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Degenerate four-wave mixing using broadband, non-transform-limited~incoherent! laser light having a
Lorentzian spectral density is treated analytically for a Bloch two-level system. We consider the configuration
in which an incoherent beam from a Lorentzian source is split into two beams having distinctk vectors,k and
k8. The twin beam alongk8 has been subjected to a controllable delay,t, relative tok. These twin beams,
focused into the sample of interest, generate new fourth fields, the signal atks52k2k8 being examined here
as a function oft. A set of factorized time correlation~FTC! diagrams is introduced to organize the calculation
and to yield both analytic expressions as well as physical insight. Not only is the signal not symmetric int but
the signal can peak attÞ0 even in the absence of inhomogeneous broadening. Finally, the physical insights
and the use of the FTC diagrams are extended to rationalize several other incoherent light spectroscopies.

PACS number~s!: 42.50.Md, 42.62.Fi, 42.65.Re

I. INTRODUCTION

In the early 1980s it was discovered how non-transform-
limited, broadband~incoherent or noisy! light could be used
in nonlinear-optical spectroscopies to probe subpicosecond
material dynamics@1,2#. Since its first application in two-
beam photon-echo-like experiments, noisy light has been
used in many different time-domain nonlinear-optical spec-
troscopies such as in three-beam degenerate and nondegen-
erate four-wave mixing~4WM! @3#, coherent anti-Stokes Ra-
man scattering ~CARS! and coherent Stokes Raman
scattering~CSRS! @4–6#, and the optical Kerr effect@7#. In
the frequency domain, novel ultrasharp spectral ‘‘poles’’
have been discovered@8,9#. Review articles have appeared
@9,10#. In this paper we seek analytic solutions to 4WM in a
Bloch two-level system with full attention to the time corr-
elators that arise in the problem.

The principal idea in the use of noisy light for ultrashort
timing is that, as opposed to traditional femtosecond work, it
is the coherence timetc of the light, not the temporal profile
of its pulses, that determines the time resolution. In principle,
the noisy beam may be cw, although in practice it is very
often on the order of pulses generated by a neodymium-
doped yttrium aluminum garnet~Nd:YAG! laser, i.e., nano-
seconds. The coherence time of the light produced by stan-
dard dye lasers operating in broadband mode is typically on
the scale of hundreds of femtoseconds but may, with wider
spectral densities, be tens of femtoseconds. The incoherent
source enters the optics of a Michaelson interferometer to
generate identical twin beams~assuming perfect optics! one
of which is delayed byt over the other by use of a control-
lable spatial delay in one of the arms of the interferometer.
The twin beams are configured to enter the sample along
uniquek vectors, one alongk and its twin (t shifted! along
k8. The fourth waves appear along several newk vectors, a

particular one, such asks52k2k8, is spatially isolated, pos-
sibly spectrally filtered, and quadrature detected~intensity!.
The fourth-wave intensity plotted againstt generates a sig-
nal called an interferogram. Clearly, the signal along
ks852k82k generates an interferogram which is the
complement~mirror image! of that of ks52k2k8.

Two important considerations arise in the theoretical treat-
ment of the signal produced in noisy beam experiments.
First, all possible time orderings of field interventions on the
sample must be included. That is to say, the field from oneor
the other of the twin noisy beams may act first and/or sec-
ond, etc. As far as femtosecond or picosecond dynamics are
concerned the light fields that appear in the form of nanosec-
ond or longer pulses are effectively continuously present. By
contrast, in most femtosecond treatments the time ordering
of the fields is considered to be under experimental control.
Second, one must properly treat the noise and the correlation
between the twin beams. Since the 4WM signal is quadrature
detected, explicit use of the so-calledbichromophoric model
@4# appears and averaging over the stochastic properties of
the fields occurs at the signal level where fourth fields from
two independent chromophores are involved. As in normal
4WM the density operatorr̂ is solved perturbatively to third
order to give the third-order electrical polarization~or its
Fourier transform! which is taken to quadrature. The stochas-
tic averaging over the noisy light fields is now superimposed
and appears as a six-point time correlator.

The present study carries this procedure to an analytic
conclusion for degenerate 4WM~D4WM! in a two-level sys-
tem having no permanent dipole using incoherent light of
Lorentzian spectral density. As shown in Fig. 1, we consider
the spatially resolved signal atks52k2k8 wherek andk8
are the two distinctk vectors of the twin beams. This type of
experiment is designated astwo-beamI (3)D4WM. In gen-
eral, I(n) indicatesn perturbative actions of the noisy~or
incoherent! field ~in 4WM using only noisy fields,n is nec-
essarily 3!. Exploring such a simple model is of interest be-
cause, at the 4WM level where each of the three field inter-
ventions carries a broadband~here Lorentzian! spectral
profile, a generally extremely difficult calculation becomes at
least amenable in the simple Bloch model. Then the analytic
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result provides a basis for a more general understanding of
the I(3)D4WM interferograms.

In dealing with the time correlators that arise in the
I~3!D4WM problem a diagrammatic technique involving fac-
torized time correlators~FTC’s! is introduced. It is found
how simple rules lead directly from the FTC diagrams to an
important limiting form of the exact analytic solution. Just as
important, the FTC diagrams offer qualitative ‘‘physical’’ in-
sight of wide use that provides a tool for understanding
asymmetric interferograms, peaking of the signal attÞ0,
limiting peak-to-background ratios~the signal contrast!, and
finally useful qualitative and sometimes quantitative relation-
ships among several incoherent light spectroscopies.

II. EVOLUTION OF THE DENSITY MATRIX

The semiclassical approach with density-operator formal-
ism in which the classical field acts as a perturbation is com-
mon in nonlinear optics@12#. The integral form of thenth-
order density-operator matrix elements in the two-level basis
set is a starting point with Appendix A of the original paper
of Morita and Yajima@1# a useful reference.

We seek the I(3)D4WM signal ~as a function oft) along
ks52k2k8 which is a third-order process. In general there
are 48 terms in the third-order expansion of the density-
operator matrix elements@13# ~eight Liouville paths with 3!
field permutations each!. Here the number of terms is re-
duced to 24 due to the indistinguishability of two of the three
field interventions. Thus at the mod square level 24324
terms appear~before any stochastic averaging!. The calcula-
tion rapidly becomes daunting. To facilitate analytic calcula-
tions and to capture the essence of the signal we contend
throughout that the signal is dominated only by those terms
which enjoy full ~in this case triple! resonance within the
two-level system. It greatly aids in the organization of the
calculation to express the matrix elements of the density op-
erator diagrammatically. There are several such techniques
@10#. Here the diagrammatic technique of Lee and Albrecht
@11# is convenient for it immediately exposes any and all
resonances. An upper-case D in the word Diagram is used
when referring to diagrams representing density matrix ele-
ments, to avoid confusion with the FTC diagrams to appear
later when performing the averaging over the noise in the
light. The triple-resonance requirement reduces the 24 terms
to only 2. The corresponding two Diagrams~or terms!, re-
ferred to asD1 andD2 ~their respective conjugates asD1*
andD2* ), are shown in Fig. 2~the remaining 22 Diagrams
can be readily constructed following simple rules@11#!. In
constructing all the Diagrams there actually are altogether
four triply resonant Diagrams. In addition toD1 and D2

there are two Diagrams which populate the ground state after
the second intervention. Their contribution to the third-order
polarization is analytically equivalent to that ofD1 and of
D2 under the condition of conservation of the trace of the
density operator@4,19#.

A. The integral equations up to third order

The main focus here is entirely in the time domain. For
convenience the tensor notation is suspended and the treat-
ment is reduced to a scalar one. Thek vectorsk andk8 are
distinct in order to spatially resolve the signal~through phase
matching!. However, the angle between them is assumed
small so that their general direction of propagation can be
taken to be along thez axis, allowing the field to be ex-
pressed asE(r t)⇒E(z,t). Appropriate orientational averag-
ing of the elements of the dipole moment vector operator
projected onto the~assumed! identically polarized twin
beams leaves an effective scalar transition dipole moment
m and a scalar fieldE(z,t).

