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The nonlinear analysis of the model equation for the single-feedback-mirror device with rubidium atoms
predicts that a stable quasipattern of eightfold orientational order occurs in the profile of the output light beam.
This pattern is numerically reproduced for different transverse shapes, either rhombohedric or circular, of the
input beam.

PACS number~s!: 42.65.2k, 42.55.2f

I. INTRODUCTION

Spatial patterns, such as rolls, squares, and hexagons, dis-
covered in hydrodynamics@1#, also occur in nonlinear optics
@2#. The first experiment that displayed such patterns was
realized with a distributed-feedback system with a passive
sodium vapor@3#. The same typical patterns have also been
recently reported in the case of a polarization instability with
a rubidium vapor cell@4,5#.

Quasiperiodic patterns, or ‘‘quasipatterns,’’ with eightfold
@6# or 12-fold orientational order@7,8# have recently been
observed in Faraday instability@7# and theoretically dis-
cussed with the help of a Swift-Hohenberg-type equation for
a real amplitude@9#. Two different models have been consid-
ered for explaining these quasipatterns. The first one assumes
that the amplitude is a superposition of single set ofN ~.3!
modesK i with the same lengthK; but this assumption re-
quires a complex nonlinearity involving high powers of the
transverse Laplacian¹ t

2, in order to generate the coupling
between theN modes. Such a nonlinear interaction seems
unlikely in hydrodynamics, so that the single-wave-number
model was left for explaining the quasipatterns in the Fara-
day instability. The other model assumes two sets ofN
modes, with two different wave numbersK andq, related via
a triadic interaction. This latter model appears to describe
qualitatively well the physics related to the experiment of
Edwards and Fauve@7#, in which the instability is driven by
a two-frequency force, inducing a quadratic coupling.

Differently from hydrodynamics, optics can easily pro-
vide model equations involving high powers of the trans-
verse Laplacian¹ t

2, more precisely the exponential operator
exp[i¹ t

2(z/2k)] diffracting a light beam with longitudinal
wave numberk, that propagates along a distancez, along its
optical axis. Devices such as the single-feedback mirror de-
vice @5,10,11#, the unidirectional passive ring cavity@12#, or
the liquid-crystal light valve loop device@13# carry out the
interplay between nonlinearities and the free-space diffrac-
tion that operates on the complex amplitude of the electric
field emerging from a nonlinear cell. With this latter device,
quasipatterns of eightfold, tenfold, etc., eighteenfold orienta-
tional order have been observed, but the four, five, etc., nine
modes associated with these patterns are those predicted to
occur with the help of the linear stability analysis, as a result
of the rotation imposed to the feedback@14,15#.

In this paper, the quasipatterns that are analytically pre-
dicted and numerically obtained are the signature of a non-

linear regime. The system under study is the single-
feedback-mirror optical arrangement with a rubidium vapor
cell, which has displayed sequences of flowerlike patterns
@10# in the limit of small aspect ratios@16#. Here we treat the
limiting case of large aspect ratios and we show that this
device is a good candidate for the observation of quasipat-
terns, associated with a single set of four, six, etc., modes, as
discussed by Mu¨ller @9# in his first model. This system obeys,
indeed the two following requirements:~a! it provides a cu-
bic nonlinearity and~b! it may support the coexistence of
more than two or three modes.

The paper is organized as follows. In Sec. II the Bloch
and Maxwell equations for the device@5,11# are shown to
reduce to a single partial differential equation for the nonlin-
ear refractive indexQ(t,x,y) inside the cell. It is shown that
the D1 line of rubidium provides a polarization instability
through a cubic nonlinearity. The plane-wave linear stability
analysis predicts a degenerate multiconical emission on both
sides of resonance@16#: The two infinite sets of critical wave
numbersKj are given by

d

k
K j
25

p

2
~114 j ! ~1a!

on the focusing side and

d

k
K j
25

p

2
~314 j ! ~1b!

on the defocusing side.
In practice, input beams have a finite width, which leads

to the removal of the degeneracy of the multiconical emis-
sion. Therefore, near threshold, only the largest critical
wavelength is involved in the building of the transverse
structure of the output light beam. The introduction of a dif-
fusionlike process also contributes to favor the onset of the
instability on the cone associated with the smallest critical
wave number. Otherwise, it is possible to choose another
critical wave number by introducing some filter in the far
field in order to suppress the undesirable part~s! of the spec-
trum.

