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Quantum-limited linewidth of a bad-cavity laser with inhomogeneous broadening
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We derive a general expression for the linewidth of inhomogeneously broadened traveling-wave gas lasers,
without any assumption on the relative magnitude of the atomic and field decay constants, and for several types
of atomic pumping statistics, ranging from Poissonian to regular. For small inhomogeneous broadening, an
important linewidth narrowing occurs in the bad-cavity limit. This effect disappears, however, in the large
inhomogeneous broadening lingDoppler limit).

PACS numbds): 42.50.Dv, 42.50.Lc, 42.55.f, 42.65.5f

The quantum-limited linewidth of a fully inverted single- In this paper, we solve the linewidth problem by extend-
mode laser with on-resonance homogeneously broadenedg the theory of quantum fluctuations in lasers with on-
medium was originally derived by Schawlow and Townes inresonance homogeneously broadened media developed in

Ref.[1] as Ref.[6]. This theory is applicable for lasers with any relative
magnitude of the atomic and cavity decay rates. Moreover, it

K allows for variable atomic pumping statistics, ranging from
A”ST:2_|0’ @) Poissonian to completely regular one. The aim of the present

paper is to generalize this theory for inhomogeneously

wherex is the cold-cavity loss rate arlg is the intracavity broadened media and to evaluate the quantum-limited line-
intensity of the laser light in units of number of photons. Width for both good- and bad-cavity regimes.
However, the result of Schawlow and Townes is valid only ~ For the sake of simplicity we shall assume tligtwe
for a good_cavity|aser for which the decay ratﬁab of the have a SlngleraVGllng-W&V&aVny mOde, so that the Spatlal
atomic polarization is much larger than the cavity loss ratehole burning effect is absent, afid) the laser frequency is
«. In the last few years there has been a certain revival ofuned to the center of the symmetrical atomic line, so that
interest about the quantum limitations on the laser linewidttfhere is no frequency pulling. _ o _
in the so-callecbad-cavityregime where the above assump- ~ Thus, we consider a laser medium consisting of moving
tion is not valid. two-level atoms that interact with a single traveling-wave
This interest is related to recent developments in semicoravity mode(Fig. 1). When the atoms move, they see an
ductor[2] and gas3] microlasers that operate in the bad- electric field with shifted frequency due to the Doppler ef-
cavity regime. On the other hand, several autlidrs7] have fect. Each individual atom has its own resonance frequency
generalized the theory of Schawlow and Townes for botha determined by the value of its velocity component along
good- and bad-cavity regimes. These generalized theorid§€ laser mode axis. The frequency distribution function
predict the appearance of an additional factor in the line2(®a) of atoms over the resonance frequencies is obtained
width formula equal td yap/(vap+ /2)]2. While for good- from a Maxwell-Boltzmann velocity distributiof®,10],
cavity lasers /2<< y,;,) this factor reduces to unity, it can be
very small for bad-cavity lasers«(2>y,;,), leading to the
guenching of the linewidth. This theoretical prediction was p(wa)
recently experimentally confirmed by Woerdman and col-
laboratord 8]. —_
The theories in Refd4-7] are applicable only for a ho-
mogeneously broadened laser medium. In the experiment
[8], however, the inhomogeneous broadening was of the Wy R w Ya
same order of magnitude as the homogeneous one. Hence a a
natural question appears about the influence of the inhomo- ‘ ‘
geneous broadening on the quantum-limited linewidth in the .- b
bad-cavity regime. The standard textbook theofs=e, for H
example, Ref[9]) of inhomogeneously broadened lasers do Y
not give the answer to this question since they are valid only
for good-cavity lasers. FIG. 1. Level scheme with frequencies, pump and decay rates.
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1 1 (wa— 00)2 ables. Having vanishing mean values and Gaussian statistics,
p(wy) = —A—exp{— — (20  these functions are completely described by their second-
\/; Wa Awy order correlation functions:
with the Doppler widthA w, equal to <~V”7,L(t,wa)7y(t'yw;)>=2@W(wa) Swa—wl) S(t—t").
\/ﬁ ©
Awa=wg Mc*’ © The diffusion coefficients”,, for the on-resonance homo-

geneously broadened medium were calculated in R&f.
whereM is the atomic mass and@l is the gas kinetic tem- The new coefficients”, ,(w,) in Eg. (6) are obtained from
perature. Z,,, upon replacing the collective atomic variables by their

