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We perform stochastic simulations of the quantum Zeno effect experiment of the type realized with trapped
cooled ions. The results are carefully examined for the case where the experiment is performed on a single
atomic particle. The results of the simulations for a single ion exhibit the probabilistic behavior that is required
to satisfy the collapse of the wave-packet hypothesis. When a large ensemble of ions is described by the
simulations, the results are the same as those produced using the density-matrix method. In this way the
stochastic simulation methods provide a link between these two approaches, as they are compatible with each
in the appropriate regime. The results are also discussed in terms of what may be observed experimentally
given the practical limitations of performing experiments with individual ions.

PACS number~s!: 42.50.Ct, 42.50.Lc

I. INTRODUCTION

The nature of the measurement process has been one of
the most fundamental problems in quantum mechanics since
it was first introduced. One of the most suprizing features of
measurements in quantum mechanics is that the act of mea-
surement changes the state of the system that has been ob-
served. Misra and Sudarshan@1# pointed out that an unstable
quantum system could be prevented from decaying by con-
tinuously observing its undecayed state. Coherent unitary
time evolution leads to a transition probability proportional
to the square of the elapsed time~for short times!. Repeated
observation of the state of excitation by a sequence of mea-
surements separated by a time interval such that evolution
between measurements is within this quadratic time-
dependence regime leads to a ‘‘freezing’’ or inhibition of the
transition. If the time evolution is in fact an irreversible de-
cay described by a Fermi ‘‘golden rule’’ rate, then the tran-
sition probability at short times islinearly proportional to the
elapsed time and a measurement sequence will not lead to
the inhibition of decay. Attempts were made to observe this
effect by looking for the inhibition of decay of unstable par-
ticles that were repeatedly observed in, for example, bubble-
chamber tracks. However, no clear evidence of this type has
been found. The reason for this lack of success of course
derives from our inability to make repeated measurements
within the correlation time of the decay process: only at
such very short times does a decay depend quadratically on
time in the requisite manner.

Many other forms of this so-called quantum Zeno effect
have been proposed@2–5#. In particular, Cook@6# suggested
a dynamical version of this effect in which a coherently
driven atomic transition~in other words, a unitary evolution
rather than a decay! would be inhibited by repeated measure-
ments. Itanoet al. @7# performed such an experiment using
several thousand trapped ions. The ions were slowly driven
between two energy levels using an rf source, and the pro-
portion of ions in each state was probed at regular intervals
using a laser. Quantitative predictions of the numbers of ions
found in each state were made using the assumption that the
measurement of the state of the ions by the laser acted to

reduce the wave packet by converting the state of the ions
from a superposition state to a statistical mixture of ions in
each of the two energy levels. It was subsequently pointed
out by Frerichs and Schenzle@8#, and by Block and Berman
@9# that the results of the experiment could equally well be
described using a density-matrix analysis of the atomic sys-
tem that included the energy levels used to perform the mea-
surement. In their analysis it was no longer necessary to
make an assumption about the collapse of the wave packet,
and so they argued that the experiment could no longer be
viewed as a demonstration of this effect.

It has recently been proposed that the quantum Zeno ef-
fect experiment be repeated using only a single trapped ion,
and preparations for such an experiment are underway@10#.
In this case the density-matrix analysis is no longer directly
relevant as it stands, as it assumes that the experiment is
performed on a large number of ions simultaneously. The
fluorescent signal is proportional to the populations predicted
from the density matrix only when a reasonably large num-
ber of independent sources are contributing to the signal.
Nevertheless, the density matrix determines the statistics and
the probabilities for particular realizations through, for ex-
ample, the waiting time distributions of the fluorescent emis-
sions, although without the direct clarity of the newer sto-
chastic methods. For an ensemble of ions undergoing
repeated measurement, all we require for inhibition is the
destruction of coherence by the repeated coupling to a broad
decaying state, so that the superposition state coherence is
destroyed. Such an ensemble-averaged relaxation of the co-
herence can be understood without recourse to state reduc-
tion ideas@11#. To examine the behavior of the experiment
for the case of a single atomic particle in a more direct way,
we can apply newly developed simulation techniques@12–
19#, which describe how acquisition of knowledge about the
single ion is used to condition the state describing that real-
ization. The various methods for performing stochastic simu-
lations describe quantum trajectories for the states of the sys-
tem, and are determined by random processes. To generate
the ensemble results, the stochastic simulation is repeated
several times and an average result calculated. One advan-
tage of these new stochastic methods is that we may examine
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the behavior of individual trajectories and infer some of the
behavior of individual particles.