The amplitude equations are derived by assuming that the
transverse structure is built with the help of a single set ofN
modes with the same wave number. The Landau coefficient
that couples two modesK and K 8, such asf5~K ,K 8!, is
shown to obey the relation
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b~f!512cosS 2dk K2 cosf D , ~2!

with K5uK u. This coupling coefficient is always positive
whenf varies from 0 top, whateverK might be, and pre-
sents one or several zeros, depending on the magnitude ofK.
The number of the minimaM of the Landau coefficient de-
fines the number of modes that may coexist with the mode
K . Then, if each of theM11 modes can coexist with the
others, a far-field pattern made of 2~M11! spots lying on a
circle of radiusK is expected: On the focusing side, with the
smallest critical wave numberK1, b~f! displays a single
minimum forf5p/2, predicting the coexistence of two or-
thogonal modes, leading to the occurrence of squares. On the
defocusing side, still with the smallest wave number as given
by Eq. ~1b!, b~f! displays three minima, predicting that a
modeK i can coexist with other three modesK j : Therefore a
pattern built with the help of four modes is expected, giving
rise in the far field to eight spots lying on a circle of radius
K1. In Sec. IV the numerical results obtained near threshold
are presented. They agree with the predictions of the nonlin-
ear analysis and eightfold orientational order quasipatterns
are shown. This structure is obtained for any transverse
shape of the input beam that is either a circular or a rhombic
window. The single feedback device with a Rb gaseous cell,
under study, is, to our knowledge, the first physical~at least
optical! system in which an eightfold orientational order qua-
sipattern is predicted to occur, due to nonlinearities.

For larger critical wave numbers, the number of minima
of the Landau coefficient increases so that the system might
generate quasipatterns of 12-fold orientational order on the
focusing side and 16-fold orientational order on the defocus-
ing side, still with a single set of wave vectors. Unfortu-
nately, these structures are shown to be unstable.

II. MODEL

The atomic cell of lengthl is illuminated by a continuous,
homogeneous, and linearly polarized laser beam with angu-
lar frequencyv, real amplitude«x , and transverse widthw0.
This laser beam propagates in the forward direction and is in
resonance with theD1 line of the rubidium85Rb. The Rb
transition 5S1/2(F53)→5P1/2(F852) is simplified as aJ5
1
2→J5 1

2 transition. The upper sublevelsue;6 1
2& and the

lower statesug;71
2& are coupled via the circularly polarized

field components of the electromagnetic fields1 and s2.
The usual adiabatic approximation applies for this transition,
because the radiative lifetime of the excited levelsG21 is
much smaller than the mean time of the interaction of an
atom with the electromagnetic fieldg21: Typically, this time
is equal to the width of the input beam divided by the ther-
mal mean velocitŷ u&, i.e.,

g5
^u&
2w0

!G. ~3!

Furthermore, for input intensityI 0 much smaller than the
off-resonance saturation intensity 3I S

I 0

3I S
!1, ~4!

the population of the excited states is negligible.
@I S5~6\2/m2!G2~11D2!, wherem andD5~2/G!~v2va! are
the dipolar momentum and the detuning scaled toG/2, re-
spectively#. The situation, where the populations of the upper
states are not negligible, was treated by Hamilton, Ballagh,
and Sandle@17#.

Finally, when the two above inequalities~3! and ~4! are
fulfilled, the Bloch equations for a Rb atom, located atz in
the cell, reduce to a single differential equation for the popu-
lation difference of the Zeeman lower sublevels@18,19#
J3(z,t),

]J3
]t

522g@~11I11I2!J31~ I12I2!#, ~5!

whereI6 are the intensities@see Eq.~5!# associated with the
crossed circular polarizationss6 , respectively, scaled to the
‘‘saturation’’ intensity associated with the lower Zeeman sub-
levels ~3G/2g!I S , i.e., I65I 6~2g/3GI S!. They are

I65u« f
6eikz1«b

6e2 ikzu2, ~6!

where«f ,b are the forward and backward field amplitudes,
respectively. The amplitude field components obey the fol-
lowing reduced Maxwell equations, wherea is the off-
resonance absorption length:

]« f
6

]z
52

a~11 iD!

