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Stochastic simulations of the quantum Zeno effect

W. L. Power and P. L. Knight
Optics Section, Blackett Laboratory, Imperial College, London SW7 2BZ, England
(Received 19 June 1995

We perform stochastic simulations of the quantum Zeno effect experiment of the type realized with trapped
cooled ions. The results are carefully examined for the case where the experiment is performed on a single
atomic particle. The results of the simulations for a single ion exhibit the probabilistic behavior that is required
to satisfy the collapse of the wave-packet hypothesis. When a large ensemble of ions is described by the
simulations, the results are the same as those produced using the density-matrix method. In this way the
stochastic simulation methods provide a link between these two approaches, as they are compatible with each
in the appropriate regime. The results are also discussed in terms of what may be observed experimentally
given the practical limitations of performing experiments with individual ions.

PACS numbss): 42.50.Ct, 42.50.Lc

I. INTRODUCTION reduce the wave packet by converting the state of the ions
The nature of the measurement process has been one f(r)?m a superposition state to a statistical mixture of ions in
P each of the two energy levels. It was subsequently pointed

fche mo§t fu_ndamental problems in quantum_rr_]echanics sinc{&lt by Frerichs and Schendl8], and by Block and Berman
it was first |ntr0(_juced. One of the m_ost suprizing features o 9] that the results of the experiment could equally well be
measurements in quantum mechanics is that the act of Megagcribed using a density-matrix analysis of the atomic sys-
surement changes the state of the system that has been QB that included the energy levels used to perform the mea-
served. Misra and Sudarshgl] pointed out that an unstable g, rement. In their analysis it was no longer necessary to
quantum system could be prevented from decaying by conmake an assumption about the collapse of the wave packet,
tinuously observing its undecayed state. Coherent unitargnd so they argued that the experiment could no longer be
time evolution leads to a transition probability proportional viewed as a demonstration of this effect.
to the square of the elapsed tirtfer short time$. Repeated It has recently been proposed that the quantum Zeno ef-
observation of the state of excitation by a sequence of medect experiment be repeated using only a single trapped ion,
surements separated by a time interval such that evolutioand preparations for such an experiment are undefd@y
between measurements is within this quadratic timedin this case the density-matrix analysis is no longer directly
dependence regime leads to a “freezing” or inhibition of therelevant as it stands, as it assumes that the experiment is
transition. If the time evolution is in fact an irreversible de- performed on a large number of ions simultaneously. The
cay described by a Fermi “golden rule” rate, then the tran-fluorescent signal is proportional to the populations predicted
sition probability at short times ignearly proportional to the  from the density matrix only when a reasonably large num-
elapsed time and a measurement sequence will not lead teer of independent sources are contributing to the signal.
the inhibition of decay. Attempts were made to observe thidNevertheless, the density matrix determines the statistics and
effect by looking for the inhibition of decay of unstable par- the probabilities for particular realizations through, for ex-
ticles that were repeatedly observed in, for example, bubbleample, the waiting time distributions of the fluorescent emis-
chamber tracks. However, no clear evidence of this type hasions, although without the direct clarity of the newer sto-
been found. The reason for this lack of success of coursehastic methods. For an ensemble of ions undergoing
derives from our inability to make repeated measurementseepeated measurement, all we require for inhibition is the
within the correlation time of the decay process: only atdestruction of coherence by the repeated coupling to a broad
such very short times does a decay depend quadratically atecaying state, so that the superposition state coherence is
time in the requisite manner. destroyed. Such an ensemble-averaged relaxation of the co-
Many other forms of this so-called quantum Zeno effectherence can be understood without recourse to state reduc-
have been proposd@-5]. In particular, CooK6] suggested tion ideas[11]. To examine the behavior of the experiment
a dynamical version of this effect in which a coherently for the case of a single atomic particle in a more direct way,
driven atomic transitiorfin other words, a unitary evolution we can apply newly developed simulation techniq{&2—
rather than a decayvould be inhibited by repeated measure- 19], which describe how acquisition of knowledge about the
ments. ltancet al. [7] performed such an experiment using single ion is used to condition the state describing that real-
several thousand trapped ions. The ions were slowly driveization. The various methods for performing stochastic simu-
between two energy levels using an rf source, and the prdations describe quantum trajectories for the states of the sys-
portion of ions in each state was probed at regular intervaltem, and are determined by random processes. To generate
using a laser. Quantitative predictions of the numbers of ionshe ensemble results, the stochastic simulation is repeated
found in each state were made using the assumption that tiseveral times and an average result calculated. One advan-
measurement of the state of the ions by the laser acted tage of these new stochastic methods is that we may examine
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FIG. 1. The three-leveb configuration considered by Itano
et al. The radio-frequency transition between levi$ and|b) is FIG. 2. The time dependence of the Rabi frequen€lgsand
slowly driven with a Rabi frequenc{),. During the measurement Q,. (; is constant and), is normally zero, except during mea-
pulses the optical transition betwega) and|c) is driven with a  surement pulses of length during whichQ,>Q, .
Rabi frequency(),; the rate of spontaneous emmission fr{eh is