To incorporate the Doppler effect into the theory we shallcorresponding spectral densities:
separate the atoms into individual groups with different reso-
nance frequencies,. Within each group we shall consider 27, (w,) = ya{/ a(t,w2))+R(1—p)p(wy)
the macroscopic atomic populations,(t,w,) of the upper . .
and ./ (t,w,) of the lower level, and polarization —g[( 2" (t,wa) A1) +( 2" (). 2(t,wa)) ],
(1,wy). These individual quantities now play the role of (78
the spectral densitieof the corresponding collective vari-
ables that are obtained by integration over all groups, so thab &, (w,)= y,(./ 1 (t,®,))

— QLA (o) AR + (A (0. 2t 02)],

(4)
(7b)

A y(t)= f dowgt 4(t,w,),

similar equations holdlng for other atomic variables. 2£/ab( wa) — g[<//z~k (t,wa).,/Z(t))+ </&* (t),/%(t,wa)ﬂ,

The c-number Langevin equations for these spectral den- (70
sities of atomic variables and for the laser field is a straight-
Ecggward generalization of the corresponding equations from 29 4 A w)=20(.2(t,0,). #(1)), (7d
N a(t,0a) =Rp(3) = 72l a(t,0a) = gL 7 (1) (1, w,) 29 px M ©02) = (2¥ap~ va) () a(t,0a)) + Rp(wa), (79
+ 2% (L w,) 2(1) ]| +.7a(t,w,), (59 ,
_ 2% y(wa) = yp{ (L, 03)). (7)
Aot wg) == yp 1 (t,03) .
i 2 b a Here the angle brackets denote the quantum mechanical
+[ 2% (1) 2t wa) + 2% (1, 0,). 4(1)] mean value of the corresponding variables. A point worth
+ 7o (tw,) (5b) comment is the modification of the first diffusion coefficient
Ttwa), Pa(wz), which depends on the pumping statistics of the
» _ : y atomic medium{distribution of time intervals for the succes-
At wa) =~ [VapTi(@a— )| Z(t,w5) sive atomic excitations This statistics is determined by the
+9Ut,0,)+ Tt w,), (50 pgrametelp, 0§ p=<1, and can vary from a Poissonian dis-
tribution of excited atoms, whep=0, to a completely regu-
K lar one, whenp=1. Writing the corresponding term in
) =— §+I(wc— wg) A+g 2. (5d) Daa(w,) asR(1—p)p(w,), we assume that the paramegper
is the same for different atomic groups. CleaRyis now the

total pumping rate averaged over all groups. It is easy to
Here (t,w,) =/ 5(t,wa) — 4 (1, w,) is the spectral den- show that if the pumping is Poissonian for the totality of
sity of the atomic population difference?(t) is ac-number  atoms, independently of their resonance frequencies, then it
stochastic variable corresponding to the laser field operatowill also be Poissonian for each frequency group. On the
inside the cavity; for a chosenorma) ordering of operators other hand, regular pumping of the inhomogeneously broad-
(see Ref[6] for detailg and zero temperature of the external ened atoms would require an incoherent pumping mecha-
thermal reservoir the corresponding Langevin force in thenism with the bandwidth larger than the inhomogeneously
equation for.Z(t) vanishes;y,, y,, andy,p, are the decay broadened linewidth, so that each group is pumped with the
rates of the atomic populations and polarization, respecsame degree of regularity and independently of all other
tively; /2 is the cold-cavity decay rate, the correspondinggroups. Although this is not an easy experimental endeavor,
cold-cavity mode frequency is.; wq is the lasing fre- we keep herg@+#0 for the sake of generality.
guency;g is the coupling constant of the atom-field interac-  Setting the time derivatives to zero in E¢Sa)—(5d) and
tion. As mentioned above, we shall assume that the lasairopping off the Langevin forces we arrive at the steady-
frequency is tuned to the central frequency of the atomicstate mean values for the atomic spectral densities. In what

frequency distribution functiop(w,) as written in Eq.(2).
The functions .7, (t,0,), n=a,b, or .7, are the

follows these steady-state values will be identified with a
zero subscript. They are conveniently expressed in terms of

c-number Langevin forces for the respective atomic vari-four dimensionless parameters:
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(i) The dimensionless intensity=1,/1 of the laser field
inside the cavity, wheré is the homogeneous saturation
intensity,

_Yab 7Ya7b

—Jab Ta’b 8
S 292 Yat b ®

(i) The dimensionless pumping rate=R/Ry,, Where
Ry, is the homogeneous threshold pumping rate,

9)

(iii)

