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Quasipatterns in a polarization instability
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The nonlinear analysis of the model equation for the single-feedback-mirror device with rubidium atoms
predicts that a stable quasipattern of eightfold orientational order occurs in the profile of the output light beam.
This pattern is numerically reproduced for different transverse shapes, either rhombohedric or circular, of the
input beam.

PACS numbd(s): 42.65—k, 42.55—f

[. INTRODUCTION linear regime. The system under study is the single-
feedback-mirror optical arrangement with a rubidium vapor
Spatial patterns, such as rolls, squares, and hexagons, diggll, which has displayed sequences of flowerlike patterns
covered in hydrodynamidd], also occur in nonlinear optics [10] in the limit of small aspect ratigsl6]. Here we treat the
[2]. The first experiment that displayed such patterns wadimiting case of large aspect ratios and we show that this
realized with a distributed-feedback system with a passivélevice is a good candidate for the observation of quasipat-
sodium vapof3]. The same typical patterns have also beeriﬁfmsy associatgd with a single set of four, six, etc., modes, as
recently reported in the case of a polarization instability withdiscussed by Miler [9] in his first model. This system obeys,
a rubidium vapor cel[4,5]. indeed the two following requirement&) it provides a cu-
Quasiperiodic patterns, or “quasipatterns,” with eightfold bic nonlinearity and(b) it may support the coexistence of
[6] or 12-fold orientational ordef7,8] have recently been Mmore than two or three modes.
observed in Faraday instabilitj7] and theoretically dis- The paper is organized as follows. In Sec. Il the Bloch
cussed with the help of a Swift-Hohenberg-type equation fo@nd Maxwell equations for the devi¢é,11] are shown to
a real amplitud¢9]. Two different models have been consid- reduce to a single partial differential equation for the nonlin-
ered for explaining these quasipatterns. The first one assum@ar refractive indeXQ(t,x,y) inside the cell. It is shown that
that the amplitude is a superposition of single seNof>3) the D, line of rubidium provides a polarization instability
modesK; with the same lengtiK; but this assumption re- through a cubic nonlinearity. The plane-wave linear stability
quires a complex nonlinearity involving high powers of the a_nalysis predicts a degenerate multiconical emission on both
transverse Lap|aciaﬂ2, in order to generate the Coup"ng sides of resonanc.[G.G:l: The two infinite sets of critical wave
between theN modes. Such a nonlinear interaction seemglumbersK; are given by
unlikely in hydrodynamics, so that the single-wave-number
model was left for explaining the quasipatterns in the Fara- 9 ngz (1+4) (1a)
day instability. The other model assumes two setsNof k1 2
modes, with two different wave numbefsandq, related via
a triadic interaction. This latter model appears to describ@n the focusing side and
qualitatively well the physics related to the experiment of
Edwards and Fauvi], in which the instability is driven by
a two-frequency force, inducing a quadratic coupling.
Differently from hydrodynamics, optics can easily pro-
vide model equations involving high powers of the trans-on the defocusing side.
verse LaplaciarV 2, more precisely the exponential operator  In practice, input beams have a finite width, which leads
exp[iV 2(z/2k)] diffracting a light beam with longitudinal to the removal of the degeneracy of the multiconical emis-
wave numbek, that propagates along a distarmealong its ~ sion. Therefore, near threshold, only the largest critical
optical axis. Devices such as the single-feedback mirror dewavelength is involved in the building of the transverse
vice [5,10,17, the unidirectional passive ring cavif§2], or  structure of the output light beam. The introduction of a dif-
the liquid-crystal light valve loop devicgl3] carry out the fusionlike process also contributes to favor the onset of the
interplay between nonlinearities and the free-space diffracinstability on the cone associated with the smallest critical
tion that operates on the complex amplitude of the electrisvave number. Otherwise, it is possible to choose another
field emerging from a nonlinear cell. With this latter device, critical wave number by introducing some filter in the far
guasipatterns of eightfold, tenfold, etc., eighteenfold orientafield in order to suppress the undesirable (sudf the spec-
tional order have been observed, but the four, five, etc., ninfum.
modes associated with these patterns are those predicted toThe amplitude equations are derived by assuming that the
occur with the help of the linear stability analysis, as a resultransverse structure is built with the help of a single setl of
of the rotation imposed to the feedbadd,15. modes with the same wave number. The Landau coefficient
In this paper, the quasipatterns that are analytically prethat couples two modekK and K’, such as¢=(K,K'), is
dicted and numerically obtained are the signature of a nonshown to obey the relation