2
« f

6@16J3#, ~7a!

]«b
6

]z
51

a~11 iD!

2
«b

6@16J3#. ~7b!

In the reduced Maxwell equations~7!, the coupling between
the forward and backward field amplitudes is neglected be-
cause the mean lifetime of the grating, displayed by the
crossed term of Eq.~6!, g21, is much larger than the mean
time p/k^u& spent by an atom propagating along a grating
length. @Indeed, when using Eq.~3!, the inequality
g21@(k^u&)21 becomeskw0@1, which is satisfied for the
atomic transition under study.# It follows that the intensities
I6 , defined in Eq.~6!, reduce to the sum of the forward and
backward intensities. The diffraction inside the cell is also
neglected because the conditions

l!d!Zd , ~8!

which are fulfilled in the experiment of Grynberg, Maitre,
and Petrossian@11#, are assumed in the model@4,5# ~Zd is the
Rayleigh length12kw0

2!.
The boundary conditions are

« f
6~z50,t,r !5

1

&

«x~r !, ~9a!

«b
6~z5 l ,t,r !5R expS i d¹ t

2

k D « f
6~z5 l ,t,r !. ~9b!

Equation ~9b! expresses the free-space propagation of the
output forward field amplitude, after is has been reflected by
a plane mirror with reflectivityR, located at the distanced of
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the cell exit.~The time delay is neglected because it is much
smaller than any characteristic time of the system.!

The stationary solution ofJ3(z), see Eq.~5!, is propor-
tional to the source term (I12I2) and then vanishes for
electric fields with a linear polarization, as assumed in Eq.
~9a!. The onset of an instability removes the degeneracy of
the Zeeman sublevels and generates an electromagnetic field
component with the crossed linear polarizationeW y , making
the source term (I12I2) different from zero.

The integration over the propagation variablez of the
coupled equations~5! and ~7! can be analytically performed
@16#, leading to a single differential equation for the quantity
* 0
l dz J3(z). But in the limit of no pump depletiona l!1, a

simpler expression arises: The integration of Eq.~7a! gives
rise to

« f
6~z5 l ,t,r !5

1

&

«x~r !expF2 ia lD

2
~16J3!G ~10a!

or, in the limit of a plane-wave input, with«x(r !5«0,

« f
6~z5 l ,t,r !5

1

&

«0 expF2 ia lD

2
~16J3!G , ~10b!

so that Eq.~9b! becomes

«b
6~z5 l ,t,r !5

1

&

R«0 expS i d¹ t
2

k DexpF2 ia lD

2
~16J3!G .

~11!

Therefore, the source term reduces to the difference of the
backward intensities of crossed circular polarizations,

~ I12I2!5u«b
1~z5 l ,t,r !u22u«b

2~z5 l ,t,r !u2, ~12!

which emphasizes the role of the feedback for the onset of
the instability. Finally, using Eqs.~11! and ~12!, Eq. ~5! be-
comes

]Q

]t
52@11~11R!I 0#Q2x0$@sin~¹̄2!sinQ#

3@cos~¹̄2!cosQ#2@cos~¹̄2!sinQ#@sin~¹̄2!cosQ#%,

~13!

whereQ is the nonlinear refractive index

Q5
Da l

2
J3 ~14a!

and the operatorR is defined by the relation

R5R@sin~¹̄2!sinQ#21@cos~¹̄2!cosQ#2

1@cos~¹̄2!sinQ#21@sin~¹̄2!cosQ#2, ~14b!

with the definitions

¹̄25
d¹ t

2

k
, I 05«0

2, x05RDa l I 0 . ~15!

III. ANALYTICAL STUDY

The expansion of sinQ and cosQ in powers ofQ on the
right-hand side of Eq.~13! displays the nonlinearities in-
volved near threshold. The stationary value of the order pa-
rameterQst is zero. Therefore, the quadratic nonlinearity oc-
curring in the last term of Eq.~13! vanishes. In addition, the
last term on the right-hand side of Eq.~16a! vanishes be-
cause of the relation cos(¹̄2)Q5cos[(d/k)K2]Q50, for any
critical wave number given by Eqs.~1!. Finally, Eq. ~13!
becomes

]Q

]t
52$11@11R~11Q22cos~¹̄2!Q2!#I 0%Q

2x0S sin~¹̄2!Q2
1

3!
sin~¹̄2!Q32

1

2!
@sin~¹̄2!Q#

3@cos~¹̄2!Q2# D . ~16a!

