with the number of pump
transitions, such that the average timet5(N22)/G for the
excitation from levelu2& to uA& is kept constant. The time
integral in ~2.22! with the kernel~4.10! can then be evalu-
ated, which yields

S ]

]t
2La1RABD rAA52 ig~rABa

†2arBA!

1RBCe
LatrBB~ t2t!,

S ]

]t
2La1RBCD rBB52 ig~rBAa2a†rAB!1RABrAA ,

~4.12!

supplemented by the equations forrAB andrBA, which are
the same as in~2.6!. The first equation of~4.12! implies that
the rate of change ofrAA at timet is determined by the state
rBB and thus the population inuB& at the retarded time
t2t.

The reduced state of the photon field

r~ t !5 (
L51

N

rLL~ t ! ~4.13!

is obtained by summing over the atomic levels; it obeys

S ]

]t
2LaD r~ t !52 ig~@rAB ,a

†#2@a,rBA# !. ~4.14!

This equation can be integrated to produce

r~ t !5rAA~ t !1rBB~ t !1RBCE
t2t

t

dt8eLa~ t2t8!rBB~ t8!

~4.15!

in the limit N→`. One can show that the trace ofr(t) in
~4.15! is conserved in time, a result which can be seen more
easily in the differential equation~4.14!. The time integral in
~4.15! accounts for the fraction of time that the atom spends
in the pump levels. Note that fort→0 the integral vanishes
and~4.12! reduces to the standard heat-bath model discussed
in Sec. II A.

The retardation in~4.12! is irrelevant in steady state, and
the pump operator is simply given by

RBA
eff 5RBCe

Lat. ~4.16!

Incidentally, the same result is obtained if in@the incoherent
analog~B4! with ~B6! of# ~4.4! the same limit as above is
performed. The origin of noise reduction is here again due to
the fact that the operatorRBC exp(Lat) acts more weakly on
components of the staterBB corresponding to large photon
numbers~or statistical moments! than on components corre-
sponding to small photon numbers. This introduces the cor-
relation between the pump rates and the state of the field. In
other words: The noise reduction does not come about be-
cause therBB term in ~4.12! is retarded, but because the
operator exp(Lat) suppresses the higher statistical moments
in rBB .

Except for the exponential factor exp@La(t2t8)#, the kernel
~4.10! is essentially equal to the conditional probabilities
used by Marte and Zoller@5# in their model for lasers with a
non-Poissonian pump and later by Ritschet al. @1# to explain
noise reduction in their treatment of multilevel lasers.

On the one hand, it is true that theN-dependent factor
G exp@2G(t2t8)#@G(t2t8)#N23/(N23)! in ~4.10! is the effec-
tive transition rate of the atom into levelu A& at timet given
that the atom is in the lower stateu2& at the initial timet8.
According to~4.11!, in the limit N→` this time-dependent
transition rate isd peaked at the timet5t81t, and this
suggests the self-regularization of the whole excitation pro-
cess that is emphasized by Ritschet al. @1#.

On the other hand, the time integral in~2.22! reduces to
the term involving a retarded time argument in~4.12!. But
this retardation process, which is interesting enough in itself,
does not describe a periodicity in the actual excitation of the
atom. This stands in marked contrast to a laser with explicit
periodic injection where ‘‘fresh’’ atoms are injected in a
well-prepared state and at certain externally controlled times
@21#. To generate dynamics of this kind in the multilevel
laser, one would have to force the atom into the stateuA& at
regular, predetermined instants, perhaps by performing clev-
erly designed measurements at these moments. But this is
not the physical situation we are considering.

In summary, we conclude that the multilevel laser with a
closed pump cycle is not equivalent to an atomic beam laser
with regular injection. The physical mechanism that we find
responsible for noise reduction in the multilevel laser is cor-
related atomic excitation.

