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Local-field effects in a dense collection of two-level atoms embedded in a dielectric medium:
Intrinsic optical bistability enhancement and local cooperative effects
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We investigate the effect of a linear host medium on the dynamics of a dense collection of resonant atoms.
We find that near dipole-dipole interaction is enhanced by the presence of the host dielectric, resulting in a
lower threshold density and a greater hysteresis area for intrinsic optical bistability. Cooperative decay terms
appear that represent the interaction of near dipoles mediated by the absorptive component of the dielectric
function of the host medium. These terms are part of the local response and correspond to local cooperative
decay effects.

PACS numbgs): 42.65.Pc,42.50.Fx,42.50.Md

Recent experimentfl,2] by Hehlen, Gdel, Shu, Rai, ization arising from the NDD interaction is enhanced by the
Rai, and Rand (HGS® have provided dramatic verification presence of the host material. This enhancement leads, in the
of theoretical prediction$3] of intrinsic optical bistability —steady-state limit, to a lower threshold density and a greater
(I0B) due to near dipole-dipoléNDD) interactions. These hysteresis area for intrinsic optical bistability. Further, coop-
experiments were performed with ¥b ions in a erative decay terms appear which are quite novel in that they
Cs;Y,Brg crystal at densities sufficient to cause strong'@Present the interaction of near dipoles mediated by the
local-field effects, but radiationless exchange interactions, a§haginary component of the dielectric function of the host
well. The exchange interaction contribution, which corre-material. Significantly, these terms, which are not dependent

sponds to pair upconversion in the excited state, evidenti" Propagation or sample size in the macroscopic equations

produces enhancement of the I0OB by increased hVStefeﬁ%cgogg&gf;f&'glggctgytgifg?' response and correspond to

area. Thus, we could say that the HESRperiments exhibit The polarization of the medium, which is composed of an

exwaqg?h'ntﬁggg n as&_stedtIOB. ; d with isotropic homogeneous distribution of resonant systems in a
le the Experiments were performed With 1eS0- ;o 51y polarizable host, is calculated using a phenomeno-

nant systems embedded in a crystal host, previous theoreticl%lgicm approach due to Lorenf21] and Bloembergefil2].
treatments of NDD interactions have assumed a dense COfye tota] polarization

lection of resonant systenmis vacuo[1,3—10. In this paper,
we investigate the effect of the linear polarizability of a host
material, such as a crystal or amorphous material, on the P=P9+ P =N & +7 ",
dynamics of a dense embedded collection of two-level at-
oms. Allowing for dispersion and absorption, we assume that

the dielectric function of the host can be represented by iethe sum of a background polarization, linear in the local

complex constant, where the value of the constant depen Id.’ that is_due to the host material and a nqnlinear polar-
on the frequency of the driving field. In the context of the Ization that is due to the resonant systems. Fields are repre-

Kramers-Kronig relations, this can be viewed as an approxirc'emed throughout by envelope functions which can be de-

mation in which the dielectric function is essentially constantfined implicitly by P= 3 (7e'“'+ c.c), EL.= 3 (£ 7'
over the range of frequencies in the local field. In the Drudet C.C.), etc. In addition andN,, are the linear polarizabil-
model, this condition can be satisfied if the range of frequenity and the number density of linear systems, respectively, of
cies in the local field is sufficiently small compared to thethe isotropic homogeneous host materigsihomogeneity of
detuning of the driving frequency from the resonance frethe host material due to the resonant systems is neglected for
quency of the background dielectric medium. In the steadysimplicity.) Then, using the Lorentz local-field condition to
state limit, the dielectric function must be constant regardles€liminate the microscopic local field = £+ (4w/3)7 in

of the model of the background polarizability. While the gen-favor of the macroscopic Maxwell field” and polarization
eralized Bloch-Drude model will be discussed in a future?” and using the Clausius-Mossotti-Lorentz-Lorenz relation
publication, the assumption in the current work that the di-(47/3)aN,=(e¢—1)/(¢+2) to eliminate the microscopic
electric function of the host material has a constant valugolarizability in favor of the macroscopic dielectric function
clarifies the presentation, allows identification of the under<=n?, wheren is the linear index of refraction of the host
lying physical processes in dispersive dielectrics, and makematerial, one obtains

the results independent of a specific model of the background

polarizability.
After deriving the equations of motion, we find that the P 8_1;(+ 8+2,,r; res 1)
inversion-dependent atomic resonance frequency renormal- ’ 4 3 '
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The dynamics of the two-level systems are described by dW
the generalized Bloch equations in the rotating-wave ap- 9t