The nonlinear terms are proportional either toRI0 or to
x05Da lRI0. In the limit of largeDa l , the nonlinear terms
proportional toRI0 can be neglected with respect to those
proportional tox0. Therefore, the model equation for the
device withDa l@1 becomes

]Q

]t
52$11@11RI0#%Q2x0Fsin~¹̄2!SQ2

1

3!
Q3D

2
1

2!
@sin~¹̄2!Q!G@cos~¹̄2!Q2#]. ~16b!

A. Linear analysis

Equation~16b! becomes, when keeping the terms propor-
tional toQ,

]

]t0
Q5L0Q, ~17!

with

L052@11~11R!I 0#2x0 sin ¹̄2. ~18!

Equation~17! is solved by assuming a plane-wave input and
by expandingQ in terms of Fourier modes

Q5(
k

qke
lkt1 ik•r1c.c. ~19!

Therefore, when using the relation

¹̄2neik•r5~21!nK̄2neik•r, ~20!

with K̄25dK2/k, Eqs.~17!–~20! give rise to the relation

lk52@11~11R!I 0#1x0 sin K̄
2, ~21!

leading to the marginal stability curve@16#

I 05@RDa l sin~K̄2!212R#21. ~22!

1074 53D. LEDUC, M. Le BERRE, E. RESSAYRE, AND A. TALLET



Eqs. ~21! and ~22! predict a static degenerate multiconical
emission, which is displayed on Fig. 1. The critical wave
numbers are given by Eqs.~1! and the threshold intensity is

I th>~RuDua l !21. ~23!

B. Multiple scale analysis

With the scaling@20#

Q5«Q11«3Q31••• ,

I5I th1«2I 21••• ,

x5x th1«2x21••• , ~24!

t5t01«2t21••• ,

]

]t
5

]

]t0
1«2

]

]t2
1••• ,

we get, for terms proportional to«, the linearized equation
for Q1 @see Eqs.~17!–~18!#, while terms proportional to«3

give rise to

]

]t0
Q32L thQ352S ]

]t2
1~11R!I 21x2 sin~¹̄2! DQ1

1x thS 13! sin~¹̄2!Q1
31

1

2!
@sin~¹̄2!Q1#

3@cos~¹̄2!Q1
2# D , ~25!

whereL th has the form defined in Eq.~18! for the threshold
intensity I th .

1. Amplitude equation

Let us assume an emission process involving at the first
order a single critical wave numberKc , chosen among the
infinite set~1!, and expandQ1 as

Q15
1
2 (
p51

N

~ape
iKp•r1c.c.!, ~26!

where uK pu5Kc . The numberN of wave vectors that deter-
mines the shape of the stable pattern expected above thresh-
old will be deduced from the nonlinear analysis.

The right-hand side of Eq.~25! implies a solvability con-
dition associated with expansion~26!. ~See Appendix A for
details.! After collecting the terms of first and third order,
we get the amplitude equation for anyAp5«Aux thu/2ap ,

]

]t
Ai5mAi2Ai S uAi u21(

jÞ i
b~u i j !uAj u2D , ~27!

whereui j is the angle betweenK i andK j andm5ux2xthu.
The Landau coefficient is given by the relation

b~u!512cos@2K̄c
2 cos~u!#. ~28!

The Landau coefficient obeys the relationb~u!5b~p2u!
5b~2u!, because of the symmetry of the system, and is dis-
continuous@9# at u50,p with b~u→0!5b~u→p!52b~0!. In
addition, it may display one or several minima in the interval
0,u,p, depending onK̄ c

2. The number of minima of the
Landau coefficient gives a first insight of the number of
modes that may coexist. More precisely, knowledge of the
magnitude of theN3N matrix elementsb~ui j ! allows us to
operate a primary selection of the pattern: Only if any
b~ui j !<1 (i , j51,N), may theN modes coexist@21#.