V. CONCLUSIONS

We have investigated a single-mode laser with multilevel
excitation in a regime where the atomic dynamics is not
necessarily fast compared to the field dynamics. The effect of
dynamic noise reduction in multilevel lasers, which has been
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predicted by Ritschet al. @1# and others@2,3#, is here treated
within the framework of a theory that does not rely on adia-
batic elimination or linearization of a Fokker-Planck equa-
tion.

The technical key point of our approach is the introduc-
tion of an effective pump operator and its analytical evalua-
tion with the aid of the damping basis@14#. The eigenvalue
spectrum of this pump operator provides the mathematical
expression for a physical mechanism which we call corre-
lated excitation. Possible photon losses during the excitation
of the atom from the lower to the upper laser level give rise
to a correlation of the excitation rates with the number of
photons in the field. Instead of a single rate one obtains a rate
matrix.

This correlated excitation mechanism is different from a
regular pumping. If one wishes to establish a connection
with an atomic-injection laser, the correlated excitation cor-
responds to a feedback mechanism which changes the atomic
injection rate depending on the state of the field. Thereby, the
photon number fluctuations can be reduced below the shot-
noise level.

From the eigenvalues of the pump operator one can draw
qualitative and quantitative conclusions about several fea-
tures of the noise reduction. Examples are~i! the role of the
number of pump levels;~ii ! the existence of an optimal pump
strength such that the noise is minimized; and~iii ! the obser-
vation that coherent pumping leads to stronger noise reduc-
tion than incoherent pumping. The latter has already been
noted in a numerical treatment@8#.

When the atomic dynamics is not fast compared to the
dynamics of the field and we are not necessarily far above
threshold, our results differ substantially from a linearized
treatment. An example for such a situation would be an ion-
trap laser operating with single atoms as an active medium.
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APPENDIX A: EFFECTIVE LIOUVILLE OPERATOR

It is important for the consistency of the method that the
system of equations~2.27! is a representation of a genuine
Liouville operator, which conserves the trace and has no ei-
genvalues with a positive real part. First let us state that
~2.27! may be written in the form

LP[
1

i\
@H,P#1La P1Ls

effP50 ~A1!

with La as in ~2.3! and

H52\g~auA&^Bu1a†uB&^Au!, ~A2!

where the composed state

P5(
LL8

rLL8uL&^L8u ~A3!

only involves the levels L,L85A,B. The ‘‘atomic’’ operator
has the form

Ls
effP52

RAB

2
~ uA&^AuP1PuA&^Au!1RABuB&^AuPuA&^Bu

2
RBC

2
~uB&^BuP1PuB&^Bu!1RBA

eff uA&^BuPuB&^Au.

~A4!

The trace of this equation yields

Tr$Ls
effP%5 tr$RBA

eff rBB%2RBC tr$rBB%50, ~A5!

which is obtained from Eq.~2.28! in conjunction with
tr$rn

(k)%5dn0dk0 . Note that the partial~atomic! trace of~A4!
does not vanish, sinceLs

eff , different from the standard phe-
nomenological term, also acts on the photon variables in a
nontrivial manner.

To show the positivity of2Ls
eff , we solve the eigenvalue

equation

Ls
effP5lP, ~A6!

which can be cast into the form

S 2RAB RBA
eff 0 0

RAB 2RBC 0 0

0 0 2~RAB1RBC!/2 0

0 0 0 2~RAB1RBC!/2

D S rAA

rBB

rAB

rBA

D 5lS rAA

rBB

rAB

rBA

D . ~A7!

The characteristic polynomial has the zeros
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lnk
~1!5lnk

~2!52~1/2!~RAB1RBC!,

lnk
~3!52~1/2!~RAB1RBC!2A~1/4!~RAB1RBC!22RAB~RBC2RBA

~nk!!,

lnk
~4!52~1/2!~RAB1RBC!1A~1/4!~RAB1RBC!22RAB~RBC2RBA

~nk!! ~A8!

for n50,1,2, . . . andk50,61,62, . . . withRBA
(nk) of ~2.28!.