Y- Frerichs and Schenz|&8] and Block and Bermaf®] have

. o . . _ independently argued that this agreement with the experi-
the behavior of individual trajectories and infer some of themental results should not be taken as evidence for the col-

behavior of individual particles. lapse of the wave packet. They showed that the same results
could be derived using density-matrix equations to describe
Il. QUANTUM ZENO EFFECT the whole three-level system. After making the rotating-wave

approximation, the density-matrix equations for the system
The energy-level system used for the quantum Zeno efgre

fect, as proposed by Co¢E] and realized by Itanet al.[7],

is a three-leveb configuration of the kind shown in Fig. 1.
The transition from/a) to |b) is in the radio-frequency re-
gime, and the rate of spontaneous emission ffbjnis very )
small and can safely be neglected. In the absence of any Pca= —1Q2(paa=pPcc) —1Q1pcb™ YPca, ()
measurement, ar pulse applied to this transition would
transfer an atom initially in the ground state entirely into the
excited state. If the pulse were allowed to continue longer,
the atom would undergo Rabi oscillations between the two ) ) )
states with frequencf,. To observe the populations of the Pba=1Q1(paa— pob) — 10205, )
two levels, the system is coupled by a strong optical transi-
tion (with Rabi frequency(),) to the level|c), and measure-
ments are made by observing the scattered fluorescence from
the transition betweefa) and|c) when the atom is illumi-
nated by regular pulses of resonant laser light, as shown in N * 7

Fig. 2 (rectangular pulses have been used in the theoretical Pep=1{02ppa~101pca 2 Pab: 0
analysis, although in the experiment there is a short time

period during which the pulse is switched on and).ofthe  \ypere Q;, Q,, and y are as defined above, ang is the
time scales for this transition are such that2,>,, where  gensity-matrix element between levdiy and |j). These

v is the spontaneous decay rate of population from level  equations can be solved numerical,9] with the initial

to |a). According to the projection postulaf&l], each mea- conditionsp,,(t=0)=1, all otherp;;(t=0)=0, and in Fig. 3
surement pulse reduces the atomic density matrix to its diagne population of statgp) is shown as a function of time. For
onal elements. If this assumption is made, it is found that thenis plot there were five measurement pulses within a Rabi
population of level|b), if there have beem measurement period, and each lasted for 0.02 of a Rabi peri@a/(),).

pcc: —1Qy(pca— p;c) ~ YPcc> 2

pob=—1Q1(ppa— ppa) (4)

baa: —(Pcct Pob)s (6)

pulses during a single i pulse, is given by7] The measurement pulse field strength(ls=y=250:();.
) The solutions to these equations show that the effect of the
Po(T)=3 [1—cogw/n)"]. (1) measurement laser is to destroy the coherence between levels