The dimensionless atomic detuningx=(w,

—wg)! vap, and (iv) the dimensionless inhomogeneous

broadening widthe=Aw,/y,p.
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dimensionless intensity

pump parameter

We shall also use the dimensionless frequency distribution FIG. 2. Stationary dimensionless intensiitps a function of the

functionw(x) instead ofp(w,):

11
— —exf —x%a?],

W(x)= [ dxw(x)=1. (10
Jmr a
The steady-state spectral densities of atomic variables i
terms of these parameters are
B RW(X)[ 1+x2 Ya |
V4 ao(X) = ) 20
a | 1+H1+X yat vy 1+H1+X
(11a
. Rw(x) Ya I
A po(X) = T Tt 1T (11b
RwW(X) 9.7 1—ix
V4 =
Mo(X) va yun TFTFX (119

where we have assumed the steady-state field amplitu
g to be real.

.wherev =

pump parameter for different values of the inhomogeneous broad-
ening; the uppermost curv@roken corresponds to the homoge-
neous caseq=0; then in descending order=2.5,5,10,25, and
100; dotted line is the approximate solution given by Ed).

V1+1, and erfcg) is the complementary error
Punction,

erfo(z)=1— ijzdtexr( —12). (15)
Jmlo

While in general the transcendental equati@d) for I(r)
can be solved only numerically, two limiting cases allow for
simple analytical results.

For v/a>1 we recover the homogeneous solution,
I(r)=r—1. It is worth noting that the condition/ > 1 can
be satisfied not only for a small inhomogeneous broadening,

< 1, but also for intermediate values @fbut large dimen-

sionless intensity. In other words, the important parameter

Equations (11a—(110 express the steady-state atomiciS NOte itself buta/v=Aw,/(7yapy1+1) which is the ratio
variables in terms of the yet unknown dimensionless intenOf the Doppler width to thgpower broadenediomogeneous

sity | of the laser field. To determine this intensity itself we width.

may replace7y(x) given by Eq.(110 into Eq. (5d) for the
steady-state field amplitude:

2 ®

IR gxwx)
XWX
Ya%YabJ —«=

K2+ i (we— wg) = 1T 12

12

Sincew(x) is an even function, the imaginary part of the
integral vanishes providings.=wy. Thus, as mentioned

Another limiting case is the opposite one of very large
inhomogeneous broadening,a<1, i.e., the so-called Dop-
pler limit. In this case the approximate solution of Ety) is

r2

au
I(N=—7-1. (16)

above, there is no frequency pulling in our model. The reafn contrast to the homogeneous case the intensity increases

part of Eq.(12) gives us the equation fdr.

w(X)

rJ_demzl. (13)

For the Gaussian functiow(x), given by Eq.(10), this in-
tegral can be evaluated analytically, yielding

av exd —v?a?]

~ Jm erfdolal

r (14

now quadratically with the dimensionless pumping rate. Set-

ting 1(r) to zero we find the threshold value ofin the

Doppler limit asr = o/ V. Itis linearly proportional to the
Doppler widthAw,. The behavior of (r) for several differ-
ent values ofw is shown in Fig. 2.

To investigate the small fluctuations of the laser field and
atomic variables around the steady-state solution we split
each of the four variables/ 5,y ,. 7, #}=Q into a sum

Q(t)=Qq+ 6Q(t) of a large steady-state valu@, and a
small fluctuationsQ(t). Performing the Fourier transform of
the time-dependent fluctuating terms,
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1 (e _ +i6Y (), a=a,b, 7, #, which correspond to the fluctua-
5Q(Q)=\/? _wdtemet]&Q(t), (17 tions of the amplitude and phase quadrature components.
™ Here we shall be concerned with the fluctuation spectrum of

we arrive at a linear algebraic system of four complex equath® Phase quadrature of the laser field,
tions, , ,
I (BY_ AQ)SY_AQ))=8(Q+Q")(6Y%)q, (19

(7a=10) 87 5(Q.X)= =g %[ 8.7(0,%) which is related to the linewidth of the laser. The correspond-

+O0.2*(—Q,x)] ing fluctuation spectrum of the amplitude quadrature, related
- to the photocurrent noise spectrum under direct detection of
—9[. 700 2* (= Q) the laser light, will be discussed elsewhere. The spectral den-

sity (5Y%4)5) in the low-frequency limitQ} is related as fol-

+ 75 8. A4Q) ] +.7(Q,X), . .
Hg 8 A+ T(2,x) lows to the laser linewidtt v:

(183
(Yp—1Q) 81 b(Q,X) = 0. Zo[ 8. 7(Q,X)+ 8.72% (— 2, %)]

(6Y2)q=10AvI02, (20)

’ wherel is a steady-state intracavity field intensity. The typi-
T Ao (— Q)+ #58.2(Q)]  cal low-frequency divergence oBY¥?)), as 102 is a mani-
+ 7 (DX, (18b Iﬁ)sr:fettlon of phase diffusion under steady-state laser opera-
Incidentally, because of the detuning in E8¢) for the
atomic polarization, the amplitude and the phase fluctuations
p—- 7S¢ 7 become coupled, in contrast to the case of the on-resonance
=0Z5(X) 6. 2(Q)+g.2e0L(Q,X)+.7 ,(,X), 18¢ o T
90(x) 8. 2(41) + G 78 ({1, X) ALY (189 homogeneous mediurgsee Ref[6]). This implies that the
— Q8 AQ) = — kI25. 4 Q) +gf " .AXSZ(Q,X). expression for the phase fluctuatiély ,({}) is more com-
o o e ' icated and contains all the atomic fluctuation forces. Luck-
(189 pl d and Il th fl f Luck
ily, for the calculation of Av we need to know only
Further, we split each of the four complex fluctuations intosY ,(Q) in the low-frequency limit, which brings about a
their real and imaginary parts, 5Q(Q)=5X,(Q) rather significant simplification:

[ Yap(1+ix)—iQ]8.7(Q,x)

. 9% (= . Zo(X)(1=iQ/yap)
_IQgY/(Q)—|:_K/2+% _mdx(l—iQ/’yab)2+X2

© (I+HDE () —Xx 4X)

5Y,,///(Q)+gf_wdx AR

* X Fa(X)  Fp(X)
— 02 4 a
g ,,/goj_wdxl+l+xz Va Vo . (21)
|
Here we have splitted the Langevin forces into real and % w(X) % w(x) 1+1-x2
imaginary parts as7,(Q,x)=¢£&,(Q,x)+ix,(2,x), and Cf, dxm:ﬁ Xl 1 e @

have introduced a shorthand,(x) =.7,(Q=0X).
Using Eg. (21, and the diffusion coefficients of the . o _ _ .
Langevin forces from Eqs(7a)-(7f), the linewidthAv, as  For the Gaussian distribution function given by EH0) this

given by Eq.(20), can be calculated in a straightforward coefficient can be evaluated analytically and is equal to
way. Quite amazingly, the final result looks very simple,
2 vexgd—v¥a?] 2v?

AV:L L +_LI(1+C) \/;a erC[v C!] o
2lg\ y+«/2 2 vatve
1 1 Equations(22) and (24) are the main results of this paper.
b . . . . . . .
+= I 1— —p> (1-c)|, (220  Before going into their detailed discussion we would like to
2 Yat 7 2 compare the linewidthAv given by Eq. (22) with the

Schawlow-Townes linewidtiA vo7 from Eq. (1). The differ-
where we have introduced a new parameteas y=y,,/C  ence is given by the two additional factors in E&2), in
to make the result look more similar to the homogeneousurly and square brackets, respectively. The first one is al-
case[6]. ways smaller or equal to unity and will be called tngench-
All the information about the inhomogeneous broadeningng factor as it leads to a decreasing of the linewidth. The
is now contained in a single coefficienit which is defined as second one, on contrary, is always bigger or equal unity and
follows, will be called theenhancement factor
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15 similar conclusion regarding the influence of the inhomoge-
neous broadening on th&hort-time scaleevolution of the
laser phase. However, this short-time scale behavior has no
influence on the linewidth and is only visible in the far wings
of the optical spectrum.

The enhancement factor in the Doppler limit is also dif-
ferent from the homogeneous case. It provides two intensity-
independent contributions to the linewidNw given by the
second and third terms in the square brackets. The first con-
tribution is positive but now independent of the relaxation
constants of the atomic levels, i.e., of the degree of inversion.
The third term contains the statistical paramederi.e., de-
pends on the pumping statistics. This is the second important
result of our theory: the influence of the pumping statistics of
the atomic medium on the linewidth of the inhomogeneously
broadened laser. Such an influence is absent for the on-

resonance homogeneous laser. The physical reason for this

%0 025 05 o 10 effect is the coupling between the amplitude and the phase
inverse intensity fluctuations through the detuning between the laser fre-

quency and the resonance frequencies of the individual

FIG. 3. Dimensionless linewidth v=2I A v/« as a function of atomic groups. As was first pointed out by Golubev and
the inverse dimensionless intensityl Tor different values of the  Sokolov [12], such coupling is also present in the off-
inhomogeneous broadening; the topmost curve is for the Doppleresonance homogeneous medium, and brings about a similar
limit, @=1000; then in descending order=25,10,5,2.5; the bro-  influence of the pumping statistics on the laser linewidth.
ken line is for the homogeneous limitw=0; y,/y,=100, The statistics-dependent term in E&6) brings a nega-
Kl2yap=2. tive contribution into the enhancement factor, which is maxi-