Since the inequalities 0,RBA
(nk)<RBC hold for all n,k, all

eigenvalues are, indeed, negative or zero. The stationary
state of this operator ~alone! is given by
(RAB1RBC)

21(RBCuA&^Au1RABuB&^Bu)r0
(0) , that is, by the

vacuum or thermal state of the field and an inversion of the
atom that is determined by the ratio of the ratesRBC and
RAB .

SinceLs
eff has been shown to be a genuine Liouville op-

erator,L of ~A1! is also one. The corresponding equation of
motion thus obeys the formal criteria of a master equation.
Note, however, that the elimination of the pump equations in
the above manner was only possible in steady state, and in-
sofar the Liouville operatorL may only be used to describe
the stationary properties of the system. Nevertheless, positiv-
ity and trace conservation are important for consistency. It
means that one can also useL as the semigroup generator
for the corresponding time-dependent equations of motion.
However, as we shall see below, the transient description is
only correct if the pump acts very fast. In that situation, an
adiabatic elimination of the pump levels is possible, which
will bring us back to the phenomenological heat-bath model.

For time-dependent phenomena, the pump term involves a
time integral as in~2.22!, which stresses the non-Markovian

character of this system-reservoir interaction. In this situa-
tion the pump levels, although eliminated in~2.22!, still enter
the initial state. To see this explicitly, it is expedient to look
at the equations in Laplace space, defined by

P̂~s!5E
0

`

dte2stP~ t !. ~A9!

Equations~2.22! then acquire the form

~s2La1RAB!r̂AA52 ig~ r̂ABa
†2ar̂BA!1RBA

eff ~s!r̂BB~s!

1rAA~0!

1I @rCC~0!,rDD~0!,ipCD~0!;s#,

~s2La1RBC!r̂BB52 ig~ r̂BAa2a†r̂AB!1RABr̂AA1rBB~0!

~A10!

with the pump operator

RBA
eff ~s!5RBC

2uE u2

det~s2M!
RDA ~A11!

and an initial-value term

I @rCC~0!,rDD~0!,ipCD~0!;s#5
1

det~s2M!
„2uE u2rCC~0!1@~s2La!~s2La1RDA/2!12uE u2#rDD~0!

2~s2La!ipCD~0!…. ~A12!

For convenience, we have chosen heret50 as the
initial time rather thant52` as in ~2.22!. In general,
the initial values of the conditional density operators involv-
ing the pump levels enter the dynamics of the~two-level!
laser system via the term~A12!. In this sense, the pump
levels cannot be completely eliminated from the description.
This is obvious in the situation when the atom is initially in
the lower laser leveluB&. A short time later, the pump levels
will be populated, and so the trace over the laser~sub!system
cannot be conserved.

However, when there are different time scales, a
complete elimination is possible. If the pump acts very
fast compared to the dynamics of the laser system, that
is g@g,A ~we useg as a short-hand notation forG, uE u,
and all rates RLL8, which involve a pump level L
or L8!, then the time integral in~2.19! simplifies and
yields

E
2`

t

dt8eM~ t2t8!S RBCrBB~ t8!

0

0
D

.M21S RBCrBB~ t !

0

0
D . ~A13!

This equation is valid as long as terms of the orderLa /g
may be neglected~that is nA/g!1 for all relevant
n50,1,2, . . . ). TheLa dependence ofM21 is therefore in-
significant within this approximation and, instead ofM21,
we could as well useMA→0

21 , which gives

RDArDD~ t !5RBCrDD~ t ! ~A14!
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and brings us back to the phenomenological heat-bath model
~2.9!, corresponding to the limit of instantaneous pumping.
On the other hand, if the photon losses are appreciable and
the slow time scale is set byg, that isg, A@g, then it is
necessary to keep theLa dependence ofM in ~A13!.

To account for both possible situations, we use the time-
dependent equations

S ]

]t
2La1RABD rAA52 ig~rABa

†2arBA!1RBA
eff rBB ,

S ]

]t
2La1RBCD rBB52 ig~rBAa2a†rAB!1RABrAA ,

~A15!

with the pump operator~2.24!, when g@g holds ~limit of
fast pumping!. In this regime, the fraction of time the atom
spends in the pump levels is negligible compared to the time
it spends in the two laser levels, and we can consistently
neglect the initial-value term~A12! in ~A10!.