The density matrix elements for each of the two triply
resonant Diagrams for the two-level (m upper,g lower! sys-
tem are derived. Atnth order the integral equation for the
mgth density matrix element is

rmg
~n!~ t !5

im

\ E
2`

t

dt1 E~z,t1!rD
~n21!e~2 ivmg2gmg!~ t2t1!,

~1!

with rmg5rgm* where

rD
~n21!~ t !5

im

\ E
2`

t

dt1 E~z,t1!~rmg
~n22!2rgm

~n22!!e2gmm~ t2t1!,

~2!

andrD[rgg2rmm, m[mmg5mgm , the dipole moment ma-
trix elements,gmg[1/T2 and gmm[1/T1 , andvmg is the
Bohr frequency of the two-level system. Building up to third

FIG. 1. Beam configuration fortwo-beamI (3)D4WM. We con-
sider the signalks52k2k8.

FIG. 2. The two fully resonant diagrams for triply resonant
two-level two-beamI (3)D4WM and their complex conjugates. Solid
arrows represent ket-side evolution of the density matrix and
dashed lines represent bra-side evolution. For more details see Lee
and Albrecht@11#.
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order from a cold thermal ensemble prior tot1 @rD
(0)(t1)

5r0 , rmg
(0)(t1)50] we haverD

(1)(t2)50,

rmg
~1!~ t2!5

im

\ E
2`

t2
dt1 E~z,t1!r0e

~2 ivmg2gmg!~ t22t1!, ~3!

rD
~2!~ t3!5

2im

\ E
2`

t3
dt2 E~z,t2!

3S im\ E
2`

t2
dt1 E~z,t1!r0e

~2 ivmg2gmg!~ t22t1!

1
im

\ E
2`

t2
dt1 E~z,t1!r0e

~1 ivmg2gmg!~ t22t1!D
3e2gmm~ t32t2!, ~4!

and

rmg
~3!~ t !5

im

\ E
2`

t

dt3 E~z,t3!F2im\ E
2`

t3
dt2 E~z,t2!

3S im\ E
2`

t2
dt1 E~z,t1!r0e

~2 ivmg2gmg!~ t22t1!

1
im

\ E
2`

t2
dt1 E~z,t1!r0e

~1 ivmg2gmg!~ t22t1!D
3e2gmm~ t32t2!Ge~2 iv2gmg!~ t2t3!. ~5!

Simplifying Eq. ~5! we have finally

rmg
~3!~ t !522ir0S m

\ D 3E
2`

t

dt3E
2`

t3
dt2E

2`

t2
dt1 E~z,t3!

3E~z,t2!E~z,t1!e
2gmm~ t32t2!e2gmg~ t2t31t22t1!

3@e2 ivmg~ t2t31t22t1!1e2 ivmg~ t2t32t21t1!#. ~6!

B. The bichromophoric model

It is general for all 4WM that in order to obtain a non-
trivial phase-matching condition~in other words a macro-
scopically resolvable signalk vector! one needs fourth waves
derived from at least two spatially separated chromophores
@4#. Furthermore, the signal field is normally quadrature de-
tected. This means that the signal is derived from the modu-
lus square of the sum of chromophore-derived fourth fields at
the detector. The cross terms fully dominate such a signal so
that the quadrature signal must be drawn from fourth fields
derived from two separate chromophores~summed over all
pairs!. This is known as thebichromophoric modeland is
particularly important to the understanding of the incoherent
light spectroscopies. A more complete and analytic discus-
sion of the bichromophoric model is found in@4#. In any
case, if Eq.~6! holds for one chromophore (t time line! we
have for a second chromophore (s time line!

rmg
~3!~s!5Eq. ~6! with t1→s1 , t2→s2 , t3→s3 , t→s.

~7!

C. The noisy field

The total fieldE appearing in Eqs.~6! and ~7! is now
dissected for its components which produce the I(3)D4WM
signal of interest. For easy reference it is useful to give dis-
tinct labelsF andF8 to the twin fields. HereF is the field
associated with the beam having itsk vector alongk. F is
also the field which acts twice in the formation of the
I~3!D4WM signal. Likewise,F8 is the field associated with
the beam havingk vector k8. F8 acts only once in the
present I(3)D4WM case and it also carries the time-delay
parametert.

The general expression for the field at positionr at timet
is the sum of all fields present. HereE(z,t)5Ek(z,t)
1Ek8(z,t) ~the total field due to the simultaneous presence
of noisy fieldsF andF8). The electric field ofF is given by

Ek~z,t !5
E0

2
p~ t !e2 ivt1 ikz1

E0

2
p* ~ t !eivt2 ikz, ~8!

that of t-delayedF8 is

Ek8~z,t !5
E0

2
p~ t2t!e2 iv~ t2t!1 ik8z

1
E0

2
p* ~ t2t!eiv~ t2t!2 ik8z, ~9!

where p(t) is a complex stochastic function carrying the
noise information,v is the carrier frequency, andE0 is a
constant amplitude~shared byF andF8). With these defini-
tionst.0 signifies that fieldF8 lags behindF. The particu-
lar fourth wave alongks52k2k8 is generated by only a
small subset of the (43564) field terms in Eq.~6! @with Eqs.
~8! and~9!#. Thus many of the terms resulting from the prod-
uct of the three total fields acting att3 , t2 , and t1 ~alsos3 ,
s2 , ands1) are inactive in producing the signal of interest
and these may be eliminated from further consideration. In
fact, the necessary field products can be taken directly from
the Diagrams in Fig. 2. The three-field product associated
with D1 is

@Ek~z,t3!Ek8~z,t2!Ek~z,t1!#D1

→
E0
3

8
p~ t3!p* ~ t22t!p~ t1!e

2 iv~ t32t21t11t!1 iksz, ~10!

and that forD2 is

[Ek8~z,t3!Ek~z,t2!Ek~z,t1!]D2

→
E0
3

8
p~ t3!p~ t2!p* ~ t12t!e2 iv~2t32t21t11t!1 iksz. ~11!

Likewise, the products of fields essential forD1* and D2*
along thes line are, respectively,
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@Ek~z,s3!Ek8~z,s2!Ek~z,s1!#D
1*

→
E0
3

8
p* ~s3!p~s22t!p* ~s1!

3eiv~s32s21s11t!2 iksz, ~12!

and

@Ek8~z,s3!Ek~z,s2!Ek~z,s1!#D
2*

→
E0
3

8
p* ~s3!p* ~s2!p~s12t!

3eiv~2s32s21s11t!2 iksz. ~13!

Now, by careful inspection of Eqs.~6! and ~7! the triply
resonant terms~i.e., the integral expressions for Diagrams
D1 and D2 and their conjugates! may be exposed. One
matches the coefficients ofvmg in Eqs.~6! and~7! ~and their
conjugates! with those ofv in Eqs.~10!–~13!. More formal
treatment confirms this procedure.

Suppressing all spatial factors, considering only the tem-
poral aspects, we arrive at the integral expressions for the
density matrix elements from the two triply resonant Dia-
grams and their conjugates. UsingD1 , D2 , D1* , andD2*
now to designate the matrix elements themselves, we have
for the vectorks52k2k8 two fully resonantt-line contribu-
tions tormg

(3)(t),

D152 iLE
2`

t

dt3E
2`

t3
dt2E

2`

t2
dt1 p~ t3!p* ~ t22t!p~ t1!

3eiD~ t32t21t1!e2 ivmgte2 ivte2gmm~ t32t2!e2gmgF t,

~14!

and

D252 iLE
2`

t

dt3E
2`

t3
dt2E

2`

t2
dt1 p~ t3!p~ t2!p* ~ t12t!

3e2 iD~2t32t21t1!e2 ivmgte2 ivte2gmm~ t32t2!e2gmgF t,

~15!

and twos-line contributions torgm
(3)(s),

D1*5 iLE
2`

s

ds3E
2`

s3
ds2E

2`

s2
ds1 p* ~s3!p~s22t!p* ~s1!

3e2 iD~s32s21s1!eivmgseivte2gmm~s32s2!e2ggmFs,

~16!

and

D2*5 iLE
2`

s

ds3E
2`

s3
ds2E

2`

s2
ds1 p* ~s3!p* ~s2!p~s12t!

3eiD~2s32s21s1!eivmgseivte2gmm~s32s2!e2ggmFs,

~17!

where D[vmg2v, F t[t2t31t22t1 , Fs[s2s31s2
2s1 , andL[2r0(mE0 /2\)3.

D. The third-order electric polarization

The induced third-order polarization for the dipole-free
Bloch two-level system is~for N two-level systems per unit
volume!

P~3!~ t !5N Tr@mr~3!~ t !#5Nm@rgm
~3!~ t !1rmg

~3!~ t !#.
~18a!