OIK"‘—7T 3+4j 1b
K Ki=7 (3+4)) (1b)
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2d the population of the excited states is negligible.
B(p)= 1—005(7 K cos¢|, (2 [75=(6ruPTH1+A?), where u and A=(2/1)(0—w,) are
the dipolar momentum and the detuning scaled’t®, re-
with K=|K|. This coupling coefficient is always positive spectively. The situation, where the populations of the upper
when ¢ varies from 0 tom, whateverk might be, and pre- States are not negligible, was treated by Hamilton, Ballagh,
sents one or several zeros, depending on the magnitude of and Sandlg17]. _ .
The number of the minimd of the Landau coefficient de- Finally, when the two above inequaliti¢8) and (4) are
fines the number of modes that may coexist with the moddulfilled, the Bloch equations for a Rb atom, locatedzan
K. Then, if each of theM +1 modes can coexist with the the cell, reduce to a single differential equation for the popu-
others, a far-field pattern made of\2+1) spots lying on a lation difference of the Zeeman lower sublevéls3,19
circle of radiusK is expected: On the focusing side, with the J3(z,1),
smallest critical wave numbef,, B(¢) displays a single 93
minimum for ¢=/2, predicting the coexistence of two or- =3_ 27 (LH 1+ 1 )3+ (1 —1)], (5)
thogonal modes, leading to the occurrence of squares. On the ot

defocusing side, still with the smallest wave number as given . . . .
by Eq. (1b), B(¢) displays three minima, predicting that a wherel .. are the intensitiegsee Eq(5)] associated with the

modeK; can coexist with other three modks: Therefore a crossed circular polarizations. 4 resEeﬁtivler, scaled to theb
e ; . “saturation” intensity associated with the lower Zeeman sub-

pattern built with the help of four modes is expected, giving o " i

rise in the far field to eight spots lying on a circle of radius €Ve!SBI7127).7s, i.e.,1.=7.(2y18['7). They are

K;. In Sec. IV the numerical results obtained near threshold

are presented. They agree with the predictions of the nonlin-

ear analysis and eightfold orientational order c4uasipa’[tern‘§,here"sf , are the forward and backward field amplitudes,

are shown. This structure is obtained for any transversgagpectively. The amplitude field components obey the fol-
shape of the input beam that is either a circular orarhombl%wing reduced Maxwell equations, wheee is the off-
window. The single feedback device with a Rb gaseous celkagonance absorption length: ’

under study, is, to our knowledge, the first physiGlleast
optical system in which an eightfold orientational order qua- dey a(1+iA)

l.=|efe*?+ep e 72, (6)

sipattern is predicted to occur, due to nonlinearities. T 2 gr[1£J4], (7a)
For larger critical wave numbers, the number of minima

of the Landau coefficient increases so that the system might get 14iA

generate quasipatterns of 12-fold orientational order on the b _ + a(;') ei[1+J5] (7b)

focusing side and 16-fold orientational order on the defocus- Jz 2 bLo—Tsr

ing side, still with a single set of wave vectors. Unfortu- ) )

nately, these structures are shown to be unstable. In the reduced Maxwell equatiort3), the coupling between

the forward and backward field amplitudes is neglected be-

cause the mean lifetime of the grating, displayed by the

crossed term of Eq6), y 1, is much larger than the mean
The atomic cell of length is illuminated by a continuous, time m/k(u) spent by an atom propagating along a grating

homogeneous, and linearly polarized laser beam with angdength. [Indeed, when using Eq.3), the inequality

lar frequencyw, real amplitudes,, and transverse widtv,. ¥ >(k(u)) ! becomeskwy>1, which is satisfied for the

This laser beam propagates in the forward direction and is iatomic transition under studyit follows that the intensities

resonance with th®; line of the rubidium®Rb. The Rb  |., defined in Eq(6), reduce to the sum of the forward and

transition 55,,(F =3)—5P,,(F'=2) is simplified as @d=  backward intensities. The diffraction inside the cell is also