|a) and |b), after which only the diagonal elements of the
In practice this experiment was performed on approxi-density matrix remairi8]. The populations remaining after
mately 5000 Bé ions stored in a Penning trap. At the end of each pulse are consistent with both the experimental results
each rf# pulse the proportion of ions in stafa) was as- and the collapse of the wave-packet predictions. The deriva-
sumed to be proportional to the fluorescence from|&)eto  tion of the density-matrix equations of motion contains many
|c) transition. The results were found to be in agreementissumptions, but the collapse of the wave packet is never
with Eq. (2). explicitly invoked.
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07 _ . . . . approach of Gisin and Percivfl6], which is characterized
Density matrix —— by continuous small fluctuations to the quantum state rather
than by discrete jumps, was driven by a theoretical desire to
produce statistical forms of quantum mechanics. Wiseman
and Milburn [17] and Carmichae[18] have linked these
schemes by showing that they describe the evolution of
guantum systems conditioned by the information gained
through different kinds of measurement procedses. In
] both the QSD and MCWF methods, the evolution of the
quantum state of a single subsystem embedded in a larger
] environment is governed by random processes. To reproduce
the results of an ensemble of systems, as given by the
_ density-matrix equations, the stochastic simulation is re-
peated many times and average properties are calculated. It
: s s . . has also recently been suggested that the probability distri-
0 05 ! 15 2 25 8 butions among the different states could be simulated di-
Time (units of Rabi petiods) rectly in some cases by using Markov chair®s]. Since
) ) , individual trajectories describe the evolution of single quan-
FIG. 3. The population of statf) as a function of time as ;) systems, we have used them to investigate the behavior
calculated using the density-matrix method. The population is givene o single ion in a quantum Zeno experiment.
by the elemenp,, of the density matrix. The value &1, is 27 and The quantum jump method describes an evolution during
0, is 2502), as isy. There are five measurement pulses within a time stepst in which two possibilities may occur. Either a
each Rabi cycle of théa) to |b) transition, and each measurement . - . o
pulse lasts for 0.02 of the Rabi period. photon is emitted by the system_ e_md, in principle at_least,
detected by a photodetector, or it is not. If a photon is de-
tected, then the state vector of the syst@vhich represents
Ill. STOCHASTIC METHODS our knowledge of the systentjumps” to a lower level,

One of the major assumptions behind the density-matriﬁsua”y the ground state. This is described by the action of a

approach is that the experiment is described by the evolutio servoir_ operatoR _(also know_n as a Lindblad _Operator
4]), which for atomic systems is usually a lowering opera-

of a large ensemble of independent systems. Of course, t ) > )
density-matrix approach can be used to derive waiting timd°r- For the Zeno system it R= V70 G whereyis the rate
distributions and so on, which determine the dynamics off SPontaneous emission from leve) and o ¢, is the low-
quantum systems of relevance (&ay quantum jumps. The €ring operator between the levells) and |a); hence, the
basis of the quantum jump model as developed, for exampléfate vector after a timét in which a jump is recorded is
by Carmichae[18] is that the observed signal allows us to 9iven by

generate an inferred quantum evolution conditioned on a par- A

ticular observed reco?d. In this way, the method works frgm | fump(t+ D) = uR¢(1)) =), (8)

the recorded signal to infer a quantum state evolution. IRypere , is a normalization coefficient. The probability of a
S|mulat|_ons, we hgve utilized this logic for computa‘uonaljump occurring in the intervabt is given by

convenience by using a random number generator to gener-

ate a “typical” sequence of observations. The assumption APjump:<l//(t)|§+§| P(t)) . (9)

that we deal with an ensemble is appropriate for the case

where several thousand ions are used, but it would be quitd no jump occurs, then the state vector evolves according to
unsuitable for the description of an experiment performed ora non-Hermitian Hamiltonian:

a single ion. Since such an experiment is likely to be made in )

the near future, it is important to attempt to describe the Heﬁ=H—(|— R+ IA?), (10)

06 i

Excited state probability

evolution of these individual realizations conditioned on the
data acquired by the specific measurement scheme. For this
reason we use the stochastic simulation methods that have | nojumd t+ 60)) = m(1—i8tHep) (1)), (13)
been developed over the past few years for this purpose. _ ) o