The triple-resonance requirement and this particular choice
of signal phase (ks , not 2ks) excludes the elements
rgm(t) @andrmg(s)] at third order@i.e., bothD1 andD2 are
terms inrmg(t):

P~3!~ t !5Nm@D11D2#. ~18b!

Likewise for the second chromophore,

P* ~3!~s!5N Tr@mr~3!~s!#5Nm@rgm
~3!~s!1rmg

~3!~s!#

5Nm@D1*1D2* #. ~19!

For subsequent stochastic averaging it is analytically advan-
tageous to work in the frequency domain@4,5#. In effect one
seeks the monochromatically detected signal intensity at
vS , I (vS). The signal for any arbitrary slit function~includ-
ing white detection! can easily be calculated by integrating
I (vS) over the appropriate slit function. To pass to frequency
space the Fourier transform of the polarization is introduced:
Pt(vS)5*2`

` dt P(t)eivSt @Ps* (vS) is just the complex con-
jugate ofPt(vS) with the t ’s replaced bys’s#. The subscripts
on theP’s identify their chromophore~time line! origin.

III. STOCHASTIC AVERAGING AND THE SIGNAL

The signal intensityI (vS) requires a classical average at
the ~bichromophoric! quadrature level over the noise proper-
ties of the incoherent fields. That is,

I ~vS!5^uPs* ~vS!Pt~vS!u&5KN2m2E E
2`

`

dtdseivSte2 ivSs~D1*D11D1*D21D2*D11D2*D2!L . ~20!

The total signal becomesI (vS)5N2m2L2(I1II1III1IV), where
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I5E dV^p* ~s1!p~s22t!p* ~s3!p~ t1!p* ~ t22t!p~ t3!&e
ivSteivSse2 ivmg~ t2s!

3eiD~ t32t21t1!e2 iD~s32s21s1!e2gmm~ t32t2!e2gmm~s32s2!e2gmgF te2gmgFs, ~21!

II5E dV^p* ~s1!p~s22t!p* ~s3!p* ~ t12t!p~ t2!p~ t3!&e
ivSte2 ivSse2 ivmg~ t2s!

3e2 iD~2t32t21t1!e2 iD~s32s21s1!e2gmm~ t32t2!e2gmm~s32s2!e2gmgF te2gmgFs, ~22!

III5E dV^p~s12t!p* ~s2!p* ~s3!p~ t1!p* ~ t22t!p~ t3!&e
ivSte2 ivSse2 ivmg~ t2s!

3eiD~ t32t21t1!eiD~2s32s21s1!e2gmm~ t32t2!e2gmm~s32s2!e2gmgF te2gmgFs, ~23!

IV5E dV^p~s12t!p* ~s2!p* ~s3!p* ~ t12t!p~ t2!p~ t3!&e
ivSte2 ivSse2 ivmg~ t2s!

3e2 iD~2t32t21t1!eiD~2s32s21s1!e2gmm~ t32t2!e2gmm~s32s2!e2gmgF te2gmgFs. ~24!

We have defined the eightfold time integration as

E dV[E E
2`

`

dt dsE
2`

s

ds3E
2`

s3
ds2E

2`

s2
ds1E

2`

t

dt3E
2`

t3
dt2E

2`

t2
dt1 .

for short. Equations~21!–~24! reveal the four distinct six-
point time correlators involving the stochastic noise function
central to the problem.~Were we to have included those
terms that do not exhibit full resonance there would have
been altogether nine different six-point correlators.!

A. Stochastic averaging

The terms I, II, III, and IV above are complicated by the
otherwise unresolved six-point time correlators. To proceed,
we assume complex circular Gaussian statistics@14# and sta-
tionarity, though recent work shows how for certain experi-
mental situations~high optical density or very intense fields!
both complex circular Gaussian statistics and stationarity do
not hold @15#. Accordingly, the present treatment will not
apply to such conditions. The complex Gaussian moment
theorem@14# is introduced to express any given six-point
correlator as a sum of six terms each consisting of a product
of three two-point correlators. This breakdown of each of the
present four six-point correlators is shown explicitly in Ap-
pendix A. The two-point correlators, of course, are signifi-
cantly easier to handle analytically. It is significant to note
how, given stationarity, each of the six-point correlators

breaks into four terms having~two! t-dependent two-point
correlators and two terms having not dependence.

B. Outline of the analytic calculation aided by computer

At this point, enumeration of the terms requiring analytic
treatment reveals a total of 24, six each from the intensity
level integrals I, II, III, and IV. The six are designated a, b, c,
d, e, and f~see Appendix A!. Of the 24, 16 terms exhibitt
dependence. Only these can be responsible for the interesting
interferometric properties of the signal though the
t-independent contribution is also informative as a constant
background term. Analytic results have been obtained for
each of the 16t-dependent terms using, for analytic conve-
nience, a Lorentzian spectral density for the noisy light.
Now the two-point correlator becomeŝp(a)p* (b)&
5^p(a2b)p* (0)&5e2Gua2bu, whereG[1/tc . As it turns
out, the essential absolute value for the time interval in this
correlation function presents a significant problem for direct
time-domain integration. To avoid this issue the Wiener-
Khintchine theorem@16# is introduced to express every two-
point correlator as an integral over the spectral densityJ,
^p(x)p* (0)&5*2`

` J(q)eiqxdq. In this case the spectral den-
sity is Lorentzian. Thus each of the 16t-dependent terms
~I–IV, a–d! is finally expressed in generic form as

~ term!5N2m2L2E dVE
2`

`

dq1E
2`

`

dq2E
2`

`

dq3J~q1!J~q2!J~q3!

3eiq1~h1!eiq2~h2!eiq3~h3!e2 iD~k!e2gmm~ t32t21s32s2!e2gmg~F t2Fs!e2 ivmg~ t2s!eivS~ t2s!, ~25!
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where each of the 16 sets ofh1 , h2 , h3 , andk is listed in
Table I. At this point an algorithm was set up on the com-
mercial symbolic algebra software programMATHEMATICA
@17# to organize and expedite the analytic solution. The
lengthy calculations are not presented in explicit detail.1

Rather, the steps performed by theMATHEMATICA algorithm
are outlined. First the order of integration in Eq.~25! was
changed such that the time integrals in*dV were performed
first ~excluding the integrals overs and t). Next the change
of variablest5t, j5t2s @18# was introduced to isolate an
integral representation of thed function using the integral
over j. This d function aids in performing one of theq
integrations~we choseq3). The remaining twoq integra-
tions were carried out using analytic continuation and con-
tour integration in the complexq plane and the theory of
residues. The residues were collected according to the posi-
tive and negativet for each term and plotted as we shall see
later. Since from the start Euler’s relation has been used to
express the field as the sum of complex functions in the usual
way, the physical~real! I~3!D4WM signal is given as the real
part of the above analytic result.

IV. THE FACTORIZED TIME CORRELATION DIAGRAMS

The lengthy calculations required may be greatly organ-
ized and in fact ultimately circumvented by the use of a
diagrammatic technique now introduced. Diagrams may be
constructed directly from each and every triplet of two-point
correlators appearing in the breakdown of the six-point cor-
relators. These diagrams are called factorized time correla-
tion ~FTC! diagrams. Once the analytic solution is obtained
for the signal interferogram for each of the 16 FTC diagrams,
simple rules may be discerned that duplicate the analytic
result in the limit of zero detuning (vmg5v5vS). The rules

for the case of nonzero detuning become complicated to the
point where they are of little use. In any case, for white
detection the I(3)D4WM signal is strongly quenched by de-
tuning oscillations (vmgÞv). Not only do the FTC dia-
grams recover the proper analytic result, but they yield much
insight into the physics of the problem. The rules for their
construction and for obtaining the analytic signal from them
are discussed in detail in Appendix B.

