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We investigate the effect of a linear host medium on the dynamics of a dense collection of resonant atoms.
We find that near dipole-dipole interaction is enhanced by the presence of the host dielectric, resulting in a
lower threshold density and a greater hysteresis area for intrinsic optical bistability. Cooperative decay terms
appear that represent the interaction of near dipoles mediated by the absorptive component of the dielectric
function of the host medium. These terms are part of the local response and correspond to local cooperative
decay effects.

PACS number~s!: 42.65.Pc,42.50.Fx,42.50.Md

Recent experiments@1,2# by Hehlen, Gu¨del, Shu, Rai,
Rai, and Rand (HGSR3) have provided dramatic verification
of theoretical predictions@3# of intrinsic optical bistability
~IOB! due to near dipole-dipole~NDD! interactions. These
experiments were performed with Yb31 ions in a
Cs3Y2Br9 crystal at densities sufficient to cause strong
local-field effects, but radiationless exchange interactions, as
well. The exchange interaction contribution, which corre-
sponds to pair upconversion in the excited state, evidently
produces enhancement of the IOB by increased hysteresis
area. Thus, we could say that the HGSR3 experiments exhibit
exchange interaction assisted IOB.

While the HGSR3 experiments were performed with reso-
nant systems embedded in a crystal host, previous theoretical
treatments of NDD interactions have assumed a dense col-
lection of resonant systemsin vacuo@1,3–10#. In this paper,
we investigate the effect of the linear polarizability of a host
material, such as a crystal or amorphous material, on the
dynamics of a dense embedded collection of two-level at-
oms. Allowing for dispersion and absorption, we assume that
the dielectric function of the host can be represented by a
complex constant, where the value of the constant depends
on the frequency of the driving field. In the context of the
Kramers-Kronig relations, this can be viewed as an approxi-
mation in which the dielectric function is essentially constant
over the range of frequencies in the local field. In the Drude
model, this condition can be satisfied if the range of frequen-
cies in the local field is sufficiently small compared to the
detuning of the driving frequency from the resonance fre-
quency of the background dielectric medium. In the steady-
state limit, the dielectric function must be constant regardless
of the model of the background polarizability. While the gen-
eralized Bloch-Drude model will be discussed in a future
publication, the assumption in the current work that the di-
electric function of the host material has a constant value
clarifies the presentation, allows identification of the under-
lying physical processes in dispersive dielectrics, and makes
the results independent of a specific model of the background
polarizability.

After deriving the equations of motion, we find that the
inversion-dependent atomic resonance frequency renormal-

ization arising from the NDD interaction is enhanced by the
presence of the host material. This enhancement leads, in the
steady-state limit, to a lower threshold density and a greater
hysteresis area for intrinsic optical bistability. Further, coop-
erative decay terms appear which are quite novel in that they
represent the interaction of near dipoles mediated by the
imaginary component of the dielectric function of the host
material. Significantly, these terms, which are not dependent
on propagation or sample size in the macroscopic equations
of motion, contribute to the local response and correspond to
local cooperative decay effects.

The polarization of the medium, which is composed of an
isotropic homogeneous distribution of resonant systems in a
linearly polarizable host, is calculated using a phenomeno-
logical approach due to Lorentz@11# and Bloembergen@12#.
The total polarization,

P5P bg1P res5aNaEL1P res,

is the sum of a background polarization, linear in the local
field, that is due to the host material and a nonlinear polar-
ization that is due to the resonant systems. Fields are repre-
sented throughout by envelope functions which can be de-

fined implicitly by P5 1
2 (Pe

2 ivt1 c.c.), EL5 1
2 (ELe

2 ivt

1c.c.), etc. In addition,a andNa are the linear polarizabil-
ity and the number density of linear systems, respectively, of
the isotropic homogeneous host material.~Inhomogeneity of
the host material due to the resonant systems is neglected for
simplicity.! Then, using the Lorentz local-field condition to
eliminate the microscopic local fieldEL5E1(4p/3)P in
favor of the macroscopic Maxwell fieldE and polarization
P and using the Clausius-Mossotti-Lorentz-Lorenz relation
(4p/3)aNa5(«21)/(«12) to eliminate the microscopic
polarizability in favor of the macroscopic dielectric function
«5n2, wheren is the linear index of refraction of the host
material, one obtains

P5
«21

4p
E1

«12

3
P res. ~1!
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The dynamics of the two-level systems are described by
the generalized Bloch equations in the rotating-wave ap-
proximation@4#:
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im
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P DW2g'R21, ~2a!
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2g i~W2Weq!. ~2b!