The motivation for the derivation of stochastic equationsVNereH is the isolated atom Hamiltonian. o
of motion for atomic states has come from two sources. The '€ equations of motion for quantum state diffusion are
quantum jump approach of Dalibard, Castin, and rier governed by a stochastlt; Ito process. Within a time step
[12,13 (often referred to as the Monte Carlo wave-function the State evolves according to
method, or MCWF was derived as a method for simulating o Lim/Bin & aia Al a
processes, such as laser cooling, where the density-mz;ttr#xﬁlw__”-”"/’w”z(2<R JyR=RTR=(RT)(R),) 4) &t
method is unsuitable because of the storage limitations of +(R—(RY,)|1) 8¢, (12)
calculating with very large density matricéan equivalent
approach was also derived at much the same time by HegewhereH is the Hamiltonian describing the coherent evolu-
feldt and Wilser{14,15). This method was also inspired by tion of the system, andis a complex-valued random Wiener
the observation and analysis of quantum jumps in singlevariable, which varies between each time step and each
trapped iong20-22. The quantum state diffusiof@QSD)  sample run, such that, when averaged,
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FIG. 4. Atypical quantum trajectory calculated using the quan- |G, 5. The results of performing an ensemble average of 1000
tum jump method. The graph shows the probability of being in stateyantum jump trajectories. As the number of samples increases, the
|b) as a function of time. The parameters are the same as in Fig. 3esuits converge toward the density-matrix solution. The parameters

are the same as in Fig. 3.

d&=0, d&dé =0, d&déy=3d,. (13
many ions simultaneously, and it also describes the results
It has been shown that the evolution of a quantum system ithat would be expected if the single-ion experiment were
this way can be derived from the assumption that the systerperformed many times and the results averaged.
is observed using a perfect heterodyne detector. In this case A typical trajectory produced using the quantum state dif-
the state vector of the system is conditioned by the resultfusion method is shown in Fig. 6. The overall behavior be-

measured by this kind of detecttt7,19. tween the measurement pulses is the same as when the simu-
lations are performed using the quantum jump method. The
IV. APPLICATION OF STOCHASTIC METHODS measurement pulse appears to have the same effect of trans-
TO THE QUANTUM ZENO EFFECT ferring the system into either stdte) or state|a). Again the

) ) ) ) _decision between these possibilities is random, but the man-
The stochastic methods described in the preceding sectigikr in which the state changes during the transition is differ-
were u_sed to perform numerical simulations qf the Zeno efgnt. The state appears to fluctuate rapidly during the mea-
fect using the same parameters as were used in Sec. Il for th@rement until it settles into one of the two possibilities. As
density-matrix simulations. The computer programs wergne conditioned state vector represents our knowledge of the

written in FORTRAN and run on Sun workstations. system, the results suggest that it is possible to deduce from
A typical quantum trajectory produced using the quantum

jump method is shown in Fig. 4. Outside of the measurement
pulses, the state of the atom changes coherently between 1 i ' '
levels|a) and|b). The effect of the measurement pulse is to

change the state of the system in such a way that after the

QSD simulati

—5—

pulse the system is either in stdt® or has jumped to state o1 |
|a) (after which the system undergoes interrupted fluoresz
cence betweefa) and|c) until the end of the measuremgnt 8 4|

If a quantum jump did occur, the state of the system returns
rapidly to statea) after the measurement because this tran«i}
sition is heavily damped. The decision as to which of the twog o4
possible outcomes occurs is random. After the measuremefjt
pulse, the system returns to undergoing coherent evolution
and the cycle repeats itself. Effectively what is seen by an %27
observer using a photodetector are sequences of scattered

light pulses separated by dark periods during which the mea- o , { , . .
surement produces no fluoresence. 0 0.5 1 15 2 25 3
The quantum jump simulations were made many times, Time (units of Rabi periods)

and the results were averaggétg. 5). It was found that the

I‘eSU|tS appI’OXImated thOSG Of the denSIty-matl’IX SO|UtIOI’1 and FIG. 6. A typ|ca| quantum trajectory calculated using the quan_

that the discrepancy between the methods became increagm state diffusion method. The graph shows the probability of

ingly small as the number of simulations was increased. Inbeing in statdb) as a function of time. The parameters are the same
this way the quantum jump method reproduces the behaviags in Fig. 3. Notice that on one occasion the state of the system did
when the quantum Zeno effect experiment is performed omot localize within the duration of the measurement pulse.
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FIG. 7. The results of performing an ensemble average of 1000 FIG. 8. A plot showing the probability of being in stde) at
trajectories calculated using the quantum state diffusion method. Athe end of a measurement as a function of|t)é at the beginning
with the ensemble of quantum jump simulations, the results conef the measurement. The results were calculated by analyzing the
verge to the density-matrix solutions as the number of samples inresults of 1000 quantum jump trajectories. The parameters are the
creases. The parameters are the same as in Fig. 3. same as in Fig. 3.