$—J=3 ftransition. The upper sublevelg;=3) and the neglected because the conditions

lower stategg;+3) are coupled via the circularly polarized

field components of the electromagnetic field and o . l<d<Zy, (8)

The usual adiabatic approximation applies for this transition, . ) . . .
because the radiative lifetime of the excited levEIs is which are fulfilled in the experiment of Grynberg, Maitre,

much smaller than the mean time of the interaction of arf"d Pgtrossmﬁl}], azre assumed in the modél5] (Z4 is the
atom with the electromagnetic field % Typically, this time  Rayleigh lengthzkwg).

is equal to the width of the input beam divided by the ther- 1€ boundary conditions are

mal mean velocityu), i.e.,

1. MODEL

1
gf (z=01,1)=— g,(r), (9a)
u
P 3) v2
2w,
2
Furthermore, for input intensity’, much smaller than the ep (z=1,t,r)=R exp(i Tt)sf*(zﬂ,t,r). (9b)

off-resonance saturation intensity’3

7 Equation (9b) expresses the free-space propagation of the
70 <1, (4  output forward field amplitude, after is has been reflected by
375 a plane mirror with reflectivityr, located at the distanakof
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the cell exit.(The time delay is neglected because it is much [ll. ANALYTICAL STUDY
smaller than any characteristic time of the sysjem.

The stationary solution od5(z), see Eq.5), is propor-
tional to the source terml{—17) and then vanishes for
electric fields with a linear polarization, as assumed in Eq
(99). The onset of an instability removes the degeneracy o
the Zeeman sublevels and generates an electromagnetic fi
component with the crossed linear polarizatiia}n making
the source termli(. —1_) different from zero.

The integration over the propagation varialdeof the
coupled equation&s) and(7) can be analytically performed
[16], leading to a single differential equation for the quantity Q _
f})dz J(z). But in the limit of no pump depletior| <1, a —=—{1+[1+R(1+ Qz—cos{Vz)QZ)]IO}Q
simpler expression arises: The integration of Etp) gives aT
rise to

The expansion of si@ and coQ in powers ofQ on the
right-hand side of Eq(13) displays the nonlinearities in-
volved near threshold. The stationary value of the order pa-
;ameterQst is zero. Therefore, the quadratic nonlinearity oc-
ciHrring in the last term of Eq13) vanishes. In addition, the
Sast term on the right-hand side of E(L6g vanishes be-
cause of the relation co8¢) Q=cos[(d/k)K?]Q=0, for any
critical wave number given by Eqgl). Finally, Eq. (13
becomes

_ 1 _ 1 _
sin(V*)Q— 37 sin(V?)Q®— o7 [sin(V*)Q]

—Xo

. 1 A
sf—(z=l,t,r)=5sx(r)exp{ (1tJ3)} (109

x[cosﬁZ)QZ]) . (168

or, in the limit of a plane-wave input, with,(r)=¢g,
The nonlinear terms are proportional either Rd, or to
Xo=AalRly. In the limit of largeAal, the nonlinear terms

, (10D proportional toR1, can be neglected with respect to those
proportional toy,. Therefore, the model equation for the
device withAal>1 becomes

. 1 alA
gr (z=I,t,r)= E €p exp{ 5 (1%£3J5)

so that Eq.(9b) becomes

. dQ — 1
. 1 dv? —ialA —=—{1+[1+RI1o]}Q_xo sin(Vz)(Q——Q3>
ep (z=1,t,r)= v Req ex;<| T)exp{ 5 (liJs)}. ar 3!
11 1 . - —
y — o [SINT2)Q) [[cos 72)Q2I1 (a6
Therefore, the source term reduces to the difference of the
backward intensities of crossed circular polarizations,
A. Linear analysis
(I =1 =[ep (z=1t,1)[>=[ep (z=1,t,)[%,  (12) Equation(16b) becomes, when keeping the terms propor-
tional to Q,
which emphasizes the role of the feedback for the onset of Q
the instability. Finally, using Eqg11) and(12), Eq. (5) be- d ,
comes 75 Q=7Q, 17)
0
dQ oo i
===~ [1+(1+3)10]Q~ xol[siNVI)sin Q] with