In a general manner, the stationary weightsuAj u
2 are not

equal. Nevertheless, for a regular pattern of 2N-fold orienta-
tional order, each line of the matrix$b~ui j !%, with
u i j5(pu i2 j u)/N, u i2 j u50,...,N21, can be deduced from
its neighbor by circular permutation, leading to equal ampli-
tude fixed point solutions of the formuĀl u5uAu, with

uAu25mF (
m50

N21

bSmp

N D G21

. ~29!

The stability of the 2N spot far-field pattern can be de-
rived either from the stability analysis of the stationary solu-
tions for theAi or from the free-energy minimum. In the
following sections, the two approaches will be considered for
predicting the stable patterns associated with different criti-
cal wave numbers.

2. Free energy

In the neighborhood of a minimum of the marginality
curve ~Fig. 1!, Eq. ~16! is derivable from a potential

]Q

]t
52

dG~Q!

dQ
, ~30!

where the Lyapunov functional is

G~Q!5E
D
S 1

h2ux thu
2

Q21
1

4! Ux thUQ4

1
1

8 Ux thUQ2 cos~¹̄2!Q2Ddr , ~31!

with h5@11(11R)I th#. ~See Appendix B.! Therefore, the
system will evolve to a stationary solution that minimizes the
potential because of the inequalitydG/dt5

FIG. 1. Marginal stability curves for positive~full lines! and
negative~dashed lines! detuning as a function ofK̄2.
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2*D(]Q/]t)2dr<0. For the system under study, the poten-
tial G(Q) is the free energy. When expanding the solution in
Fourier modes, the free energyF can be written as

F52m(
l

uAl u2)1
1
2(

l
(
j

b~u l j !uAl u2uAj u2, ~32!

with (]/]t)Ai52(]/]Ai* )F. The stationary free energy

F52
1

2
m(

l
uĀl u2 ~33!

becomes, for a regular pattern of 2N-fold orientational order
@9#,

F52
1

2
m2NF (

m50

N21

bSmp

N D G21

, ~34!

when using Eqs.~29! and ~33!. The minimum of the free
energy deduced from Eq.~33! and/or Eq.~34! corresponds to
the stable pattern of the system. It selects the numberN and
the shape of the pattern.

3. Application

The case~a!,

Kc
25

p

2
,

corresponds to an emission on the first cone forD.0. The
variation of the Landau coefficientb~u!512cos@p cos~u!# is
shown in Fig. 2 for 0<u<p. It displays a single minimum
equal to zero foru5p/2: Then two modes may coexist, for
anyb~u!<1, with equal stationary amplitudes

uĀ1u25uĀ2u25m
1

11b~u!
, ~35!

as solutions of Eq.~29!, for N52. The free energy~33! be-
comes, for two modes,

F52m2
1

11b~u!
, ~36!

which displays its minimum foru5p/2. Therefore, the or-
thogonal structure minimizes the free energy, predicting the
occurrence of square patterns.

Case~b!,

Kc
253

p

2
.

This case corresponds to an emission on the first cone for
D,0. The Landau coefficient

b~u!512cos@3p cos~u!# ~37!

displays three zeros, located atu56arccos~23! and p/2, as
shown in Fig. 3~a!. This behavior allows us to conjecture that
four modes may coexist. The minima6arccos~ 23!, while near
p/4 and 3p/4, correspond to an irregular distribution of the
spots on the critical circle of radiusKc , with unequal
weights.

Let us study the the stability of the solution
1
2(p51

4 Ap(e
iKp•r1c.c.), assumingreal amplitudesAp . The

four Lyapunov exponents Eq.~36! generally depend on two
anglesu5(KW 1 ,KW 2) andf5(KW 1 ,KW 3), with (KW 1 ,KW 4)5p2u.
For the sake of clarity we only show, on Fig. 3~b!, the varia-
tion of the Lyapunov exponents as a function ofu, setting
f5p/2: Among the four Lyapunov exponents, one of them is
negative whateveru might be and is not drawn; all the others
are negative in a small domain aroundp/4 that does include
arccos~ 23!. Therefore the stability analysis for the amplitude
predicts stable patterns for any angle, between two adjacent
modes, of magnitude of orderp/4.

Nevertheless, the regular structure intuititively appears as
the most probable. That conjecture is confirmed by the cal-
culation of the free energy, Eqs.~33! and ~34!, that displays
its absolute minimum for the eightfold orientational order
pattern. See the variation of the free energy as a function of
u on Fig. 3~c!.