In general there is a defined correspondence between any
given term composing the signal and its FTC diagram, i.e.,
one can draw a diagram for each of the 24 triplets of two-
point ~pair! correlators. A FTC diagram consists of a tem-
plate of s and t time lines each with a tick that marks the
time of each of the three field interventions. Superimposed
aresegments~arrows or lines! which link the times contained
in each two-point correlator. At-dependent pair correlator is
represented by anarrow segment always pointing to the tick
mark corresponding to the action of fieldF8. A
t-independent pair correlator is represented by aline seg-
ment connecting the two times contained in the pair correla-
tor. Clearly, from the standard definition of a pair correlator
the contribution to the total signal from all FTC diagrams
that contain one or more arrows must vanish ast→`. On
the other hand, att50 all arrows turn into lines. Our
I (3)D4WM problem has 16 FTC diagrams that contain two
arrows and one line each. These represent thet-dependent
terms. Significantly, in the present problem the arrows never
connect the two time lines, while the line always does~for
the I(3)D4WM spectroscopy being considered!. In other
spectroscopies arrows can connect the two time lines and, as
will be argued in Sec. V, such FTC diagrams will make rela-
tively weak contributions to thet-dependent signal of those
spectroscopies. The eight remaining (t-independent! FTC
diagrams consist of three lines where each links the two time
lines.

A. The t-dependent part of the signal

The 16t-dependent FTC diagrams, arranged according to
rows I, II, III, and IV, and columns a, b, c, and d, are shown

1An annotated copy of the calculation algorithm and files of the
resulting terms in bothMATHEMATICA and TEX formats~both are
Windows files! are available from the authors.

TABLE I. Time variables in the exponents of generic Eq.~25!.

Term k h1 h2 h3

I a 2(t32t21t1)1(s32s21s1) s22s12t t12t21t t32s3
I b 2(t32t21t1)1(s32s21s1) s22s32t t12t21t t32s1
I c 2(t32t21t1)1(s32s21s1) s22s12t t32t21t t12s3
I d 2(t32t21t1)1(s32s21s1) s22s32t t32t21t t12s1
II a 1(2t32t21t1)1(s32s21s1) s22s12t t22t11t t32s3
II b 1(2t32t21t1)1(s32s21s1) s22s32t t22t11t t32s1
II c 1(2t32t21t1)1(s32s21s1) s22s12t t32t11t t22s3
II d 1(2t32t21t1)1(s32s21s1) s22s32t t32t11t t22s1
III a 2(t32t21t1)2(2s32s21s1) s12s22t t12t21t t32s3
III b 2(t32t21t1)2(2s32s21s1) s12s32t t12t21t t32s2
III c 2(t32t21t1)2(2s32s21s1) s12s22t t32t21t t12s3
III d 2(t32t21t1)2(2s32s21s1) s12s32t t32t21t t12s2
IV a 1(2t32t21t1)2(2s32s21s1) s12s22t t22t11t t32s3
IV b 1(2t32t21t1)2(2s32s21s1) s12s32t t22t11t t32s2
IV c 1(2t32t21t1)2(2s32s21s1) s12s22t t32t11t t22s3
IV d 1(2t32t21t1)2(2s32s21s1) s12s32t t32t11t t22s2
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in Fig. 3. ~The columns are intentionally ordered such that
the relative strength of their contribution to the total signal
decreases from a to d for parameterstc'T2!T1 .) Impor-
tant features of the FTC diagrams in Fig. 3 are~i! no arrows
link the t line ands line, that is, thet dependence is only
intrachromophoric; ~ii ! all lines link thet line ands line, that
is, thet-independent pair correlator is completelyinterchro-
mophoric; ~iii ! in no diagram do arrow heads point tot3 or
s3 (F8 cannot appear last!; ~iv! in column a time pointst3
and s3 involve only lines; and~v! in column d two points
t3 ands3 involve only arrow tails.

The analytic results shown graphically~Figs. 4–7! reveal
additional patterns for four distinct sets of the parameters
(tc ,T1 ,T2). Although the analytic solution for any param-
eter set is in hand, we have displayed the interferograms only
for zero detuning. The peak intensity of the plots in column
a of Fig. 4~a! is arbitrarily set to magnitude 1 and the relative
order-of-magnitude scaling for all other columns is indicated
in their heading.~Figure 7 shows only the total interfero-
gram.!

1. Parameter settc'T2!T1

Figure 4~a! shows plots of the signal contributions for a
‘‘typical’’ set of parameters; namely, a short correlation time
of the light, rapid dephasing rate, and a relatively long
excited-state lifetime. The intensity decreases dramatically
from column a to d. Asymmetric shapes can be found, some
even showing peaks shifted fromt50. These presumably
unintuitive peak shifts correspond to diagrams having the
two arrows pointing in the same direction. A striking feature
is seen in column d. Though relatively weak, the signal is
highly one sided, its peak significantly shifted fromt50,

and it decays relatively slowly. Such a pattern is derived
from diagrams in which the time pointst3 and s3 involve
arrow tails. So in column d all relatively slow decay~asso-
ciated with a longT1) appears only for negativet. This
important feature was first realized by inspection of the ana-
lytic expression for the FTC diagrams. Figure 4~b! shows the
total interferogram. Its shape is dominated by the sum of
contributions from column a which have a combination of
the rapid decay due to material dephasing (T2) and the loss
of good interferometric overlap ofF andF8 (tc). The long
tail ~due toT1) for negativet is much weaker~roughly 1000
times weaker than the peak intensity! and is not noticeable in
the figure. Thus the total I(2)D4WM signal is very nearly
symmetric aboutt50.

2. Parameter settc!T2!T1

The graphs in Fig. 5 represent analytic results for the
parameter set in which the coherence time of the light is
made ultrashort, the dephasing time remains short, and the
lifetime remains relatively long. Thus shorteningtc reduces
the intensity significantly across all columns~relative to Fig.

FIG. 3. The 16t-dependent FTC diagrams. The rows refer to
the four six-point correlators derived from stochastic averaging at
the intensity level; the columns refer to the fourt-dependent triplets
of pair correlators generated from the breakdown of the six-point
correlators by use of the complex Gaussian moment theorem~see
text for details!. The columns are arranged in decreasing order of
their ~anticipated! interferogram intensities as they contribute to the
total I(3)D4WM signal. Each tick mark represents the time when
there is a field intervention (t1,t2,t3; s1,s2,s3; time increases
from left to right!.

FIG. 4. ~a! I (3)D4WM interferograms for each of the 16 FTC
diagrams~Fig. 3! to the total I(3)D4WM signal versust. Abscissa:
tick marks at t56500 fs. Parameters:tc5100 fs, T1510 ps,
T2550 fs, and zero detuning. The relative intensity~ordinate! is
similar for every FTC diagram within each column. The relative
intensity across columns is indicated by the scaling factor in their
headings.~b! The corresponding total I(3)D4WM interferogram.
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4!. A subset of six~I b and c; II a and c; III a and b! graphs
recognizes the very rapid decay associated only with the
light and essentially does not reflect the longer timesT2 or
T1 of the two-level system. The common feature of these six
FTC diagrams is that they are the only ones with oppositely
pointing arrows~see Fig. 3!. The total signal@Fig. 5~b!# con-
tains a very slight asymmetry~not noticeable in the figure!
since at negativet ~only! the signal holds up slightly due to
the long lifetimes in the parameter set. The rapid decay of the
total signal is again governed by the sum of column a which
is now almost exclusively due to dephasing (T2). Because of
this dominance, the total interferogram appears symmetric.

3. Parameter set T2!tc!T1

Figure 6 represents another limiting case. Now the
dephasing is made ultrashort, the correlation time short, and
the lifetime relatively long. Once more there is an overall
marked decrease in the strength of the signal~relative to Fig.
4!. The loss of coherence memory in the two-level system
has quenched the 4WM signal for every FTC diagram. Re-
garding shape, the most striking feature is that the four plots
within each column have become identical. Also, the graphs
in column a~still dominant! are symmetrical while the others
are not. None of the dominant diagrams of column a carry

t-dependent lifetime information, whereas the other dia-
grams do to some degree, although their contribution is rela-
tively much weaker. Thus the total signal@Fig. 6~b!# is es-
sentially symmetrical and decays principally according to
tc . The slower decay due toT1 ~for t,0 only! remains
roughly 1000 times weaker than the peak intensity, thus giv-
ing the signal slight asymmetry~not noticeable in the figure!
upon close inspection.

4. Parameter settc'T2'T1

Figure 7 shows the total interferogram found for the case
in which the lifetime is made very short, i.e., on the order of
the other parameters.~The individual FTC interferograms are
not shown.! This parameter set approaches the limit in which
pure dephasing (T28) becomes small. The shortening ofT1
weakens column a to the point where column d, with dra-
matic asymmetries that include peak shifts, is of comparable
strength. Under these conditions the total signal is asymmet-
ric with a peak significantly shifted fromt50. The rapid
decay seen in the total interferogram is now a combination of
all three (T1 ,T2 ,tc) system parameters.