II. QUANTUM ZENO EFFECT

The energy-level system used for the quantum Zeno ef-
fect, as proposed by Cook@6# and realized by Itanoet al. @7#,
is a three-levelv configuration of the kind shown in Fig. 1.
The transition fromua& to ub& is in the radio-frequency re-
gime, and the rate of spontaneous emission fromub& is very
small and can safely be neglected. In the absence of any
measurement, ap pulse applied to this transition would
transfer an atom initially in the ground state entirely into the
excited state. If the pulse were allowed to continue longer,
the atom would undergo Rabi oscillations between the two
states with frequencyV1. To observe the populations of the
two levels, the system is coupled by a strong optical transi-
tion ~with Rabi frequencyV2! to the leveluc&, and measure-
ments are made by observing the scattered fluorescence from
the transition betweenua& and uc& when the atom is illumi-
nated by regular pulses of resonant laser light, as shown in
Fig. 2 ~rectangular pulses have been used in the theoretical
analysis, although in the experiment there is a short time
period during which the pulse is switched on and off!. The
time scales for this transition are such thatg, V2@V1, where
g is the spontaneous decay rate of population from leveluc&
to ua&. According to the projection postulate@11#, each mea-
surement pulse reduces the atomic density matrix to its diag-
onal elements. If this assumption is made, it is found that the
population of levelub&, if there have beenn measurement
pulses during a single rfp pulse, is given by@7#

Pb~T!5 1
2 @12cos~p/n!n#. ~1!

In practice this experiment was performed on approxi-
mately 5000 Be1 ions stored in a Penning trap. At the end of
each rfp pulse the proportion of ions in stateua& was as-
sumed to be proportional to the fluorescence from theua& to
uc& transition. The results were found to be in agreement
with Eq. ~1!.

Frerichs and Schenzle@8# and Block and Berman@9# have
independently argued that this agreement with the experi-
mental results should not be taken as evidence for the col-
lapse of the wave packet. They showed that the same results
could be derived using density-matrix equations to describe
the whole three-level system. After making the rotating-wave
approximation, the density-matrix equations for the system
are

ṙcc52 iV2~rca2rac* !2grcc , ~2!

ṙca52 iV2~raa2rcc!2 iV1rcb2grca , ~3!

ṙbb52 iV1~rba2rba* !, ~4!

ṙba5 iV1~raa2rbb!2 iV2rcb* , ~5!

ṙaa52~rcc1rbb!, ~6!

ṙcb5 iV2rba* 2 iV1rca2
g

2
rab , ~7!

whereV1, V2, and g are as defined above, andri j is the
density-matrix element between levelsu i & and u j &. These
equations can be solved numerically@8,9# with the initial
conditionsraa~t50!51, all otherri j ~t50!50, and in Fig. 3
the population of stateub& is shown as a function of time. For
this plot there were five measurement pulses within a Rabi
period, and each lasted for 0.02 of a Rabi period~2p/V1!.
The measurement pulse field strength isV25g5250*V1.
The solutions to these equations show that the effect of the
measurement laser is to destroy the coherence between levels
ua& and ub&, after which only the diagonal elements of the
density matrix remain@8#. The populations remaining after
each pulse are consistent with both the experimental results
and the collapse of the wave-packet predictions. The deriva-
tion of the density-matrix equations of motion contains many
assumptions, but the collapse of the wave packet is never
explicitly invoked.

FIG. 1. The three-levelv configuration considered by Itano
et al. The radio-frequency transition between levelsua& and ub& is
slowly driven with a Rabi frequencyV1. During the measurement
pulses the optical transition betweenua& and uc& is driven with a
Rabi frequencyV2; the rate of spontaneous emmission fromuc& is
g.