the output of the heterodyne detector the final state of th@o. The results clearly show that for the parameters chosen
atomic system after the measurement. the measurement process does conform reasonably well to
When an ensemble result is computed from the average @he measurement hypothesis.
many such trajectories, the results of the quantum state dif- |n Fig. 11 a small region of the time evolution of a quan-
fusion simulations also converge to the density-matrix resultgum jump trajectory is enlarged to show the important fea-
(Fig. 7. The rate at which the results converge to thetyres. Until the start of the measurement, the trajectory fol-
density—matrix solutions as a function of the number of tra-lows the deterministic trajectory for an undamped driven
jectories sampled is approximately the same as with th@yo-level system. At the start of the measurement pulse, the

quantum jump methof25]. state of the system follows a “no-jump trajectory,” which
rapidly converges toward stalie), which is an eigenstate of
V. INTERPRETATION the no-jump evolutiorf26,27. However, while this is hap-

pening there is always a probability that the state of the sys-

Immediately before each measurement pulse the atomi@m will jump down to the lower level. If this does not occur,
system is in a superposition of two state$ and|b):

|#)=cala)+cylb). s -

g QSD simulation o
The measurement hypothesis states that the probability (%‘ °
being found in a particular state at the end of a measuremergt 081 ° il
is given by the squared amplitude for the state at the beging o

ning of the measurement. Consequently there should be’;a

probability |c,|? that the system jumps to std) and scat- 5 o8 °

ters photons, and a probability,|* that the system moves to § .

state|b) and no photons are scattered. To test this hypothesi® o4 | o

for the measurement process in the Zeno experimen§

samples of simulated quantum trajectories were made, starf- ¢

ing from various initial superposition states. The samplez 02| o ]

were subjected to a single-measurement pulse, after which
the fraction of trajectories found in each of the different&

states was recorded and plotted against the initial amplitude 02 oa 06 08 ’
squared. If the measurement process were to conform with
the measurement hypothesis, we would expect the graph pro-
duced to tend toward a straight line as the number of samples . 9. The probability of being in staté) at the end of a

increases. The results of this analysis are shown in Fig. 8 fofeasurement as a function |2 at the beginning of the measure-
the quantum jump method, and Fig. 9 for the quantum stateent. The results were calculated by analyzing the results of 1000
diffusion method. In addition the Markov chain meth@8]  quantum state diffusion trajectories. For the QSD simulations the
was used to calculate the results of quantum jump simulafinal state is considered for the sake of definiteness to be in|state
tions in the limit of very large sample sizes, as shown in Figif its projection onto|b) is greater than 90%.e., |(#{b)[*>>0.9).

Squared amplitude of excited state before measurement
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then calculating the normalization coefficients. At the start of

= 1 ' the measurement pulse,
% Markov chain method o °
2 osl R ] |(t=0))=c4(0)|a)+cp(0)|b). (15
g
g o The effective Hamiltonian is
% 06 ° 4 y
3 . He= 5 (Fact T2 —i 5 0io0ac. (16)
i 04 - ° g
5 This produces the following differential equations for the
s ‘ coefficients of (1)) =c,(t)|a) + cy(t)|b) +c.(t)|c):
Z 02| o
g ) 0
£ ’ Ca=—1 5 Cu(1), (17)
& L 1 1
00 0.2 0.4 0.6 0.8 1

Squared amplitude of excited state before measurement -Cb: —j % Ca(t), (18)
FIG. 10. The probability of being in stai®) at the end of a )
measurement as a function |t 2 at the beginning of the measure- c.=0. (19
ment. The results were calculated using the Markov chain method,
which produces the same results as a very large sample of quantuffliS neglects the renormalization after each step, but this can
jump trajectories be left until after the solutions have been found since the
equations are linear. In the unsaturated cgs€(),

then the state will arrive in the excited state. If a jump does

occur, as shown in the example, then once the atom has Ca(t)=ca(0)e” "4 cosht+ lsinhxt , (20)
jumped to statda) it then undergoes repeated jumps be- 4N

tween leveldc) and|a). This means there is a sequence of .