The macroscopic, spatially averaged, atomic variables in the
rotating frame of reference areR215^r21e

ivt&sp ,
R125^r12e

2 ivt&sp , and W5R222R115^r22&sp2^r11&sp .
Here,^•••&sp corresponds to a spatial average over a volume
of the order of a resonance wavelength cubed and ther i j are
the density matrix elements for a two-level system with a
lower stateu1& and an upper stateu2&. In addition,m is the
transition dipole moment,D5v2v0 is the detuning from
resonance,g' is the dipole dephasing rate,g i is the popula-
tion relaxation rate, andWeq is the population difference at
equilibrium.

Although impurities in solids are typically inhomoge-
neously broadened, we begin with the more familiar case of
homogeneous broadening. For homogeneously broadened
two-level atoms, the contribution to the polarization enve-
lope isP res52NmR21. Then, using Eq.~1! to eliminate the
polarization, the generalized macroscopic Bloch equations
become

]R21

]t
5 i ~D2l eW!R212

im

2\
l EW2g'R21, ~3a!
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52

im

\
~ l *E*R212l ER21* !22i ~ l *2l !euR21u2

2g i~W2Weq!, ~3b!

wheree54pNm2/3\ is the NDD interaction parameter,N is
the number density of two-level systems, andl 5(«12)/3
is the local-field enhancement factor arising from the elimi-
nation of the total polarization using Eq.~1!.

For dilute concentrations of resonant atoms (e[0) em-
bedded in a linear dielectric, it is convenient to eliminate the
explicit dependence onl from the equations of motion by
renormalizing the dipole moment tol m @13#. However,
renormalization of the dipole moment fails to eliminate the
explicit dependence onl in dense media because the NDD
interaction term is proportional tol m2. Althoughe could be
renormalized as well, it is not an independent parameter and
inconsistencies can arise, for example, when the generalized
Bloch equations are coupled to the Maxwell wave equation.
Therefore, we retain the explicit presentation of the enhance-
ment factors and, since the dielectric function is, in general,
complex, recast Eqs.~3! in terms of the real and imaginary
parts of the enhancement factorl 5l 81 i l 9 to obtain

]R21

]t
5 i ~D2l 8eW!R212

im

2\
l EW1l 9eWR212g'R21,

~4a!

]W
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im

\
~ l *E*R212l ER21* !24l 9euR21u2

2g i~W2Weq!. ~4b!

Equations~4! display several local-field enhancement ef-
fects.~i! As in the case of a dilute concentration of two-level
atoms in a host dielectric, there is an apparent enhancement
of the magnitude and an overall phase shift of the field that
drives the atoms.~ii ! The inversion-dependent detuning
~nonlinear Lorentz frequency shift! that is due to the NDD
interaction is intensified by the real part of the local-field
enhancement factor.~iii ! The damping ratesg' and g i are
taken as phenomenological material parameters.~iv! Coop-
erative decay terms appear due to the interaction of near
dipoles mediated by the imaginary component of the dielec-
tric function of the host material.

Although l appears as a coefficient ofE in the general-
ized Bloch equations, the field that drives the atoms is not
necessarily enhanced by the presence of the dielectric. The
basis of the argument is the fact that a field, incident on a
dispersionless dielectric, is reduced by the factorl at the
vacuum/dielectric interface as a consequence of local-field
effects described by the Ewald-Oseen extinction theorem
@14#. Then, in the limiting case in which the density and
dipole moment of the embedded atoms are sufficiently small
that nonlinear propagation effects are negligible, the en-
hancement and reduction are offsetting and the ‘‘enhanced’’
field l E in the dielectric (l .1) is the same as the field
incident from the vacuum, if reflections at the boundary are
neglected. In the general case of a dielectric containing two-
level atoms, the extinction theorem and reflections become
nonlinear@15,16# and, consequently, quantitative calculations
must include propagation with appropriate initial and bound-
ary conditions. The point to be made is that, based on the
limiting case, the inversion-dependent detuning is enhanced
relative to the Rabi frequencyV5ml E /\, as well as to the
detuning and dephasing, even thoughl appears as a coeffi-
cient ofE in the generalized Bloch equations.