FIG. 2. The time dependence of the Rabi frequenciesV1 and
V2. V1 is constant andV2 is normally zero, except during mea-
surement pulses of lengtht, during whichV2@V1.
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III. STOCHASTIC METHODS

One of the major assumptions behind the density-matrix
approach is that the experiment is described by the evolution
of a large ensemble of independent systems. Of course, the
density-matrix approach can be used to derive waiting time
distributions and so on, which determine the dynamics of
quantum systems of relevance to~say! quantum jumps. The
basis of the quantum jump model as developed, for example,
by Carmichael@18# is that the observed signal allows us to
generate an inferred quantum evolution conditioned on a par-
ticular observed record. In this way, the method works from
the recorded signal to infer a quantum state evolution. In
simulations, we have utilized this logic for computational
convenience by using a random number generator to gener-
ate a ‘‘typical’’ sequence of observations. The assumption
that we deal with an ensemble is appropriate for the case
where several thousand ions are used, but it would be quite
unsuitable for the description of an experiment performed on
a single ion. Since such an experiment is likely to be made in
the near future, it is important to attempt to describe the
evolution of these individual realizations conditioned on the
data acquired by the specific measurement scheme. For this
reason we use the stochastic simulation methods that have
been developed over the past few years for this purpose.

The motivation for the derivation of stochastic equations
of motion for atomic states has come from two sources. The
quantum jump approach of Dalibard, Castin, and Mo” lmer
@12,13# ~often referred to as the Monte Carlo wave-function
method, or MCWF! was derived as a method for simulating
processes, such as laser cooling, where the density-matrix
method is unsuitable because of the storage limitations of
calculating with very large density matrices~an equivalent
approach was also derived at much the same time by Heger-
feldt and Wilser@14,15#!. This method was also inspired by
the observation and analysis of quantum jumps in single
trapped ions@20–22#. The quantum state diffusion~QSD!

approach of Gisin and Percival@16#, which is characterized
by continuous small fluctuations to the quantum state rather
than by discrete jumps, was driven by a theoretical desire to
produce statistical forms of quantum mechanics. Wiseman
and Milburn @17# and Carmichael@18# have linked these
schemes by showing that they describe the evolution of
quantum systems conditioned by the information gained
through different kinds of measurement processes@19#. In
both the QSD and MCWF methods, the evolution of the
quantum state of a single subsystem embedded in a larger
environment is governed by random processes. To reproduce
the results of an ensemble of systems, as given by the
density-matrix equations, the stochastic simulation is re-
peated many times and average properties are calculated. It
has also recently been suggested that the probability distri-
butions among the different states could be simulated di-
rectly in some cases by using Markov chains@23#. Since
individual trajectories describe the evolution of single quan-
tum systems, we have used them to investigate the behavior
of a single ion in a quantum Zeno experiment.

The quantum jump method describes an evolution during
a time stepdt in which two possibilities may occur. Either a
photon is emitted by the system and, in principle at least,
detected by a photodetector, or it is not. If a photon is de-
tected, then the state vector of the system~which represents
our knowledge of the system! ‘‘jumps’’ to a lower level,
usually the ground state. This is described by the action of a
reservoir operatorR̂ ~also known as a Lindblad operator
@24#!, which for atomic systems is usually a lowering opera-
tor. For the Zeno system it isR̂5Ags ca

2 , whereg is the rate
of spontaneous emission from leveluc& ands ca

2 is the low-
ering operator between the levelsuc& and ua&; hence, the
state vector after a timedt in which a jump is recorded is
given by

uc jump~ t1dt !&5mR̂uc~ t !&5ua&, ~8!

wherem is a normalization coefficient. The probability of a
jump occurring in the intervaldt is given by

DPjump5^c~ t !uR̂1R̂uc~ t !&dt. ~9!