Case~c!,

Kc
255

p

2
.

We assume that the system chooses the second critical
wave number predicted by the linear stability analysis for an
excitation on the focusing sideD.0. Then the Landau coef-
ficient becomes

b~u!512cos@5p cos~u!#, ~38!

which has five zeros arccos~45!, arccos~
2
5!, p/2, 2arccos~ 25!,

and2arccos~45!. Let us assume that these angles are those of
the mode 1 with the modes 2, 3, 4, 5, and 6, respectively.
This geometry implies that other pairs of vectors make an
angle very different from the above five angles, leading to a
coupling coefficient larger than unity. For example, the angle
u2,6 between modes 2 and 6 is equal top22 arccos~45!, lead-
ing to b~u2,6!51.25, making unstable the irregular structure
predicted by the zeros of the Landau coefficient~38!.

The regular pattern might be stable because anyb~mp/6!,
m50,1,...,5, is less than or equal to unity. Unfortunately,
among the six Lyapunov exponents associated with the regu-
lar distribution, two of them are positive, which excludes the
generation of a stable quasipattern of 12-fold orientational
order.

FIG. 2. Landau coefficient forK̄25p/2 as a function of the
angleu between two wave vectors.
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We may ask about the stable structure associated with the
critical wave numberK̄c5A5p/2. Actually, the stable struc-
ture corresponds to the minimum of the free energy. The
stationary free energy for regular patterns, Eq.~34!, is calcu-
lated as a function ofN and is reported on Fig. 4, which
displays the minimum forN52. Therefore squares are also
predicted to occur on the second cone associated with a fo-
cusing medium.

IV. NUMERICAL RESULTS

The amplitude of the electric field at the cell exit, which
propagates in the forward direction with polarization or-

thogonal to the input beam polarization, is related to the
order parameterQ

« f ,y~ l !5«x sinQ

when using relation~10!. Therefore, near threshold forQ
small as compared with unity, we have approximately
«f ,y~r ,l !}Q.

The numerical simulation integrates the equations of Ref.
@16#, deduced from Eqs.~5!–~7!, by using a semi-implicit
method and the free-space propagation in Eq.~9b! is treated
by using the fast Fourier transform method. Different input
shapes have been considered, either circular, square, or
rhombic input.

Figure 5 displays the near and far-field intensities
u«f ,y~r ,l !u

2 and u*dr e2 iK•r« f ,y(r ,l )u2 for the three cases dis-
cussed in Sec. III with the help of the model equation~16b!.
In Figs. 5~a! and 5~c! the detuning is positive and the input
intensity close to the threshold value and the critical wave
numbersK̄c areAp/2 andA5p/2, respectively. The param-
eters are«050.28,D5200,a l50.07, andR50.95. The ab-
sorption is small and the productDa l is equal to 14, so that
the model equation~16b! should be valid. As predicted by
the nonlinear analysis of Eq.~16b!, the stable patterns are
squares. The far-field orthogonal variablesKx and Ky of
Figs. 5~a! and 5~c! are in arbitrary units, but it can be verified
that the radii of the two circles on which the far-field spots
are lying are in the ratioA5, in agreement with the linear
stability analysis.

Figure 5~b! gives the numerical results for a negative de-
tuning D52200 with the critical wave numberA3p/2. As
predicted analytically in Sec. III, a quasipattern of eightfold
orientational order occurs. This structure is the result of non-
linearities and has been reproduced for different input win-
dows. It can be verified that the eight spots of the far field are
lying on a circle of radius equal to the predicted critical wave
number and that the countour plot of the near-field displays a
quasiperiodic pattern.

All these patterns are monoconical and stable not too far
from threshold: For instance, forD52200, the eightfold ori-
entational order pattern is stable for an input intensity in-
creasing until 70% above threshold. When the intensity in-
creases further, the system comes under the influence of the
multiconical emission process@22#: Indeed, the regular eight
spot pattern bifurcates to an irregular six spot pattern, next to
a rectangle, and finally to sets of rectangles, designing a pic-

FIG. 3. K̄253p/2. ~a! Landau coefficient as a function of the
angle u between two wave vectors.~b! Variation of the three
Lyapunov exponents that are not always negative as a function ofu.
~The other angle is fixed and taken to be equal top/2.! ~c! Variation
of the free energy as a function ofu; a minimum occurs foru5p/4.