] ) ) mum for regular pumping statistice=1, and long lifetime

_ Let us first consider, as we did for the_ st_eady—state solupf the upper levely,<1y,. In this optimum case the third
tion, the homogeneous and the Doppler limits. In the homoerm cancels out half of the second.

geneous limita=0, we havec=1. This is easy to see from  Fijgyre 3 shows the dimensionless linewidth, defined as
Eq. (23), taking into account that for=0 the atomic fre-  A5=2| Ap/k, as a function of the inverse dimensionless
quency distribution becomes the function, w(x)=48(X).  intensity 1I, for different values of the inhomogeneous
For the linewidthA » in this limit we recover the result from broadening. Two features of these curves are worth pointing
[6] out. The first one is the linear asymptotic behavior of

) Av(1N) for small dimensionless intensities. The slope of

[ n Ya . (25) these asymptotic lines depends, among other parameters, on

Yat Vb the inhomogeneous broadening, and can be found from Egs.

(22), (24), by making a Taylor expansion of the quenching
The quenching factor is determined by the ratio of the cavityand enchancement factors up to the first order in the dimen-
loss rate to the polarization decay rat#2y,,, and becomes sionless intensity. The second feature of these curves is
very small in the bad-cavity regimes/2y,,>1. The en- that all of them start from the same point of the homoge-
hancement factor in the homogeneous limit is due to incomneous linewidth for very large dimensionless intensity
plete inversion of the laser medium and depends on the the

ratio of the relaxation constants of the upper and lower lev-

els, ya/ v, - When this ratio is small, the lower atomic level L0
is almost emptysee Eqs(11a, (11b)] and the enhancement
factor is equal to unity. Thus, for the fully inverted good-
cavity laser the linewidthsv from Eq. (25) coincides with
the Schawlow-Townes linewidth vs1 from Eq. (1).

In the opposite Doppler limitg=2, we havec=0, as
follows from Eg.(24), and the linewidthA »

dimensionless linewidth

_ K
21,

Yab
YVapt k2

Av |

o
3
[+,

[P P S
TP R L LV

1. (26)

dimensionless linewidth
(=3
b (=]
(<13 o

The quenching factor becomes unity in the Doppler limit,

i.e., the line narrowing due to the bad-cavity effects disap- 0.0
.. . . . 0.0 2.5 5.0 75 10.0

pears. This is the first important conclusion of our theory: inhomogeneity parameter

large inhomogeneous broadening leads to suppression of the

atomic memory effects in the linewidth. We should mention  FIG. 4. Dimensionless linewidth » as a function of the inho-

here that Benkert, Scully, and &manr{11] have come to a mogeneous parametes, y,/y,=100, k/2y,,=2, | =1.
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| —. Hence, for nonzero inhomogeneity, there is alwaysdecay constants. Especially interesting results are obtained in
some region of intensitielswhere the linewidth shows non- the bad-cavity limit, where an important linewidth narrowing
linear dependence onl1/Such an effect would be interest- may occur. First experimen{d3] performed with high-gain

ing to observe experimentally. Unfortunately, as followsmidinfrared gas lasers, e.g., HeMe=3.39um and HeXe
from Fig. 3, it takes place for rather high dimensionless in-\ =3.51um, operating in the bad-cavity regime and having
tensities, which are experimentally hard to achieve. gain profiles with comparable homogeneous and inhomoge-

Figure 4~iIIustrates the dependence of the dimensionlesgeous widths, show the results that are in very good agree-
linewidth A on the inhomogeneity parameter for fixed  ment with the theory presented above.

intensity|.

In conclusion, we have obtained an analytical expression A. Z. K. and L. D. acknowledge the financial support of
for the linewidth of an inhomogeneously broadened laserCNPq(Conselho Nacional de Desenvolvimento Cigoti e
irrespective of the relative magnitudes of atomic and fieldTecnol@ico).
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