If no jump occurs, then the state vector evolves according to
a non-Hermitian Hamiltonian:

Heff5H2S i2 R̂1R̂D , ~10!

ucno-jump~ t1dt !&5m~12 idtHeff!uc~ t !&, ~11!

whereH is the isolated atom Hamiltonian.
The equations of motion for quantum state diffusion are

governed by a stochastic Ito process. Within a time stepdt
the state evolves according to

udc&52 iH uc&dt1 1
2 ~2^R̂1&cR̂2R̂1R̂2^R̂1&c^R̂&c!uc&dt

1~R̂2^R̂&c!uc&dj, ~12!

whereH is the Hamiltonian describing the coherent evolu-
tion of the system, andj is a complex-valued randomWiener
variable, which varies between each time step and each
sample run, such that, when averaged,

FIG. 3. The population of stateub& as a function of time as
calculated using the density-matrix method. The population is given
by the elementrbb of the density matrix. The value ofV1 is 2p and
V2 is 250~2p!, as isg. There are five measurement pulses within
each Rabi cycle of theua& to ub& transition, and each measurement
pulse lasts for 0.02 of the Rabi period.
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dj t50, dj tdj t850, dj t* dj t85d t8t . ~13!

It has been shown that the evolution of a quantum system in
this way can be derived from the assumption that the system
is observed using a perfect heterodyne detector. In this case
the state vector of the system is conditioned by the results
measured by this kind of detector@17,19#.

IV. APPLICATION OF STOCHASTIC METHODS
TO THE QUANTUM ZENO EFFECT

The stochastic methods described in the preceding section
were used to perform numerical simulations of the Zeno ef-
fect using the same parameters as were used in Sec. II for the
density-matrix simulations. The computer programs were
written in FORTRAN and run on Sun workstations.

A typical quantum trajectory produced using the quantum
jump method is shown in Fig. 4. Outside of the measurement
pulses, the state of the atom changes coherently between
levelsua& andub&. The effect of the measurement pulse is to
change the state of the system in such a way that after the
pulse the system is either in stateub& or has jumped to state
ua& ~after which the system undergoes interrupted fluores-
cence betweenua& anduc& until the end of the measurement!.
If a quantum jump did occur, the state of the system returns
rapidly to stateua& after the measurement because this tran-
sition is heavily damped. The decision as to which of the two
possible outcomes occurs is random. After the measurement
pulse, the system returns to undergoing coherent evolution
and the cycle repeats itself. Effectively what is seen by an
observer using a photodetector are sequences of scattered
light pulses separated by dark periods during which the mea-
surement produces no fluoresence.

The quantum jump simulations were made many times,
and the results were averaged~Fig. 5!. It was found that the
results approximated those of the density-matrix solution and
that the discrepancy between the methods became increas-
ingly small as the number of simulations was increased. In
this way the quantum jump method reproduces the behavior
when the quantum Zeno effect experiment is performed on

many ions simultaneously, and it also describes the results
that would be expected if the single-ion experiment were
performed many times and the results averaged.

A typical trajectory produced using the quantum state dif-
fusion method is shown in Fig. 6. The overall behavior be-
tween the measurement pulses is the same as when the simu-
lations are performed using the quantum jump method. The
measurement pulse appears to have the same effect of trans-
ferring the system into either stateub& or stateua&. Again the
decision between these possibilities is random, but the man-
ner in which the state changes during the transition is differ-
ent. The state appears to fluctuate rapidly during the mea-
surement until it settles into one of the two possibilities. As
the conditioned state vector represents our knowledge of the
system, the results suggest that it is possible to deduce from

FIG. 4. A typical quantum trajectory calculated using the quan-
tum jump method. The graph shows the probability of being in state
ub& as a function of time. The parameters are the same as in Fig. 3.

FIG. 5. The results of performing an ensemble average of 1000
quantum jump trajectories. As the number of samples increases, the
results converge toward the density-matrix solution. The parameters
are the same as in Fig. 3.

FIG. 6. A typical quantum trajectory calculated using the quan-
tum state diffusion method. The graph shows the probability of
being in stateub& as a function of time. The parameters are the same
as in Fig. 3. Notice that on one occasion the state of the system did
not localize within the duration of the measurement pulse.
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the output of the heterodyne detector the final state of the
atomic system after the measurement.