Because NDD effects are only important at sufficiently
high densities and large oscillator strengths, it is significant
that the local-field enhancement factor increases the effect of
the inversion-dependent detuning in dense media. For ex-
ample, Friedberg, Hartmann, and Manassah have derived a
threshold condition for intrinsic optical bistability in a dense
vapor, namelye.4g' @5#. This density threshold condition
cannot be controlled in a dense vapor of two-level systems
because the dephasing rate increases in direct proportion to
the density due to collisional broadening@5#. For two-level
systems in a dispersionless dielectric, the threshold condition
becomesl e.4g' and the threshold condition can be satis-
fied by a smaller value ofe, because~i! the inversion-
dependent detuning is enhanced relative to the dephasing
rate and~ii ! in condensed matter, particularly at cryogenic
temperatures, the homogeneous linewidth is no longer re-
stricted to the formula for a collisionally broadened vapor.
Significantly, it is in a similar case that intrinsic optical bi-
stability, analyzable by a two-level model, was observed ex-
perimentally@1#.

A linear dielectric which is dispersive must also be ab-
sorptive in accordance with the Kramers-Kronig relations.
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This is manifested as a complex dielectric function, causing
the local-field enhancement factor to be complex, as well.
The imaginary part of the enhancement factor appears as a
coefficient, along with the NDD parameter, of bilinear prod-
ucts of the macroscopic atomic variables in two terms of
Eqs.~4!. These terms are part of the local response and cor-
respond to local cooperative decay effects representing the
interaction of near dipoles mediated by the imaginary com-
ponent of the dielectric function of the host medium. Al-
though the local cooperative terms in the macroscopic Bloch
equations, Eqs.~4!, have the same dependence on the atomic
variables as for cooperative effects in extended systems,
which, for example, in thin films containing dilute concen-
trations of resonant atoms arise from the elimination of the
propagating field in the mean-field approximation@8,9#,
these terms are intrinsic and are not dependent on propaga-
tion or on the sample size as in the case for superfluores-
cence or superradiance. In order to study propagation effects,
the equations of motion for the local response, including the
local cooperative decay terms, must be coupled to the wave
equation. Any cooperative decay effects that are related to
nonlinear propagation are, therefore, in addition to the local
cooperative decay effects described here. Because the slowly
varying envelope approximation is not generally valid in
dense media@3# or in dispersive dielectrics, nonlinear propa-
gation effects are beyond the scope of the present paper, but
will be treated in a future publication.

The imaginary part of the local-field enhancement factor
is given by l 952hk/3 in terms of the real and imaginary
components of the index of refractionn5h1 ik. The imagi-
nary part of the index of refraction, the extinction coefficient
k, is typically associated with the absorption of a field that is
propagating through a linear dielectric. The field is reduced
by 1/e upon propagating one skin depth, 1/4pk vacuum
wavelengths. In dense media, the effects of NDD interactions
can be manifested in films that are significantly thinner than
a vacuum wavelength@3#. Consequently, the detrimental ef-
fects, absorption and heating, associated with an extinction
coefficient can be mitigated for dense media. Then, for a thin
film of a strongly dispersive dielectric containing a dense
collection of two-level atoms, one can expect local coopera-
tive decay effects to play a significant role in the dynamics.

Next, we solve the generalized Bloch equations in the
steady-state limit in order to provide a specific example of
the effects of the complex local-field enhancement factor on
the dynamics. From Eq.~4a!, we obtain the steady-state re-
sult for R21, namely

R215
ml EW/2\

D2l eW1 ig'

5
ml EW/2\

D2l 8eW1 i ~g'1l 9!
. ~5!