In Table II column by column relative intensities are listed
for other interesting parameter sets. Tables III, IV, and V list
the ratios of thet50 magnitudes among the columns in

FIG. 5. Same as Fig. 4 except with tick marks att56250 fs.
Parameters:tc51 fs, T1510 ps,T25100 fs, and zero detuning.
The relative intensity scaling~in column heading! is with reference
to column a of Fig. 4. This parameter set approaches a white-noise
(d-function autocorrelation! limit for the noisy light.

FIG. 6. Same as Fig. 4 except with parameterstc5100 fs,
T1510 ps,T251 fs, and zero detuning. The relative intensity of the
interferograms is in reference to that of column a of Fig. 4. These
parameters approach a zero-memory limit.
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terms of the parameters for the three different limiting cases,
respectively,tc'T2!T1 , tc!T1 , andT2!tc!T1 .

B. The t-independent part of the signal

The eight remaining (t-independent! FTC diagrams of
the 24 are shown in Fig. 8. These obviously consist of only
straight lines. In each case all three pair correlators areinter-
chromophoric. There appear to be three types of diagrams
with respect to the number of times the lines are crossed.
There are diagrams with no crossed lines, two crossed lines,
and all three lines crossed.

The increase from only one interchromophore coupling in
the 16 t-independent diagrams to three in the eight
t-independent diagrams is in some sense a fundamental dif-
ference between these two important classes of diagrams. As
a result, the same rules derived from the analytic results for
the t-dependent diagrams cannot be carried over to the
t-independent diagrams. The many interesting consequences
of these patterns will be discussed next.

V. PHYSICAL INTERPRETATION

The noisy nature of the light which is vital to all incoher-
ent light spectroscopies blurs the physical picture of the un-
derlying mechanisms that make up this interesting area of
physics. Not only does a new layer of analytic challenge
appear, but more exciting is the challenge to clarify the
physical aspects of the treatment. It appears that~for station-

arity and complex Gaussian statistics! the FTC diagrams rep-
resent elementary physical components of incoherent light
spectroscopies in general and the present I(3)D4WM in par-
ticular. That is, the FTC diagrams represent terms in the ana-
lytic expression for the total signal that appear to have el-
ementary physical interpretation. Any further breakdown of
the analytic expression would seem to lose such physical
meaning. We now seek a more revealing understanding of
the FTC diagrams.

A. Some conceptual tools

The wide variety of shapes seen among individual
t-dependent FTC interferograms as they contribute to the
total I(3)D4WM interferogram is striking. Perhaps even
more remarkable are the very different relative signal inten-
sities across columns for any given parameter set and the
strikingly different overall relative intensities among the dif-
ferent parameter sets~cf. the column headings in Figs. 4–6!.
In order to rationalize these features along with other more
subtle points, it is helpful to develop several conceptual
tools.

FIG. 7. The total I(3)D4WM interferogram for the parameters
tc5100 fs,T15400 fs,T25300 fs, and zero detuning. The relative
intensity is in reference to that of column a of Fig. 4. This parameter
set approaches a short-lifetime~and short-pure-dephasing-time!
limit. The potential for a peak shift to nonzerot is dramatically
exposed.

FIG. 8. The eightt-independent FTC diagrams for I~3!D4WM.
As in Fig. 3 the rows refer to the four six-point correlators in the
response function at the intensity level and the columns refer to the
~two! t-independent terms derived from the breakdown of each of
the six-point correlators~see text for details!.

TABLE II. Two-beam I~3!D4WM relative intensities for several
material and light parameter sets.

tc ~fs! T2 ~fs! T1 ~ps! a b c d

100 300 10 102 1 1 1021

100 50 10 1 1022 1022 1023

100 1 10 1027 1029 1029 10210

1 200 0.6 1027 1027 1027 1027

1 200 104 102 1022 1022 1027

TABLE III. Relative intensity of FTC interferograms~at t50)
in terms of the reduced dephasing time and reduced correlation time
for the limiting case whereT1@T2'tc and zero detuning. The
reduced times are generically defined as
T[O(tc /T1)'O(T2 /T1).

Term a b c d

I 1 T T T2

II 1 T T T2

III 1 T T T2

IV 1 T T T2
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The first of these tools involves the nature of the light.
The electric field from the light forms a random pattern as a
function of time. One might call this its ‘‘fingerprint.’’ Now,
for any given nanosecond light pulseF8 will have exactly
the same ‘‘fingerprint’’ asF, only it is shifted byt. When
this time shift is within the coherence time of the light, the
twin beams recognize that they are from the same source.
Overlap of the beams results in high interferometric contrast
~i.e., strong constructive and also strong destructive interfer-
ence! as long asutu,tc . Equivalently, if one were to exam-
ine the ‘‘fingerprint’’ of the beamF around some moment in
time t0 ~measured from a laboratory reference! one would
find the identical ‘‘fingerprint’’ region in beamF8 at t02t.
Were beamF to perturb the system att0 then the ‘‘preferred’’
time giving the concerted action of twinF8 would be the
region aroundt02t for optimal interferometric contrast.
This region is designated the ‘‘preferred’’ region.

The second conceptual tool involves the time symmetry
of the elementary components~here referring to the light and
the material response! of the I(3)D4WM interferogram. The
time symmetry of the noisy field is rooted in the nature of the
‘‘preferred’’ region. The preferred region hastwo-sided time
symmetry. In other words, ifF happened to have acted upon
a chromophore at laboratory timet0 then the ‘‘preferred’’
time for F8 to join in concerted action is centered around
t02t such that action at (t02t)2e ~where e is a time
,tc) is equally ‘‘preferred’’ to action at (t02t)1e. By con-
trast, in this same sense the material response function of the
chromophore hasone-sided time symmetry. In the Bloch
two-level system one encounters a simple coherence re-
sponse and a population response. First, a field action at time
t1 on the chromophore in the ground state~the first field
intervention! may cause an electronic polarization which
subsequently will decay with a dephasing rate constant
gmg . Secondly, a second field intervention can build on this
polarization to create an excited-state population which then
will decay with rate constantgmm. Both events have one-
sided time symmetry. If the first field acts on the chro-
mophore at timet1 then at t12e there is no polarization
while at time t11e there is a polarization. Likewise, if the
second field acts att2 then att22e there is only a polariza-
tion ~assumee,T2) but at t21e there is a population.

Still another important conceptual tool is that of the free-
dom to ‘‘slide along a time line’’~to ‘‘accumulate’’ or to
‘‘integrate’’!. SinceF andF8 are ‘‘always’’ present, any time
intervention~tick mark on the FTC diagrams! or pair of in-
terventions, is free to slide along the time line provided that
both the integrity of the 4WM signal is preserved and the
specific time ordering associated with a given diagram is
maintained. To ‘‘slide along the time line’’ indicates the po-
tential for field action to take place at any time over which
the tick mark is permitted to slide. However, an individual
tick mark is locked to a partner tick mark by the segment
~arrow or line! representing a pair correlator. The two tick
marks, thus linked, correspond to a correlated event pair that
must slide along the time line together.

The final conceptual tool is concerned with the event cou-
pling between the two time lines (t and s). This coupling
obviously involves interchromophoric pair correlators
~lines!. It has been noted how all of thet-independent cor-
relators in our I(3)D4WM experiment are depicted by lines

that happen to be only interchromophore. These correspond
to the correlated action ofF with itself andF8 with itself.
This implies tight synchronization between the two chro-
mophores of the events linked by a given correlator line. The
‘‘precision’’ or ‘‘strength’’ of this synchronization is propor-
tional to tc ~the interferometric width of the ‘‘preferred’’
region!. All arrows are intrachromophore~and correlateF to
F8) and themselves contain no interchromophoric synchro-
nization. An arrow on one chromophore is oblivious to the
timing of events on the second chromophore.

We now are ready to rationalize the I(3)D4WM FTC sig-
nals with regard to both their remarkable range of relative
intensities and the great variety of shapes displayed among
their interferograms.

B. Intensity

We limit our focus to thet-dependent diagrams. First, the
lone interchromophore pair correlator~line! found in each
FTC diagram synchronizes thet and s time lines to within
tc . Beyond this synchronization, the two intrachromophore
pair correlators~arrows! in each FTC diagram are free to
independently slide anywhere on the time line~to accumu-
late signal strength! provided the integrity of the third-order
process is maintained. This will explain the relative intensity
differences among the different columns as well as that
among different parameter sets.