FIG. 4. Free energy for 2N-fold orientational order pattern, as a
function ofN.
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ture that can be geometrically understood with the help of
the cubic nonlinearity, selecting the successive critical wave
vectors.

V. CONCLUSION

It has been shown that a polarization instability provides a
cubic nonlinearity, giving rise near threshold to a stable
eightfold orientational order pattern. It appears to be the first
prediction of quasipatterns spontaneously generated though
nonlinearities in optics. The equations that have been nu-

merically integrated are the model equations of the single-
feedback-mirror device with rubidium atoms, which have
quite well reproduced the flowerlike patterns observed in the
limit of small aspect ratios@16#. Here the opposite limit of
large aspect ratios has been considered, allowing us to as-
sume a plane-wave input and consequently to perform a non-
linear analysis. The equations have be treated in the limit of
large linear refractive indexuDua l@1, which corresponds to
the data of the device under study@11#. The role of this
parameter on the onset of the instability is planned to be
discussed elsewhere@22#.

FIG. 5. Numerical results with the far field on the left-hand side and the near field on the right-hand side:~a! K̄ e
25p/2, ~b! K̄ c

253~p/2!,
and ~c! K̄ c

255~p/2!.
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APPENDIX A

The componentQ3 can be expanded in Fourier modes
such asQ1. Therefore the resonant terms occur in the second
member

2S ]

]t2
1I 21x2 sin ¹̄2DQ11

1

3!
x th sin~¹̄2!Q1

3

1
1

2!
@sin~¹̄2!Q1#@cos~¹̄2!Q1

2#. ~A1!

Equation~25! should vanish. SettingT5T11T21T3 with

T152S ]

]t2
1I 21x2 sin ¹̄2DQ1 ,

T25
1

3!
x th sin~¹̄2!Q1

3,

T35
1

2!
x th@sin~¹̄2!Q1#@cos~¹̄2!Q1

2#, ~A2!

by using the expansion~26! for Q15
1
2(p51

N (ape
iKp•r1c.c.)

and the same for theTi , i51,2,3,

Ti5
1
2 (
p51

N

@~Ti !pe
iKp•r1c.c.#, ~A3!

we obtain

~T1!p52S ]

]t2
1I 22x2 sin~K̄

2! Dap ,
~T2!p52

1

3!
x th sin~K̄

2! 34 S apuapu212ap(
jÞp

uaj u2D ,
~T3!p52

1

2!
x th sin~K̄

2! 12 S @11 1
2 cos 4K̄

2#apuapu2

1(
jÞp

@cos 4K̄2

12 cos~2K̄2!cos~2K̄2 cosup, j !#apuaj u2D .
~A4!

The productsx2sin~K̄
2! andxth sin~K̄

2! are positive whatever
the sign of the detuning might be, as displayed either by Eqs.
~1! and~15! or Eqs.~22! and~24!. Then, the addition of the
three resonant terms gives rise to the solvability condition

~T!p52S ]

]t2
2I 22ux2u Dap2 1

2
ux thuS apuapu2

1(
jÞp

@12cos~2K̄2 cosup, j !#apuaj u2D 50.

~A5!

Finally, collecting all the terms of the expansion~24! we
obtain the amplitude equation~27! for an amplitudeAp

5«Aux thu/2ap .

APPENDIX B

We look for a Lyapunov functional of the system and treat
Eq. ~16! near threshold in the case of an instability involving
a single wave numberKc . Therefore we develop the operator
¹̄2 around the eigenvalue2K̄ c

2. It follows the relation

sin ¹̄2Q52cos~¹̄21K̄c
2!Q>2@12 1

2 ~¹̄21K̄c
2!2#Q>2Q.

~B1!

We can do the same expansion for sin¹̄2Q3 because the
relevant vectors as a result of the combinations of three
modes also have the lengthKc . Therefore, we have

sin ¹̄2Q3>2Q3 sin~K̄2!. ~B2!

It follows that Eq.~16! becomes

]Q

]t
52@11~11R!I 0#Q1ux thuF SQ2

1

3!
Q3D

2
1

2!
@Q cos~¹̄2!Q2#G . ~B3!