- - - Zo=—[1+(1+R)Io]— xo sin V2 18
x[cog V2)cosQ]—[cog V3)sin Q][ sin(V2)cosQ]}, 0= ~[1+(1+R)lol=xo 18
(13) Equation(17) is solved by assuming a plane-wave input and
by expandingQ in terms of Fourier modes
whereQ is the nonlinear refractive index

Aal Q=2 q.eMticrycc. (19

Q= - J3 (149

Therefore, when using the relation
and the operatoi is defined by the relation _ _
B _ V2nelx»r:(_ 1)nK2ne|K-r, (20)
= R[sin(V?)sin Q]+ [cog V?)cosQ]? _
- o with K2=dK?/k, Egs.(17)—(20) give rise to the relation
+[cog V?)sin Q]2+ [sin(V?)cosQ]?,  (14b B
N=—[1+(1+R)ly]+ xo sin K2, 21
with the definitions 1+ (1+R)lol+x0 2y
4v2 leading to the marginal stability curjé.6|
o2_ 't _ .2 _ _
Vi= lo=20 xo=Raall,. (15 l,=[RAal sinK?)—1—R].. 22
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I(K) where|K ;=K. The numbemN of wave vectors that deter-
1 " mines the shape of the stable pattern expected above thresh-
| h | old will be deduced from the nonlinear analysis.

The right-hand side of Eq25) implies a solvability con-
dition associated with expansid@6). (See Appendix A for
details) After collecting the terms of first and third order,
we get the amplitude equation for aly= & \|xy|/2ay,

1%
— A= pA A |Ai|2+2 ﬁ(aii)|AJ’|2 ! @7
ar J#

where 6; is the angle betweeK; and K; and u=|x— xul-
The Landau coefficient is given by the relation

2

0 w2 3n/2 w2 2 K —
B(6)=1—cog2K? cod 6)]. (28
FIG. 1. Marginal stability curves for positivéull lines) and
negative(dashed lingsdetuning as a function df?. The Landau coefficient obeys the relatigi6)=B(7—0)
=pB(—6), because of the symmetry of the system, and is dis-
Egs. (21) and (22) predict a static degenerate multiconical continuoug 9] at 6=0,7 with 8(6—0)=B(6—m)=28(0). In
emission, which is displayed on Fig. 1. The critical waveaddition, it may display one or several minima in the interval
numbers are given by Eqél) and the threshold intensity is 0<¢<, depending orK 2. The number of minima of the
Landau coefficient gives a first insight of the number of

lw=(R|A]al) . (23 modes that may coexist. More precisely, knowledge of the
magnitude of theN X N matrix elements@(eij) allows us to
B. Multiple scale analysis operate a primary selection of the pattern: Only if any

B(6;)<1 (i,j=1N), may theN modes coexisf21].

With the scaling 20] In a general manner, the stationary weigm§|2 are not

Q=eQ;+&3Qz+- , equal. Nevertheless, for a regular pattern bf-fld orienta-
tional order, each line of the matriXg(4;)}, with
| =1t 82yt 6;;=(m|i—j[)/N, |i—j|=0,...N—1, can be deduced from
its neighbor by circular permutation, leading to equal ampli-
Y= X+ eixat e, (24)  tude fixed point solutions of the formA|=|A], with
=19+ %yt < [mm|]
R AP=p) 2 B(W) (29
m=0
J J ) J
ar 3_7.0+8 (;_7.2+ - The stability of the A spot far-field pattern can be de-

rived either from the stability analysis of the stationary solu-
we get, for terms proportional te, the linearized equation tions for the A; or from the free-energy minimum. In the
for Q, [see Eqs(17)—(18)], while terms proportional ta®>  following sections, the two approaches will be considered for
give rise to predicting the stable patterns associated with different criti-
cal wave numbers.
d J o=
ErS Q33— “inQz=— (0_72+(1+ R)l2+ x2 sm(Vz))Ql 2. Free energy
1 _ 1 _ In the neighborhood of a minimum of the marginality
3 sin(VZ)anL o [sin(V?)Q,] curve(Fig. 1), Eq. (16) is derivable from a potential