When an ensemble result is computed from the average of
many such trajectories, the results of the quantum state dif-
fusion simulations also converge to the density-matrix results
~Fig. 7!. The rate at which the results converge to the
density-matrix solutions as a function of the number of tra-
jectories sampled is approximately the same as with the
quantum jump method@25#.

V. INTERPRETATION

Immediately before each measurement pulse the atomic
system is in a superposition of two statesua& and ub&:

uc&5caua&1cbub&. ~14!

The measurement hypothesis states that the probability of
being found in a particular state at the end of a measurement
is given by the squared amplitude for the state at the begin-
ning of the measurement. Consequently there should be a
probability ucau

2 that the system jumps to stateua& and scat-
ters photons, and a probabilityucbu

2 that the system moves to
stateub& and no photons are scattered. To test this hypothesis
for the measurement process in the Zeno experiment,
samples of simulated quantum trajectories were made, start-
ing from various initial superposition states. The samples
were subjected to a single-measurement pulse, after which
the fraction of trajectories found in each of the different
states was recorded and plotted against the initial amplitude
squared. If the measurement process were to conform with
the measurement hypothesis, we would expect the graph pro-
duced to tend toward a straight line as the number of samples
increases. The results of this analysis are shown in Fig. 8 for
the quantum jump method, and Fig. 9 for the quantum state
diffusion method. In addition the Markov chain method@23#
was used to calculate the results of quantum jump simula-
tions in the limit of very large sample sizes, as shown in Fig.

10. The results clearly show that for the parameters chosen
the measurement process does conform reasonably well to
the measurement hypothesis.

In Fig. 11 a small region of the time evolution of a quan-
tum jump trajectory is enlarged to show the important fea-
tures. Until the start of the measurement, the trajectory fol-
lows the deterministic trajectory for an undamped driven
two-level system. At the start of the measurement pulse, the
state of the system follows a ‘‘no-jump trajectory,’’ which
rapidly converges toward stateub&, which is an eigenstate of
the no-jump evolution@26,27#. However, while this is hap-
pening there is always a probability that the state of the sys-
tem will jump down to the lower level. If this does not occur,

FIG. 7. The results of performing an ensemble average of 1000
trajectories calculated using the quantum state diffusion method. As
with the ensemble of quantum jump simulations, the results con-
verge to the density-matrix solutions as the number of samples in-
creases. The parameters are the same as in Fig. 3.

FIG. 8. A plot showing the probability of being in stateub& at
the end of a measurement as a function of theub&2 at the beginning
of the measurement. The results were calculated by analyzing the
results of 1000 quantum jump trajectories. The parameters are the
same as in Fig. 3.

FIG. 9. The probability of being in stateub& at the end of a
measurement as a function ofub&2 at the beginning of the measure-
ment. The results were calculated by analyzing the results of 1000
quantum state diffusion trajectories. For the QSD simulations the
final state is considered for the sake of definiteness to be in stateub&
if its projection ontoub& is greater than 90%~i.e., z^cub&z2.0.9!.
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then the state will arrive in the excited state. If a jump does
occur, as shown in the example, then once the atom has
jumped to stateua& it then undergoes repeated jumps be-
tween levelsuc& and ua&. This means there is a sequence of
photons scattered from this transition, which occurs until the
end of the measurement pulse. The no-jump trajectory can be
evaluated analytically by solving for the motion with the
effective Hamiltonian@26,27#, making the assumption that
the rf field is negligible during the measurement pulse and

then calculating the normalization coefficients. At the start of
the measurement pulse,

uc~ t50!&5ca~0!ua&1cb~0!ub&. ~15!

The effective Hamiltonian is

Heff5
V

2
~sac

1 1sac
2 !2 i

g

2
sac

1 sac
2 . ~16!

This produces the following differential equations for the
coefficients ofuc(t)&5ca(t)ua&1cb(t)ub&1cc(t)uc&:

ċa52 i
V

2
cb~ t !, ~17!