Therefore the Lyapunov functional

G~Q!5E
D
S 1

h2ux thu
2

Q21
1

4!
ux thuQ4

1
1

8
ux thuQ2 cos~¹̄2Q2!dr D ~B4!

is easily shown to satisfy

]Q

]t
52

dG~Q!

dQ
, ~B5!

where

dG~Q!5G~Q1dQ!2G~Q!. ~B6!

Indeed, the calculation ofdG(Q) gives, when using Eq.
~B4!,

53 1079QUASIPATTERNS IN AN OPTICAL DEVICE WITHA . . .



dG~Q!5E
D

dQS 1~h2ux thu!Q1
1

3!
ux thuQ3

1
1

4
ux thuQ cos~¹̄2!Q2Ddr

1E
D

1

4
ux thuQ2$cos~¹̄2!Q dQ%dr . ~B7!

The last term that occurs in Eq.~B7! has been calculated by
integrating by parts and taking account of the boundary con-
ditions (]n/]xn)D5(]n/]yn)D50. Then any term, such as

E
D

Q2
]2n1m

]x2n]y2m
Q dQ dr ,

related to the expansion of cos~¹̄2! is equal to

E
D

Q dQ
]2n

]x2n
]2m

]y2m
Q2dr ,

so that the last two terms on the right-hand side of Eq.~B7!
are equal. Therefore the relation~B5! is demonstrated and
the function defined in Eq.~B4! is the Lyapunov functional
of the system.
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@5# A. Maitre, thèse de doctorat, l’E´ cole Polytechnique 1994~un-
published!.

@6# Bo Christiansen, Preben Alstrom, and Mogens T. Levinsen,
Phys. Rev. Lett.68, 2157~1992!.

@7# W. Stuart Edwards and Ste´phane Fauve, C. R. Acad. Paris315,
417 ~1992!; Phys. Rev. E47, R788~1993!.

@8# A. A. Golovin, A. A. Nepomnyashchy, and L. M. Pismen,
Physica D81, 117 ~1995!.

@9# Hanns Walter Mu¨ller, Phys. Rev. E49, 1273~1994!.
@10# G. Giusfredi, J. F. Valley, R. Pon, G. Khitrova, and H. M.

Gibbs, J. Opt. Soc. Am. B5, 1181~1988!.

@11# G. Grynberg, A. Maitre, and A. Petrossian, Phys. Rev. Lett.72,
2379 ~1994!.

@12# A. S. Patrascu, C. Nath, M. Le Berre, E. Ressayre, and A.
Tallet, Opt. Commun.91, 433 ~1992!.

@13# M. A. Vorontsov, N. G. Iroshnikov, and R. L. Abernathy,
Chaos, Solitons Fractals4, 1701 ~1994!; E. Pampaloni, P. L.
Ramazza, S. Residori, and F. T. Arecchi, Phys. Rev. Lett.74,
258 ~1995!.

@14# H. Adachihara and H. Faı¨d, J. Opt. Soc. Am. B10, 1242
~1993!.

@15# S. Aumaitre, M. Le Berre, E. Ressayre, and A. Tallet, Quantum
Semiclass. Opt.7, 795 ~1995!.

@16# M. Le Berre, D. Leduc, A. Maıˆtre, E. Ressayre, and A. Tallet,
Opt. Commun.118, 447 ~1995!.

@17# M. W. Hamilton, R. J. Ballagh, and W. J. Sandle, Z. Phys. B
49, 263 ~1982!.

@18# G. Grynberg, M. Vallet, and M. Pinard, Phys. Rev. Lett.65,
701 ~1990!.

@19# D. Suter, Opt. Commun.86, 381 ~1991!.
@20# P. Manneville,Dissipative Structures and Weak Turbulence

~Academic, San Diego, 1990!.
@21# See, for instance, S. Ciliberto, P. Coullet, J. Lega, E. Pampa-

loni, and C. Perez-Garcia, Phys. Rev. Lett.65, 2370 ~1990!.
For an illustration, the free energy for a single mode, equal to
21

2m
2, from Eq.~33!, becomes smaller than the free energy, for

two modes, Eq.~36!, whenb.1.
@22# D. Leduc, M. Le Berre, E. Ressayre, and A. Tallet~unpub-

lished!.

1080 53D. LEDUC, M. Le BERRE, E. RESSAYRE, AND A. TALLET