APPENDIX B: GENERALIZATIONS

In order to account for additional polarization decay on
the laser transition, e.g., due to atomic collisions or stray
electric fields, and for relaxations on the pump transition, the
nonunitary part of the master equation has to be supple-
mented by

LDCP52
RDC

2
~uD&^DuP1PuD&^Du22uC&^DuPuD&^Cu!

~B1!

and

LS
'P52

2RBA
' 2RBA

2
~uA&^AuPuB&^Bu1uB&^BuPuA&^Au!

2
2RDC

' 2RDC

2
~uD&^DuPuC&^Cu1uC&^CuPuD&^Du!.

~B2!

HereRDC andRDC
' are the longitudinal and transverse relax-

ation rate betweenuD& and uC&, respectively, andRBA
' is the

transverse decay rate on the laser transition. For purely ra-
diative decayRBA

' is equal toRBA/2.
With these generalizations, the eigenvalues of the pump

operator for theN-level laser of Fig. 9 are given by

RBA
~nk!5

RBC
~nk!RCDRDA

~nk!

M ~nk! , ~B3!

with

RBC
~nk!5R1 )

j52

M21
Rj

Rj1A~n1uku/2!
,

RDA
~nk!5RM11 )

j5M12

N21
Rj

Rj1A~n1uku/2!
. ~B4!

We obtain for a coherent pump

RCD52uE u2,

M ~nk!5@4uE u21RDC
' ~RM111RDC!#A~n1uku/2!

1~RM111RDC1RDC
' !A2~n1uku/2!2

1A3~n1uku/2!312uE u2RM11 ~B5!

and for an incoherent pump

RCD5G,

M ~nk!5@G1A~n1uku/2!#@RM111RDC1A~n1uku/2!#

2GRDC. ~B6!

The additional phase decay on the lasing transition is ac-
counted for by includingRBA

' into the laser equations. In
order to model incoherent pumping that can be realized by
broadband excitation betweenuC& anduD&, we simply have to
setRCD5G andRDC5G1ADC with the Einstein coefficient
ADC describing the spontaneous emission rate and a bidirec-
tional pump rateG.

APPENDIX C: FOKKER-PLANCK APPROACH

Adiabatic elimination of the atomic degrees of freedom,
valid for G@g, A, leads to a Fokker-Planck equation@22,23#

]

]t
P5S ]

]I
AI1

]

]w
AwDP 1S ]2

]I 2
DII1

]2

]w2Dww

1
]2

]I ]w
DIwDP, ~C1!

with drift coefficients AI , Aw and diffusion coefficients
DII , Dww , DIw for the intensityI and phasew of the laser
field. Here,P is Glauber’sP function of the photon state
r5(LrLL . It is a function ofw and I .

Linearization around the steady-state laser intensity
Ī[^a†a&, valid far above threshold, leads to analytic expres-
sions for the drift and diffusion coefficients, from which we
can calculate the MandelQ parameter,

Q[
^a†a~a†a21!&2^a†a&2

^a†a&
5

DII

I ~dAI /dI !
U
I5 Ī

. ~C2!

The Fano factorF511Q is then found,

F511
G~2G2n̄!2n̄2~N21!~N22!

~N21!@2n̄@G1~N21!n̄#1X#
~C3!

with the laser-induced stimulated emission raten̄52g2Ī /G
and a residual term
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X5g2S 5G1n̄~N21!

G
1

3G26n̄

G1n̄~N21!
D . ~C4!

Far above threshold,X can be neglected, which has been
done in Ref.@1#, giving

F511
G~2G2n̄!2n̄2~N21!~N22!

2n̄~N21!@G1~N21!n̄#
. ~C5!

For smallG, however, it is advantageous to keep the addi-
tional term~see Fig. 13!.
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