In examining the FTC diagrams of column a in Fig. 3, one
sees how events att1 and t2 ~along with those ats1 and
s2) form single-time-line correlated pairs~they are connected
by arrows!. These two event pairs may slide~independently!
along their respective time lines. However, to preserve 4WM
integrity this sliding must be confined to the approximate
time intervalt32T1 up to t3 ~ands32T1 up tos3). Had the
pair acted prior tot32T1 ~or s32T1) the 4WM signal would
have ceased since the induced population would have col-
lapsed by the time the last field acted att3 . It follows that the

TABLE IV. Relative intensity of FTC interferograms~at t50)
in terms of the reduced dephasing time and reduced correlation time
( t̄c[tc /T1 , T̄2[T2 /T1) for the limiting case of white noise
(tc→0) and zero detuning.

Term a b c d

I 1 T̄2 T̄2 T̄2
2

II 1 T̄2 t̄c t̄cT̄2
III 1 t̄c T̄2 t̄cT̄2
IV 1 t̄c t̄c t̄cT̄2

TABLE V. Relative intensity of FTC interferograms~at t50) in
terms of the reduced correlation time (t̄c[tc /T1) for the limiting
case of zero material memory (T2→0) and zero detuning.

Term a b c d

I 1 t̄c t̄c t̄c
2

II 1 t̄c t̄c t̄c
2

III 1 t̄c t̄c t̄c
2

IV 1 t̄c t̄c t̄c
2
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longer the lifetime (T1) the larger is column a’s contribution
to the signal. This is consistent with the trend seen among the
parameter sets presented above~cf. rows 4 and 5 of Table II!.
In contrast to the diagrams of column a, diagram I d has its
single-time-line correlated event pairs att2 and t3 and ats2
and s3 . To maintain the integrity of the 4WM signal these
pairs must limit their sliding to the time intervalt1 to
t11T2 (s1 to s11T2). WheneverT2,T1 this accumulation
interval is smaller than that enjoyed by column a and their
contribution to the total intensity is correspondingly weaker.
This is confirmed by the indicated relative signal strengths in
the column headings in Figs. 4–6 as well as those shown in
Table II. Diagram IV d has single-chromophore correlated
pair events att1 and t3 and ats1 and s3 . Now the time
interval over which these pairs may slide is less well defined
sincetc and T2 ~and T1 as well! are entangled, for thet2
(s2) intervention is straddled by these two single-time-line
pair correlators. With regard to the relative intensity, diagram
IV d is on the order of diagram I d~but their two shapes may
be quite different as we shall see!. The remaining FTC dia-
grams of column d, II d and III d, are of the same order of
magnitude as I d and IV d since they contain comparable
event correlators.

Columns b and c in a sense contain event correlation that
is a hybrid between those seen in column a and those in
column d. As might be expected their relative intensity con-
tribution is similar and always lies between those of columns
a and d.

C. Shape

We turn towards a rationalization of the observed shapes
of the analytic contributions from each of the 16t-dependent
FTC diagrams to the final I(3)D4WM interferogram. In par-
ticular the correspondence between the directions of the ar-
rows and the peak shift fromt50 seen along the asymmetri-
cally shaped interferograms is explained.

A right-pointing arrow necessarily indicates the action of
F8 following that ofF. Such a correlated event pair ismost
active in the 4WM process whent.0. The reason it is not
exclusively active only fort.0 is due to the finite, nonzero
width of the ‘‘preferred’’ region. Likewise, a left-pointing
arrow necessarily obligesF to follow F8. This event pair is
most active whent,0. Thus those nine FTC diagrams in
which both (s-line and t-line! arrows point to the left~all
column d diagrams, all row IV diagrams, II b, and III c! are
active at negativet but quickly vanish~with rate constant
1/tc) for positivet. Accordingly, their interferograms must
be variously asymmetric and shifted towards the left. The
one and only FTC diagram in which both arrows point to the
right ~I a! is active at positivet and must quickly vanish
~with rate constant 1/tc) for negativet. Its interferogram
must be asymmetric and shifted towards the right. The re-
maining six FTC diagrams~I b and c; II a and c; III a and b!
contain two oppositely pointing arrows, as already noted.
Their signal contributions must be quenched for both posi-
tive and negativet to produce interferograms that are rela-
tively symmetric and peaked att50.

These patterns are more or less conspicuous in the graphs
across Figs. 4–6, but most pronounced in Fig. 5 where
tc!T2!T1 . For all the striking asymmetry among the FTC

graphs in Fig. 5, the total signal is essentially symmetric
because column a dominates and right-pointing I a adds to
left-pointing VI a to produce a symmetric result whose two-
sided decay basically represents dephasing dynamics. There
are parameter sets wheretc is very short but in which there
is a pronounced asymmetry in the total signal. This is the
case whenT2 andT1 are of similar order of magnitude. Row
4 of Table II is one such parameter set.

These general patterns are less obvious in Fig. 6 where
T2!tc!T1 . Now column a still dominates becauseT2 re-
mains much shorter thanT1 . SinceT2 is so short the distinc-
tion between right-pointing and left-pointing pair correlation
is ~in this case strongly! suppressed and it is the size of the
‘‘preferred’’ region that now determines the shape. Strik-
ingly, throughout the parameter space~Figs. 4–6! column d
remains highly left asymmetric, so much so that its peak
appears at relatively large negativet.

These asymmetries and peak shifts for those ten FTC dia-
grams having common pointing arrows can be explained by
arguing that the largest contribution to the graph of a particu-
lar FTC diagram occurs when the two-sided ‘‘preferred’’ re-
gion enjoys maximum overlap with the one-sided material
response~coherence loss or lifetime decay!. Thus the optimal
delayt for any given arrow is not whenF andF8 are exactly
contemporary~at t50) but is whenF8 leads~lags behind! F
for right- ~left-! pointing arrows. It is then whenboth sidesof
the ‘‘preferred’’ region achieve maximum overlap with the
one-sided response function of the two-level system. This
point is illustrated in Fig. 9 for thet line of diagram I a. A
similar picture~with the necessary modifications! holds for
all time lines having their single-time-line pair correlators on
adjacent tick marks. Essentially a function that has two-sided
time symmetry is being convolved with a function that has
one-sided time symmetry. This forces a nonzerot for the
peak of the signal. This effect is normally most conspicuous
for the column d diagrams since there all arrows have tails at
the last intervention and the population decay rate constant
gmm is often much smaller than the other rate constants. The
peak shift tmax from zero from diagram I d is nearlytc .
More quantitatively, in the limit ofT1→`, then tmax→tc .
The off-center locations of the peaks for the other three
shifted diagrams in column d are complicated by the influ-
ence of the dephasing rate constant. In full generality the
peak position must be found numerically. This role of the
dephasing rate constant in the graphs of II d, III d, and IV d
is evident when in Fig. 5~very shorttc) it is seen how while
I d peaks very neart50, II d, III d, and IV d remain strongly
shifted. Only I d contains no event pair correlators that
straddle the second intervention.

As when dealing with the relative intensities, those dia-
grams having arrows that straddleT2 or s2 , thus connecting
t1 and t3 or s1 ands3 ~II c, II d, III b, III d, IV b, IV c, and
IV d!, are somewhat less intuitive. For this case the role of
the straddled intervention~at t2 or s2) not directly involved
with the t dependence becomes more evident~though its
synchronization role is present in every FTC diagram!. Here
field F8 excites a polarization at timet1 . While the polariza-
tion is still significant, the fieldF acts att2 to create a popu-
lation, but it is not correlated to the action ofF or F8 at t1 or
t2 and the ‘‘preferred’’ region argument does not apply. Nev-
ertheless, the action ofF at t2 must occur prior to the second
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action of F ~at time t3) which is optimized by use of the
‘‘preferred’’ portion of the light~time t3 is correlated to the
action at timet1). Thus the later this final invervention at
t3 is after that oft1 the more opportunity there is for the
middle t-independent intervention to accumulate and to
yield a stronger signal. Yet the last invervention must not be
so late as to lose the benefit of the ‘‘preferred’’ action of the
correlated first and third field interventions. Here, as with the
‘‘adjacent’’ case, it is advantageous forF8 to lead F
(t,0). ~The straddle cases only involve left-pointing ar-
rows.! Thus their strongest contribution occurs at negative
t. It is helpful to compare and contrast the two extreme
parameter sets, one with near-zerotc ~Fig. 5! and the other
with near-zeroT2 ~Fig. 6!. Particularly examine column d in
the two cases. For near-zeroT2 , coherence is lost immedi-
ately; thus the second intervention on thes and t lines must
coincide in time with the first intervention. For shortT2 all
FTC diagrams could be redrawn by making the first two tick
marks coincident. When this is done all diagrams in any
given column become equal. This is dramatically illustrated
in Fig. 6. Conversely with zerotc, the ‘‘preferred’’ region
now has zero width. The ‘‘preferred’’ region becomes
d-function-like. Plot I d~Fig. 5! shows the expected simple
result for a convolution of ad function and a function with
one-sided time symmetry. In contrast diagrams II d, III d,

and IV d clearly show the accumulation possible due to the
additional freedom available for the intermediate second in-
tervention whenT2 is nonzero.