[
- ;LL(/* Z*Ryy—/ “R31) —4/" €|Ryy|?
proximation[4]:

. — Y (W—=Wey). (4b)
Rt ARy | s 477/)W Ry (28
— == ——\ & 7| W— : . . ,
at 2 24 3 Yty Equations(4) display several local-field enhancement ef-
fects.(i) As in the case of a dilute concentration of two-level
IW i
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A ) *} atoms in a host dielectric, there is an apparent enhancement
21 of the magnitude and an overall phase shift of the field that
drives the atomsJ(ii) The inversion-dependent detuning
= ¥(W=Weg). (2b)  (nonlinear Lorentz frequency shifthat is due to the NDD
interaction is intensified by the real part of the local-field
The macroscopic, spatially averaged, atomic variables in thenhancement factofiii) The damping ratey, and y; are
rotating frame of reference areRy=(p€'“")sp,  taken as phenomenological material paramet@s.Coop-
Ri=(p1~'")sp, and W=Rp—Ry1=(p22)sp—(p1)sp-  erative decay terms appear due to the interaction of near
Here,(- - -)sp corresponds to a spatial average over a volumgjipoles mediated by the imaginary component of the dielec-
of the order of a resonance wavelength cubed angvth@re  tric function of the host material.
the density matrix elements for a two-level system with a  Although / appears as a coefficient &f in the general-
lower state|1) and an upper stafe). In addition,« is the  jzed Bloch equations, the field that drives the atoms is not
transition dipole momentA =w— w, is the detuning from necessarily enhanced by the presence of the dielectric. The
resonancey, is the dipole dephasing ratg, is the popula-  basis of the argument is the fact that a field, incident on a
tion relaxation rate, anilVe, is the population difference at dispersionless dielectric, is reduced by the factomt the
equilibrium. vacuum/dielectric interface as a consequence of local-field
Although impurities in solids are typically inhomoge- effects described by the Ewald-Oseen extinction theorem
neously broadened, we begin with the more familiar case of14]. Then, in the limiting case in which the density and
homogeneous broadening. For homogeneously broadenefhole moment of the embedded atoms are sufficiently small
two-level atoms, the contribution to the polarization enve-that nonlinear propagation effects are negligible, the en-
lope is7” "*=2NuR,;. Then, using Eq(1) to eliminate the  hancement and reduction are offsetting and the “enhanced”
polarization, the generalized macroscopic Bloch equationgield ~# in the dielectric ¢>1) is the same as the field
become incident from the vacuum, if reflections at the boundary are
R ) neglected. In the general case of a dielectric containing two-
21 _. , v . level atoms, the extinction theorem and reflections become
ot (A= eWRym o7/ W=y Rey (33 nonlinear[ 15,16 and, consequently, quantitative calculations
must include propagation with appropriate initial and bound-

IW w - e ) ary conditions. The point to be made is that, based on the
il 7(/ Z*Ro1—/ZR3) = 2i(/* = /) €|Ry| limiting case, the inversion-dependent detuning is enhanced
relative to the Rabi frequend = u/'#/#, as well as to the
— ¥ (W—Wey), (3b)  detuning and dephasing, even thouglappears as a coeffi-
cient of £ in the generalized Bloch equations.
wheree=4mNu?/3% is the NDD interaction paramete¥, is Because NDD effects are only important at sufficiently

the number density of two-level systems, afig (¢ +2)/3  high densities and large oscillator strengths, it is significant
is the local-field enhancement factor arising from the elimi-that the local-field enhancement factor increases the effect of
nation of the total polarization using E(L). the inversion-dependent detuning in dense media. For ex-