*+ Xth
_ iQ_ 3G(Q) -
x[cos(VZ)QiJ), (25 o 5Q
where %y, has the form defined in Eq18) for the threshold where the Lyapunov functional is
intensity ly,. _
7= Xl 1
G<Q>=f + 5 Q% 47 |xn Q*
1. Amplitude equation @ 2 41|
Let us assume an emission process involving at the first 1 ) —
order a single critical wave numbé,, chosen among the +3 | xin Q7 cog V) Q7 dr, (3D
infinite set(1), and expand), as
N with 7=[1+(1+R)l4]. (See Appendix B. Therefore, the
Q,=1 2 (a,ekrT+c.c) (26) system will evolve to a stationary solution that minimizes the
p .C),

p=1 potential because of the inequalthG/d =
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/4 w2 3n/4 % 0

FIG. 2. Landau coefficient foK2=x/2 as a function of the
angle # between two wave vectors.

which displays its minimum foW==/2. Therefore, the or-
thogonal structure minimizes the free energy, predicting the
occurrence of square patterns.

Case(b),

__377

This case corresponds to an emission on the first cone for
A<0. The Landau coefficient

B(6)=1—cog 37 cog6)] (37

displays three zeros, located @t +arcco$3) and 7/2, as
shown in Fig. 8a). This behavior allows us to conjecture that
four modes may coexist. The minimzarccos$3), while near
7l4 and 37/4, correspond to an irregular distribution of the
spots on the critical circle of radiu&., with unequal
weights.

Let us study the the stability of the solution

— [ A9Qld7)?dr<0. For the system under study, the poten- 124_1A (e'®p'"+c.c.), assumingeal amplitudesA,. The
tial G(Q) is the free energy. When expanding the solution infour Lyapunov exponents E¢36) generally depend on two

Fourier modes, the free enerfycan be written as
F:—,U«EI: |A||2)+%§|: 21: BOIAIPIAZ (32
with (a/d7)Aj=— (9l AT )F. The stationary free energy
1 A (2
—5 a2 A (33

becomes, for a regular pattern dilZold orientational order

(9],

1 N2 mar
= — — 2 _—
F ZMNmEOB(N) : (34)
when using Egs(29) and (33). The minimum of the free
energy deduced from E¢33) and/or Eq(34) corresponds to
the stable pattern of the system. It selects the nuriband

the shape of the pattern.

3. Application
The casda),

corresponds to an emission on the first conefor0. The
variation of the Landau coefficieml(6)=1—cog 7 cog0)] is
shown in Fig. 2 for 8=6<m. It displays a single minimum
equal to zero ford=m/2: Then two modes may coexist, for
any B(#)<1, with equal stationary amplitudes

|;1|2=|'&2|2= (39

#1480

as solutions of Eq(29), for N=2. The free energy33) be-
comes, for two modes,

1

0 %

angles6=(K,,K,) and ¢=(K;,K3), with (K;,K,)=7—6.

For the sake of clarity we only show, on Figh3 the varia-

tion of the Lyapunov exponents as a function é&fsetting
¢$=m/2: Among the four Lyapunov exponents, one of them is
negative whatevef might be and is not drawn; all the others
are negative in a small domain arountf that does include
arccoss). Therefore the stability analysis for the amplitude
predicts stable patterns for any angle, between two adjacent
modes, of magnitude of ordet/4.

Nevertheless, the regular structure intuititively appears as
the most probable. That conjecture is confirmed by the cal-
culation of the free energy, Eq&3) and(34), that displays
its absolute minimum for the eightfold orientational order
pattern. See the variation of the free energy as a function of
# on Fig. 3c).

Case(o),

— ar
2_
Ke=57-.
We assume that the system chooses the second critical
wave number predicted by the linear stability analysis for an
excitation on the focusing sid®>0. Then the Landau coef-
ficient becomes

B(6)=1—cog57 cog6)], (39

which has five zeros arcod$, arccos$?), /2, —arccos?),

and —arcco$s). Let us assume that these angles are those of
the mode 1 with the modes 2, 3, 4, 5, and 6, respectively.
This geometry implies that other pairs of vectors make an
angle very different from the above five angles, leading to a
coupling coefficient larger than unity. For example, the angle
6, ¢ between modes 2 and 6 is equalite 2 arccosz), lead-

ing to B(#, 9=1.25, making unstable the irregular structure
predicted by the zeros of the Landau coefficié38).