ċb52 i
V

2
ca~ t !, ~18!

ċc50. ~19!

This neglects the renormalization after each step, but this can
be left until after the solutions have been found since the
equations are linear. In the unsaturated caseg.2V,

ca~ t !5ca~0!e2gt/4S coshlt1 g

4l
sinhlt D , ~20!

cb~ t !5
ca~0!iV

2l
e2gt/4sinhlt, ~21!

cc~ t !5cc~0!, ~22!

wherel5~g224V2!1/2/4. The coefficients can then be nor-
malized:

c̄a~ t !5
ca~ t !

Auca~ t !u21ucb~ t !u21ucc~ t !u2
, ~23!

c̄b~ t !5
cb~ t !

Auca~ t !u21ucb~ t !u21ucc~ t !u2
, ~24!

c̄c~ t !5
cc~ t !

Auca~ t !u21ucb~ t !u21ucc~ t !u2
. ~25!

A comparison of numerical calculations and the formulas
given by Eqs.~20!–~25! is shown in Fig. 12.

The fluorescence from a single ion in the quantum Zeno
effect experiment is such that in any individual measurement
pulse the ion may or may not emit photons~Fig. 4!. The
probability of emitting photons at a particular measurement
depends on whether or not the ion had emitted a photon at
the time of the previous measurement. This process can be
described as a simple Markov chain@28#. Let Mn51 repre-
sent the event that photons are detected during thenth mea-
surement pulse andMn50 if they are not; then,

Pr~Mn51uMn2151!5a, ~26!

Pr~Mn50uMn2151!512a, ~27!

FIG. 10. The probability of being in stateub& at the end of a
measurement as a function ofubu2 at the beginning of the measure-
ment. The results were calculated using the Markov chain method,
which produces the same results as a very large sample of quantum
jump trajectories

FIG. 11. Magnified section of a quantum jump trajectory during
the measurement pulse. The probability of occupying stateub& is
shown as a function of time. Until the start of the measurement, the
occupation probability rises slowly because of the radio-frequency
driving. During the measurement the probability rises sharply to-
ward 1. However, in this example, a quantum jump occurs and the
state of the system jumps to the ground state. After this occurs, the
atom undergoes interrupted Rabi oscillations betweenua& and uc&.
During this process many photons are scattered from the system,
which are detected by the measurement apparatus.
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Pr~Mn51uMn2150!5b, ~28!

Pr~Mn50uMn2150!512b. ~29!

In the case considered here, where there is no detuning or
damping of theua&-ub& transition,

a5b5cos2
V1t

2
. ~30!

This behavior of jumping between two possible outcomes
according to fixed transition probabilities is closely analo-
gous to the behavior of a trapped ion in a quantum jump
experiment. It is only when several ions are present in the
experiment simultaneously that the signal of the fluorescence

becomes proportional to the populations predicted by the
density matrix; this is because, for a large number of ions,
the fraction of ions in a given state at any particular time
converges toward the probability that an individual ion may
be found in that state@23,25#.

In the proposed single-ion experiment it is unclear
whether or not it will be possible to detect the fluorescence
from each individual measurement pulse. If it were possible,
then the result predicted by the quantum jump method would
be the observation of sequences of a random number of light
pulses, interspersed with periods in which no photons were
visible. In practice, optical pumping effects limit the number
of photons that can be scattered during a single measure-
ment, and this effect, combined with a limited detector effi-
ciency, makes the detection of individual pulses difficult. Ap-
proximate calculations suggest that this behavior is at the
limit of what it may be experimentally possible to observe.

VI. CONCLUSIONS

The quantum trajectories produced by stochastic simula-
tions of the Zeno effect show the correct probabilistic results
to conform to the measurement hypothesis, and they also
reproduce the density-matrix probabilities for an ensemble of
particles. The measurement process could be regarded as a
dynamical process during which the wave function collapses.
The nature of this collapse differs according to the different
simulation schemes. For the quantum jump technique it is
possible to calculate some analytical properties of this pro-
cess, but this appears to be very difficult for the quantum
state diffusion process@29#.
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