For dilute concentrations of resonant atones=0) em-  ample, Friedberg, Hartmann, and Manassah have derived a
bedded in a linear dielectric, it is convenient to eliminate thethreshold condition for intrinsic optical bistability in a dense
explicit dependence or from the equations of motion by vapor, namelye>4y, [5]. This density threshold condition
renormalizing the dipole moment t&’u [13]. However, cannot be controlled in a dense vapor of two-level systems
renormalization of the dipole moment fails to eliminate thebecause the dephasing rate increases in direct proportion to
explicit dependence orf in dense media because the NDD the density due to collisional broadenifi]. For two-level
interaction term is proportional t6u?. Althoughe could be  systems in a dispersionless dielectric, the threshold condition
renormalized as well, it is not an independent parameter andecomes”e>4vy, and the threshold condition can be satis-
inconsistencies can arise, for example, when the generalizeiéd by a smaller value ok, because(i) the inversion-
Bloch equations are coupled to the Maxwell wave equationdependent detuning is enhanced relative to the dephasing
Therefore, we retain the explicit presentation of the enhancerate and(ii) in condensed matter, particularly at cryogenic
ment factors and, since the dielectric function is, in generaltemperatures, the homogeneous linewidth is no longer re-
complex, recast Eqg3) in terms of the real and imaginary stricted to the formula for a collisionally broadened vapor.
parts of the enhancement factér=/"+i/" to obtain Significantly, it is in a similar case that intrinsic optical bi-
stability, analyzable by a two-level model, was observed ex-
perimentally[1].

A linear dielectric which is dispersive must also be ab-
(4a  sorptive in accordance with the Kramers-Kronig relations.

IRp1 . : in .
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This is manifested as a complex dielectric function, causing

o
the local-field enhancement factor to be complex, as well. S
The imaginary part of the enhancement factor appears as a
coefficient, along with the NDD parameter, of bilinear prod- $_

ucts of the macroscopic atomic variables in two terms of

Egs.(4). These terms are part of the local response and cor-% 3
respond to local cooperative decay effects representing theg;
interaction of near dipoles mediated by the imaginary com- =
ponent of the dielectric function of the host medium. Al-
though the local cooperative terms in the macroscopic Bloch —

R
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equations, Eqg4), have the same dependence on the atomic 3 -

variables as for cooperative effects in extended systems, !

which, for example, in thin films containing dilute concen- 2

trations of resonant atoms arise from the elimination of the ' [, 02 04 06 08
propagating field in the mean-field approximati$8,9], FIELD STRENGTH

these terms are intrinsic and are not dependent on propaga-

tion or on the sample size as in the case for superfluores- g 1. Inversion as a function of normalized field strength
cence or superradiance. In order to study propagation effectg, 77, for (@ /=1, (b) /=2, (c) /=3, and(d) /=2+0.2.
the equations of motion for the local response, including theyiso, A= -2y, , y=0.1y,, e=4y, , andWe=—1.

local cooperative decay terms, must be coupled to the wave

equation. Any cooperative decay effects that are related to

nonlinear propagation are, therefore, in addition to the local |/|22W3+ (— |/|262Weq— 2/ €A—2e/"y, )W2
cooperative decay effects described here. Because the slowly

varying envelope approximation is not generally valid in w2y,
dense medi&3] or in dispersive dielectrics, nonlinear propa- +{ A%+ 2+ |73 4] 2ﬁ2—+2/’eAWeq
gation effects are beyond the scope of the present paper, but Y
will be treated in a future publication.
The imaginary part of the local-field enhancement factor +2/"y, EWeq)W—Weq(Az_ ¥$)=0, (6)
is given by/”"=27«/3 in terms of the real and imaginary
components of the index of refraction= »+i«. The imagi- the steady-state limit. Figure 1 shows the roots of (.