photons scattered from this transition, which occurs until the Cy(t) = Ca(0)i 2 e~ "asinh\t (21)
end of the measurement pulse. The no-jump trajectory can be b 2\ '

evaluated analytically by solving for the motion with the
effective Hamiltonian[26,27], making the assumption that c.(t)=c.(0), (22
the rf field is negligible during the measurement pulse and

where A\=(y"—40?"%4. The coefficients can then be nor-

malized:
0.7 T
Quantum jump simulation —
oo noju quanum 1 Ca(t)= . U 5 (23
ump .
trajectory / ]c:]cn(:f:rs | \/|Ca(t)| +ep(D)]*+ [cc(D)]
z 031 startof ®
T measurement _ Cp
8 o4rf Cp(t)= , (24
= Vlea([?+[ep(t)[*+[ee(t)]?
3 0.3 -
o
2 — Cc(t)
8 | c(t)= . (25)
0.2 c
B VIca()[*+[ep(t) [+ [ec(t)]?
04 photons scattered |
: from Jc> A comparison of numerical calculations and the formulas
J r—J\—\ given by Eqs(20)—(25) is shown in Fig. 12.

0.17 0.175 0.18 0.185 0.19 The fluorescence from a single ion in the quantum Zeno
Time (units of Rabi periods) effect experiment is such that in any individual measurement
pulse the ion may or may not emit photofsig. 4). The
FIG. 11. Magnified section of a quantum jump trajectory during Probability of emitting photons at a particular measurement
the measurement pulse. The probability of occupying dtaxes ~ depends on whether or not the ion had emitted a photon at
shown as a function of time. Until the start of the measurement, théhe time of the previous measurement. This process can be
occupation probability rises slowly because of the radio-frequencylescribed as a simple Markov chdi?8]. Let M,=1 repre-
driving. During the measurement the probability rises sharply to-sent the event that photons are detected duringithemea-
ward 1. However, in this example, a quantum jump occurs and theurement pulse anill ,=0 if they are not; then,
state of the system jumps to the ground state. After this occurs, the
atom undergoes interrupted Rabi oscillations betwi@rand |c). PriM,=1M,_1=1)=a, (26)
During this process many photons are scattered from the system,
which are detected by the measurement apparatus. Pr(M,=0|M,_;=1)=1—a, (27)
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] - becomes proportional to the populations predicted by the

density matrix; this is because, for a large number of ions,
Theoretical result —— the fraction of ions in a given state at any particular time
converges toward the probability that an individual ion may
be found in that statf23,25.

In the proposed single-ion experiment it is unclear
whether or not it will be possible to detect the fluorescence
from each individual measurement pulse. If it were possible,
then the result predicted by the quantum jump method would
be the observation of sequences of a random number of light
pulses, interspersed with periods in which no photons were
visible. In practice, optical pumping effects limit the number
of photons that can be scattered during a single measure-
ment, and this effect, combined with a limited detector effi-
0 i : i i ' = ciency, makes the detection of individual pulses difficult. Ap-
proximate calculations suggest that this behavior is at the
limit of what it may be experimentally possible to observe.

Excited state probability

Time (units of Rabi periods)

FIG. 12. Comparison of the no-jump trajectories calculated ana-
lytically in Egs. (15)—(25) and the result of a numerical calculation.
The parameters chosen wefb=1 and y=4. The agreement is VI. CONCLUSIONS

sufficiently good that the results are hard to distinguish. The quantum trajectories produced by stochastic simula-

tions of the Zeno effect show the correct probabilistic results
to conform to the measurement hypothesis, and they also
reproduce the density-matrix probabilities for an ensemble of
particles. The measurement process could be regarded as a
Pr(M,=0|M,_,=0)=1—4. (29 dynamical process during which the wave function collapses.
The nature of this collapse differs according to the different

In the case considered here, where there is no detuning glmulgiuon schlen:es For the quJantulm Jump technlqhue Itis
damping of thda)-|b) transition, possible to calculate some analytical properties of this pro-

cess, but this appears to be very difficult for the quantum
state diffusion proced9].

Pr(M,=1|M,_,=0)=5, (28)

a=pB=cog % (30
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