D. t-independent terms and the contrast ratio

The t-dependent terms yield information on all Bloch
two-level parameters. Nonetheless it is important to at least
qualitatively examine thet-independent terms. Some of the
physical arguments stemming from thet-dependent dia-
grams may be applied to thet-independent diagrams~lines
only!. These terms are represented by diagrams having three
interchromophore pair correlators. This means that there are
threet-line–s-line synchronizations which reduce the degree
of freedom and greatly weaken the contribution to the signal.
Rather than being able to integrate over the lifetime indepen-
dently for each chromophore, the integration~accumulation!
is now simultaneous. The ‘‘sliding’’ is no longer independent
on each time line, leading to a great reduction in overall
signal strength. Figure 10 compares diagram I a with dia-
gram I f and schematically illustrates this reduction in the
degree of freedom for accumulation.

Such considerations can form the basis for interpreting the
peak-to-background contrast ratio in the I(3)D4WM inter-
ferogram analyzed in this paper. For the signal at
ks52k2k8 considered here, the ideas above suggest a very
large contrast ratio for samples having long-lived excited
states. This is in fact qualitatively the case@3#. For
tc'T2!T1 , the intensity of thet-dependent signal is seen
to vary as (T1 /tc)

2 ~the limit of the analytic results for
tc'T2!T1) due to the two accumulation degrees of free-
dom. In contrast, thet-independent diagram varies as
T1 /tc from the loss of one accumulation degree of freedom.
Thus~for T1@T2 or tc) the peak-to-background contrast ra-
tio varies roughly asT1 /tc . For lifetimes that approach ei-
ther the dephasing time or the coherence time of the light this
simple view fails.

FIG. 9. Modeling of the peak shift fromt50. ~a! A
t-dependent event pair correlator between the first two steps of
4WM. ~b! Illustration of the ‘‘preferred’’ portion of the noisy light
having two-sided time symmetryto be convolved with the material
response function~in this case showing electronic coherence decay!
havingone-sided time symmetryfor six differentt settings.~c! The
resulting convolution. The peak at nonzerot (E) is evident.

FIG. 10. Rationalizing the large peak-to-background contrast
ratio. ~a! All t dependence isintrachromophoric~arrows! in the
present I(3)D4WM experiment and there is only onet-line–s-line
synchronization. The arrow pair events are free to ‘‘slide’’~accumu-
late! independently on each time line. None of thet-independent
diagrams are analogs to these.~b! The t-independent~background!
diagrams show threet-line–s-line synchronizations~lines!. No in-
dependent ‘‘sliding’’ on thet line and on thes line is available.
Accumulation is considerably inhibited. See text for more details.
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VI. OTHER NOISY LIGHT SPECTROSCOPIES

Peak-to-background contrast ratios for various other noisy
light spectroscopies can also be explored using the FTC dia-
grams, in some cases quantitatively. A quick guess as to the
contrast ratio of a given spectroscopy can be made by recall-
ing the following:~i! whent50 all arrows turn into straight
lines and~ii ! when t5` all the contributions to the signal
from diagrams that contain arrows must vanish. In the
I~3!D4WM spectroscopy considered here, we see that at
t50 none of thet-dependent diagrams become identical to
the t-independent diagrams. They remain much less inter-
chromophore synchronized than the triply synchronized
background terms. For them additional accumulation is
available; thus a large contrast ratio is predicted. This ap-
proach is briefly extended to other spectroscopies though
without displaying their FTC diagrams. Appropriate FTC
diagrams may be easily constructed using the rules presented
in Appendix B. They are not shown here.

A. I „2…SHG

In second-harmonic generation~SHG! ~a x (2) spectros-
copy! the beam configuration can be exactly the same as in
the above spectroscopy, but now the signal atks5k1k8 is
considered. Stochastic averaging in the treatment ofx (2)

spectroscopies results in four-point correlators rather than
six-point correlators. These are similarly broken down using
the complex Gaussian moment theorem, each giving four
terms that have two pair correlators as factors. Thus the FTC
diagrams have only two segments~arrows or lines!.
I~2!SHG is described by 128 FTC diagrams for fully nonreso-
nant material response. However, there is a 16-fold redun-
dancy; thus there are only eight~four t-dependent and four
t-independent! distinct diagrams. It is discovered that at
t50 thet independent diagrams match one to one with the
t-independent diagrams. Since att5` the t-dependent
terms vanish the predicted contrast ratio is~ideally! 2:1. This
is in fact the case@4,19#.

B. ‘‘In-phase’’ and ‘‘out-of-phase’’ I „2…D4WM

For ‘‘in-phase’’ and ‘‘out-of-phase’’ I(2)D4WM spec-
troscopies@9,19#, in which the third field is from a mono-
chromatic source, the BOX beam configuration@4# is used.
~The BOX configuration consists of three parallel beams
which form an equilateral triangle on the viewing plane, al-
lowing for all phase-matched third-order signals to have dis-
tinct k vectors.! The ‘‘in-phase’’ version is the detection of
the signal withk vector ks5k1k82km , where km is a
monochromatic beam. Here again it is found that the
t-dependent andt-independent diagrams match one to one
at t50. Thus a 2:1 contrast ratio is predicted and observed
@9,19#.

For the ‘‘out-of-phase’’ signalks5k2k81km , one ob-
serves no reduction att50 of the t-dependent FTC dia-
grams to thet-independent ones. One predicts a large con-
trast ratio. This is in fact the case@9,19#.

C. Three-beam I„3…D4WM

Three-beamI~3!D4WM spectroscopy in which the twice-
actingF acts out of phase differs from the presently analyzed

two-beamI (3)D4WM ~whereF acts twice but in phase! and
calls for a three-beam BOX configuration where we consider
the signal atks5ka1k82kb . ka and kb are noncollinear
beams originating from same fieldF. In this case it turns out
that there are 96 FTC diagrams to consider~triple resonance
only!. These 96 group into distinct sets—one having only
one s-line–t-line synchronization, the other having three
synchronizations. The FTC diagrams for the first group
match 3:1 (t-dependent:t-independent! at t50; and the sec-
ond group matches 1:1. Since the first group of FTC dia-
grams should strongly dominate the signal~they have only
one interchromophore synchronization, not three!, we predict
a peak-to-background ratio that approaches 4:1 from below.
This needs experimental verification.

D. Electronically nonresonant I„2…CRS

Coherent Raman spectroscopies such as CARS and CSRS
are dominated by terms having a Raman resonance after the
second field intervention. The Diagrams representing the ex-
panded density matrix elements for CARS and CSRS are
found elsewhere@20#. Both I(2)CSRS and I(2)CARS for-
mally require 256 FTC diagrams~only Raman resonance is
considered!. However there is an eightfold formal redun-
dancy. Thus the contrast ratio may be captured by examining
only 32 FTC diagrams. Here one finds a one-to-one ratio
between t-dependent andt-independent diagrams. The
former exactly turn into the latter att50. Thus one predicts
a 2:1 contrast ratio, exactly as observed@20#.