The regular pattern might be stable becauseginy/6),
m=0,1,...,5, is less than or equal to unity. Unfortunately,
among the six Lyapunov exponents associated with the regu-
lar distribution, two of them are positive, which excludes the
generation of a stable quasipattern of 12-fold orientational
order.
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FIG. 4. Free energy forl2-fold orientational order pattern, as a
function of N.

i i e thogonal to the input beam polarization, is related to the

A order paramete®
gry(l)=g,sinQ

when using relation(10). Therefore, near threshold f&@

" small as compared with unity, we have approximately
YA Y ery(rN=Q.

{ 1 The numerical simulation integrates the equations of Ref.
. 0 [16], deduced from Eqs(5)—(7), by using a semi-implicit
\l w4 l/ /2 method and the free-space propagation in @b) is treated

by using the fast Fourier transform method. Different input
R a shapes have been considered, either circular, square, or
- rhombic input.

Figure 5 displays the near and far-field intensities
ler y(r,)? and|fdr e Te( (r,1)|? for the three cases dis-
cussed in Sec. Il with the help of the model equatii6h).

In Figs. 5a) and 5c) the detuning is positive and the input
. o o g intensity close to the threshold value and the critical wave
" numbersK . are \/'7/2 and \/57/2, respectively. The param-
L/\ eters aresy=0.28, A=200, al =0.07, andR=0.95. The ab-
sorption is small and the produstal is equal to 14, so that
f\ﬁ the model equatioril6b) should be valid. As predicted by

]

the nonlinear analysis of Eq16b), the stable patterns are
squares. The far-field orthogonal variablég and K, of
Figs. 5a) and Hc) are in arbitrary units, but it can be verified
that the radii of the two circles on which the far-field spots
are lying are in the ratio/5, in agreement with the linear
stability analysis.

Figure 8b) gives the numerical results for a negative de-
tuning A=—200 with the critical wave numbey3/2. As
predicted analytically in Sec. lll, a quasipattern of eightfold
orientational order occurs. This structure is the result of non-
linearities and has been reproduced for different input win-

We may ask about the stable structure associated with thdows. It can be verified that the eight spots of the far field are
critical wave numbeK .= y5/2. Actually, the stable struc- lying on a circle of radius equal to the predicted critical wave
ture corresponds to the minimum of the free energy. Thenumber and that the countour plot of the near-field displays a
stationary free energy for regular patterns, B#), is calcu-  quasiperiodic pattern.
lated as a function oN and is reported on Fig. 4, which Al these patterns are monoconical and stable not too far
displays the minimum foN=2. Therefore squares are also from threshold: For instance, far=—200, the eightfold ori-
predicted to occur on the second cone associated with a fentational order pattern is stable for an input intensity in-
cusing medium. creasing until 70% above threshold. When the intensity in-
creases further, the system comes under the influence of the
multiconical emission proce$&2]: Indeed, the regular eight

The amplitude of the electric field at the cell exit, which spot pattern bifurcates to an irregular six spot pattern, next to
propagates in the forward direction with polarization or-a rectangle, and finally to sets of rectangles, designing a pic-

FIG. 3. K2=3#/2. (a) Landau coefficient as a function of the
angle @ between two wave vectorgb) Variation of the three
Lyapunov exponents that are not always negative as a functién of
(The other angle is fixed and taken to be equatt®.) (c) Variation
of the free energy as a function éf a minimum occurs fof=/4.

IV. NUMERICAL RESULTS
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FIG. 5. Numerical results with the far field on the left-hand side and the near field on the right-han((;h)slzié.t 72, (b) lZ§:3(7T/2),

and(c) K 2=5(m/2).

ture that can be geometrically understood with the help omerically integrated are the model equations of the single-
the cubic nonlinearity, selecting the successive critical wavdeedback-mirror device with rubidium atoms, which have

vectors.