nary part of the index of refraction, the extinction coefficient 55 5 function of the field for the cases(dfno enhancement,
K, is typically associated with the absorption of a field that is ,— 1, (ii) real enhancement,=2 and/ =3, and(iii) com-
propagating through a linear dielectric. The field is reducechex enhancement/=2+0.2. The enhanced inversion-
by 1/ upon propagating one skin depth, &é vacuum  gependent detuning, cunt is sufficiently strong to satisfy
wavelengths. In dense media, the effects of NDD interactiongne density threshold condition for intrinsic optical bistability
can be manifested in films that are significantly thinner thanyhije the unenhanced NDD interaction, cumgs not. If the

a vacuum wayelengt[B]. C(_)nsequentl_y, the d_etrlmenta_| efj inversion-dependent detuning is further enhanced, cayve
fects, absorption and heating, associated with an extinctiogye pjstapility region widens, increasing the dynamical range
coefficient can be mitigated for dense media. Then, for a thin 77 curved shows that the local cooperative decay terms
film of. a strongly dispersive dielectric containing a denseggect the bistability curve by shifting and compressing the
collection of two-level atoms, one can expect local cooperapstapility region slightly, as do cooperative effects in ex-
tive decay effects to play a significant role in the dynamicstanged system$9]. In addition, large cooperative decay

Next, we solve the generalized Bloch equations in th§ermg can result in an increased hysteresis area, although the
steady-state limit in order to provide a specific example Ofdynamical range is reducd@)].

the effects of the complex local-field enhancement factor on” g, inhomogeneous broadening, the generalized Bloch
the dynamics. From Ed4a), we obtain the steady-state re- equations become
sult for R,;, namely

IRy _ . o in
o L BOOWIRE o/ EWI2h ] ot~ (AR —i7&(W)(Rop — 5/ AAW) — 7. (Ray),
ATA—/eW+iy, A=/"eW+i(y, +/") ©
KW B Ry (REY)
Then, in the weak-field limitW= — 1, the susceptibility is a7 TR 2 20
XoZ T ar T dmwg—emw—i(y + /") in terms of averages, denoted by angle brackets, over the

resonance frequencies of the atoms. The local-field enhance-
and we find that the Lorentz redshift is increased by the reainent factors enter into the equations of motion in the same
part of the local-field enhancement factor, while the imagi-way for both the homogeneously and inhomogeneously
nary part contributes to the linewidth. Combining E¢#h) broadened cases, however the analysis is considerably more
and (5) yields a cubic equation for the inversion complicated for inhomogeneous broadening due to the pres-
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ence of the frequency-averaged te{ R,;). In some cir- manifested as local cooperative terms which have the same
cumstances, perturbative techniques can be used to reduckependence on the atomic variables as nonlocal superradia-
by the introduction of new dynamical variables, the integro-tion terms arising from the elimination of the propagating
differential Bloch equations for an inhomogeneously broad<ield in the mean-field approximation. Unlike superradiation
ened system to a hierarchy of coupled differential equationgerms, the local cooperative terms are independent of propa-
[17]. gation or sample size, and must be included with the local
In summary, we have described the derivation of selfesponse when the generalized Bloch equations are coupled
consistent semiclassical equations of motion for a dense cofy, the Maxwell wave equation. The results presented here for
lection of resonant systems embedded in a linear dielectriGy,q_jevel atoms have obvious extensions to dense collections
We found that the _NDD interaction of dense collections ofof multilevel systemg10] embedded in a linear dielectric
two-level systems is enhanced by the presence of the hogte yim for example, enhancement factors and local coop-

material, lowering the threshold density and increasing theerative terms are obtained for the three-level system case

hysteresis area for intrinsic thical bistability. We .Showe.dFinally, these results are indicative of the novel quantum.

B oSt o 1 Onerence efects ha can be execte i ofhr derse mul-
: . . . ..~ component materials, such as two species of two-level atoms

tenuous atoms in a linear dielectric host, does not eliminat 18]. These effects, as well as effects on spontaneous emis-

the local-field enhancement factor when applied to a dens@ion.[lg] will be tréated in future publications

collection of atoms. In addition, the imaginary component of ' '

the dielectric function of the host material was found to in- The authors would like to acknowledge useful conversa-

duce intrinsic quantum coherences. These coherences arens with J. P. Dowling and C. D. Cantrell.
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