Then, in the weak-field limit,W521, the susceptibility is

x5
P

E
5

«21

4p
1

3

4p

l 2e

v02l 8e2v2 i ~g'1l 9!

and we find that the Lorentz redshift is increased by the real
part of the local-field enhancement factor, while the imagi-
nary part contributes to the linewidth. Combining Eqs.~4b!
and ~5! yields a cubic equation for the inversion

ul u2e2W31~2ul u2e2Weq22l 8eD22el 9g'!W2

1S D21g'
21ul u2uE u2

m2g'

\2g i
12l 8eDW eq

12l 9g'eWeqDW2Weq~D22g'
2 !50, ~6!

in the steady-state limit. Figure 1 shows the roots of Eq.~6!
as a function of the field for the cases of~i! no enhancement,
l 51, ~ii ! real enhancement,l 52 andl 53, and~iii ! com-
plex enhancement,l 5210.2i . The enhanced inversion-
dependent detuning, curveb, is sufficiently strong to satisfy
the density threshold condition for intrinsic optical bistability
while the unenhanced NDD interaction, curvea, is not. If the
inversion-dependent detuning is further enhanced, curvec,
the bistability region widens, increasing the dynamical range
DE /E . Curved shows that the local cooperative decay terms
affect the bistability curve by shifting and compressing the
bistability region slightly, as do cooperative effects in ex-
tended systems@9#. In addition, large cooperative decay
terms can result in an increased hysteresis area, although the
dynamical range is reduced@9#.

For inhomogeneous broadening, the generalized Bloch
equations become

]^R21&
]t

5^ iDR21&2 i l e^W&^R21&2
im

2\
l E^W&2g'^R21&,

]^W&
]t

52
im

\
~ l *E* ^R21&2l E^R21* &!

22i ~ l *2l !e^uR21u2&2g i~^W&2Weq!

in terms of averages, denoted by angle brackets, over the
resonance frequencies of the atoms. The local-field enhance-
ment factors enter into the equations of motion in the same
way for both the homogeneously and inhomogeneously
broadened cases, however the analysis is considerably more
complicated for inhomogeneous broadening due to the pres-

FIG. 1. Inversion as a function of normalized field strength
mE /\g' for ~a! l 51, ~b! l 52, ~c! l 53, and ~d! l 5210.2i .
Also, D522g' , g i50.1g' , e54g' , andWeq521.
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ence of the frequency-averaged term^ iDR21&. In some cir-
cumstances, perturbative techniques can be used to reduce,
by the introduction of new dynamical variables, the integro-
differential Bloch equations for an inhomogeneously broad-
ened system to a hierarchy of coupled differential equations
@17#.

In summary, we have described the derivation of self-
consistent semiclassical equations of motion for a dense col-
lection of resonant systems embedded in a linear dielectric.
We found that the NDD interaction of dense collections of
two-level systems is enhanced by the presence of the host
material, lowering the threshold density and increasing the
hysteresis area for intrinsic optical bistability. We showed
that renormalization of the dipole moment, which is suffi-
cient to account for local-field effects for a collection of
tenuous atoms in a linear dielectric host, does not eliminate
the local-field enhancement factor when applied to a dense
collection of atoms. In addition, the imaginary component of
the dielectric function of the host material was found to in-
duce intrinsic quantum coherences. These coherences are

manifested as local cooperative terms which have the same
dependence on the atomic variables as nonlocal superradia-
tion terms arising from the elimination of the propagating
field in the mean-field approximation. Unlike superradiation
terms, the local cooperative terms are independent of propa-
gation or sample size, and must be included with the local
response when the generalized Bloch equations are coupled
to the Maxwell wave equation. The results presented here for
two-level atoms have obvious extensions to dense collections
of multilevel systems@10# embedded in a linear dielectric
medium, for example, enhancement factors and local coop-
erative terms are obtained for the three-level system case.
Finally, these results are indicative of the novel quantum
coherence effects that can be expected in other dense multi-
component materials, such as two species of two-level atoms
@18#. These effects, as well as effects on spontaneous emis-
sion @19#, will be treated in future publications.

The authors would like to acknowledge useful conversa-
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