V. CONCLUSION

quite well reproduced the flowerlike patterns observed in the
limit of small aspect ratid46]. Here the opposite limit of
large aspect ratios has been considered, allowing us to as-
sume a plane-wave input and consequently to perform a non-

It has been shown that a polarization instability provides dinear analysis. The equations have be treated in the limit of
cubic nonlinearity, giving rise near threshold to a stablelarge linear refractive indej\|al>1, which corresponds to
eightfold orientational order pattern. It appears to be the firsthe data of the device under stu@i¥l]. The role of this
prediction of quasipatterns spontaneously generated thougiarameter on the onset of the instability is planned to be
nonlinearities in optics. The equations that have been nudiscussed elsewhef@2].
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APPENDIX A

The componenQ; can be expanded in Fourier modes

1079
== 7127l 2w 3 bl vl
at, 2
+;p [1—cog2K? cod, ;) ]ayla;|?| =0.
(AS5)

such a€),. Therefore the resonant terms occur in the second

member

J inv2 1 v2y03
—+ltx,sinV Qﬁ'gxth sin(V4) Q3

at,

1 o2 o2\ 2
+§[Sln(V )Q1][cog V<) Q1]. (A1)

Equation(25) should vanish. Setting=T,+ T,+ T3 with

7,

_+|2+X2 S|n V_2>Q1,

T,=—
1 at,

Tama i SINT2)QS
2737 Xth L

1 ) o2\ 2
To=57 xulSINV?)Q1][cog VA)Q]l,  (A2)

by using the expansio(26) for Q,=3=}_,(a,e’r " +c.c.)
and the same for th§;, i=1,2,3,

Ti=32> [(T)ye' e +c.cl, (A3)
p=1
we obtain
J S 2
(Tp=— _at2+|2_X2 sin(K?) |a,,

1 o=
(Tz)p: - 5 Xth S'sz)%(ap|ap|2+2apj;p |aj|2

[1+2% cos 422]61p|ap|2

1 2y 1
(T3)p:_EXth sin(K<) 2

+ [cos 4K?2
1#p

+2 cog2K?)cog 2K 2 cos IENERCD
(Ad)

The products(zsin(lzz) and yy, sin(lzz) are positive whatever

Finally, collecting all the terms of the expansi¢®4) we
obtain the amplitude equatiof27) for an amplitudeA,

:8\/|Xth|/23p.

APPENDIX B

We look for a Lyapunov functional of the system and treat
Eq. (16) near threshold in the case of an instability involving
a single wave numbé< . . Therefore we develop the operator
V2 around the eigenvalueK 2. It follows the relation

sin V2Q=—cogV2+K2)Q=—[1-4(V2+K?)?2]Q=-Q.
(B1)

We can do the same expansion for §|?Q3 because the
relevant vectors as a result of the combinations of three
modes also have the lengty.. Therefore, we have

sin V2Q3= — Q3 sin(K?). (B2)
It follows that Eq.(16) becomes
§= ~[1+(1+R)1]Q+ lxthl{(Q— % Q3)
- % [Q cosﬁZ)QZ]] (B3)
Therefore the Lyapunov functional
6@- | ( P g Ll
b .
+ % Xl Q? cos V2Q?)dr (B4)
is easily shown to satisfy
where
0G(Q)=G(Q+6Q)—G(Q). (B6)

the sign of the detuning might be, as displayed either by Egs.

(1) and(15) or Egs.(22) and(24). Then, the addition of the

Indeed, the calculation o6G(Q) gives, when using Eq.

three resonant terms gives rise to the solvability condition (B4),
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2n+m
(7= |xul)Q+ 37 |Xth|Q fQ &inayzmQéQ dr,

G(Q)ZJ 6Q

related to the expansion of c(&sz) is equal to

l o2\ A2
+ 7 [XolQ cog V2 Q? | dr

ﬂZn (92m
1 ) =, J(/Q 6Q —am Fy2m Q’dr,
+ | 3 llQ?(eos 210 sQjar. (87) :
so that the last two terms on the right-hand side of (B7)
The last term that occurs in EB7) has been calculated by are equal. Therefore the relatidB5) is demonstrated and
integrating by parts and taking account of the boundary conthe function defined in EqB4) is the Lyapunov functional
ditions (@"/9x")p=(8"19y")p=0. Then any term, such as  of the system.
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