VII. CONCLUSION

We have shown how the use of a simple Bloch two-level
system interacting with noisy light having a Lorentzian spec-
tral density may yield much insight into the interesting phys-
ics of noisy light spectroscopies. The introduction of the FTC
diagrams aids in the analytic calculation as well as in deduc-
ing a physical interpretation. It was argued how the added
t-line–s-line synchronization of thet-independent diagrams
diminishes their importance relative to thet-dependent dia-
grams having event correlator pairs that are free to indepen-
dently slide~or accumulate strength! over the lifetime decay.
The striking asymmetries seen in thet dependence of the
signal were analytically demonstrated and diagrammatically
realized. Features include a peak shift fromt50 and the fact
that the excited-state lifetime signal appears only in the de-
cay of the interferogram seen at negativet. These asymme-
tries have absolutely nothing to do with inhomogeneous
broadening, a spreading of the natural Bohr frequency which
is entirely absent in the present model. The complementary
interferogram is generated byks852k82k. The interesting
issue of the expected contrast ratio was examined where the
t-independent terms were qualitatively taken into account.
Finally, the FTC-diagram-based arguments were briefly ap-
plied to other noisy light spectroscopies, to confirm and pre-
dict their expected peak-to-background contrast ratios.
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APPENDIX A

Here we list the triplets of pair correlators that result from
the breakdown of the six-point correlators in Eqs.~21!–~24!.

I

a: ^p~s22t!p* ~s1!&^p~ t1!p* ~ t22t!&^p~ t3!p* ~s3!&,

b: ^p~s22t!p* ~s3!&^p~ t1!p* ~ t22t!&^p~ t3!p* ~s1!&,

c: ^p~s22t!p* ~s1!&^p~ t3!p* ~ t22t!&^p~ t1!p* ~s3!&,

d: ^p~s22t!p* ~s3!&^p~ t3!p* ~ t22t!&^p~ t1!p* ~s1!&,

e: ^p~s22t!p* ~ t22t!&^p~ t1!p* ~s3!&^p~ t3!p* ~s1!&,

f: ^p~s22t!p* ~ t22t!&^p~ t1!p* ~s1!&^p~ t3!p* ~s3!&.

II

a: ^p~s22t!p* ~s1!&^p~ t2!p* ~ t12t!&^p~ t3!p* ~s3!&,

b: ^p~s22t!p* ~s3!&^p~ t2!p* ~ t12t!&^p~ t3!p* ~s1!&,

c: ^p~s22t!p* ~s1!&^p~ t3!p* ~ t12t!&^p~ t2!p* ~s3!&,

d: ^p~s22t!p* ~s3!&^p~ t3!p* ~ t12t!&^p~ t2!p* ~s1!&,

e: ^p~s22t!p* ~ t12t!&^p~ t2!p* ~s3!&^p~ t3!p* ~s1!&,

f: ^p~s22t!p* ~ t12t!&^p~ t2!p* ~s1!&^p~ t3!p* ~s3!&.

III

a: ^p~s12t!p* ~s2!&^p~ t1!p* ~ t22t!&^p~ t3!p* ~s3!&,

b: ^p~s12t!p* ~s3!&^p~ t1!p* ~ t22t!&^p~ t3!p* ~s2!&,

c: ^p~s12t!p* ~s2!&^p~ t3!p* ~ t22t!&^p~ t1!p* ~s3!&,

d: ^p~s12t!p* ~s3!&^p~ t3!p* ~ t22t!&^p~ t1!p* ~s2!&,

e: ^p~s12t!p* ~ t22t!&^p~ t1!p* ~s3!&^p~ t3!p* ~s2!&,

f: ^p~s12t!p* ~ t22t!&^p~ t1!p* ~s2!&^p~ t3!p* ~s3!&.

IV

a: ^p~s12t!p* ~s2!&^p~ t2!p* ~ t12t!&^p~ t3!p* ~s3!&,

b: ^p~s12t!p* ~s3!&^p~ t2!p* ~ t12t!&^p~ t3!p* ~s2!&,

c: ^p~s12t!p* ~s2!&^p~ t3!p* ~ t12t!&^p~ t2!p* ~s3!&,

d: ^p~s12t!p* ~s3!&^p~ t3!p* ~ t12t!&^p~ t2!p* ~s2!&,

e: ^p~s12t!p* ~ t12t!&^p~ t2!p* ~s3!&^p~ t3!p* ~s2!&,

f: ^p~s12t!p* ~ t12t!&^p~ t2!p* ~s2!&^p~ t3!p* ~s3!&.

Due to stationarity, pair correlators of the form

^p~a2t!p* ~b2t!&5^p~a2b2t1t!p* ~0!&

5^p~a2b!p* ~0!&

aret independent.

APPENDIX B

In this Appendix we give the details regarding the con-
struction of the FTC diagrams from the triplet of pair corr-
elators and on how to obtain the analytic contribution from a
given diagram. To aid in familiarizing the reader with the
FTC diagrams we shall consider diagram I b of Fig. 3 as an
example.

1. Rules for constructing a FTC diagram

~1! Draw two horizontal lines representing thet and s
time lines.

~2! Draw short vertical tick marks on each of the lines to
represent the field interventions. Time increases from left to
right.

~3! Draw a straight line~no arrow head! connecting the
time events involved int-independent pair correlators.

~4! Draw a curved arrow between time events connected
by eacht-dependent pair correlator. The arrow head points
to the time at which thet-containing field (F8 for this treat-
ment! intervenes.

2. Rules for obtaining the analytic results„zero detuning…

The point at which an arrow or line connects to a time line
is termed avertex, and the arrow or line itself is designated a
segment.

~0! All terms contain a factor of (pGgmg
2 )21.

The vertex contributions follow.
~1! Straight-line vertices att3 or s3 give agmm

21 factor.
~2! Straight-line vertices att1 or s1 give agmg

21 factor.
~3! Arrow head or tail vertices att3 or s3 give a

(G1gmm)
21 factor.

~4! Arrow head or tail vertices att1 or s1 give a
(G1gmg)

21 factor.
~5! Vertices att2 or s2 make no contribution.
The segment contributions are as follows.
~6! Straight-line segments make no contribution.
~7a! For negativet we have the following.
~i! Any arrow pointing to the right gives a (2eGt) factor.
~ii ! Any left-pointing arrow linkingt1 and t2 or s1 and

s2 gives a factor

~G1gmg!e
Gt22Gegmgt

G2gmg
.

~iii ! Any left-pointing arrow linkingt3 and t2 or s3 and
s2 gives a factor

~G1gmm!eGt22Gegmmt

G2gmm
.

~iv! Any left-pointing arrow linkingt1 and t3 or s1 and
s3 gives a factor
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~G1gmm!~G1gmg!~gmm2gmg!e
Gt22G~gmm

2 2G2!egmmt22G~G22gmg
2 !egmgt

~G2gmm!~G2gmg!~gmg2gmm!
.

~7b! For positivet we have the following.
~i! Any arrow pointing to the left gives a (2e2Gt) factor.
~ii ! Any right-pointing arrow spanningt1 andt2 or s1 and

s2 gives a factor

~G1gmg!e
2Gt22Ge2gmgt

G2gmg
.

~8! Multiply the factors generated by all segments and
vertices to produce the analytic expression for the FTC in-
terferogram at zero detuning.

3. An example

Consider term I b. Here the triplet of pair correlators is

^p~s22t!p* ~s3!&^p~ t1!p* ~ t22t!&^p~ t3!p* ~s1!&.

The first pair correlator produces an arrow segment connect-
ing s3 and s2 with its arrow head ats2 . The second pair
correlator produces an arrow segment connectingt1 and t2
with its head att2 . Finally, the last correlator ist indepen-
dent and is thus a straight line connectingt3 ands1 . From
this FTC diagram we apply the above rules to obtain the

analytic expression for its contribution to the total signal. It
is built up as follows: rule (0)⇒(pGgmg

2 )21, rule ~1!
⇒gmm

21 , rule ~2!⇒gmg
21 , rule ~3!⇒(G1gmm)

21, rule ~4!
⇒(G1gmg)

21, rule ~7ai!⇒2eGt,

rule ~7aiii!⇒ ~G1gmm!eGt22Gegmmt

G2gmm
,

rule ~7bi!⇒2e2Gt,

rule ~7bii!⇒ ~G1gmg!e
2Gt22Ge2gmgt

G2gmg
.

The total expression comes from rule~8!:

2eGt@~G1gmm!eGt22Gegmmt#

pGgmg
3 gmm~G2gnn!~G1gmg!~G1gmm!

~t,0!,

2e2Gt@~G1gmg!e
2Gt22Gegmgt#

pGgmg
3 gmm~G1gmg!~G1gmm!~G2gmg!

~t.0!.

These two forms are identically recovered from the analytic
solution in the limit of zero detuning.
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