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Nonlinear optical response of cold atoms
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The third-order optical susceptibility® is calculated for a system of cold atoms trapped in a three-
dimensional harmonic potential. The dipole-dipole interaction between atoms contributé® teflecting
quantum statistical properties of atoms. This contribution in Bose condensed systems is proporhiGredo
is much larger than that in the system of Fermi atoms.

PACS numbg(s): 42.65.An, 05.30-d, 32.80.Lg

In a system of laser-cooled atoms, which has been of greatomic size. The atom-atom collisions can be neglected for
interest in the field of quantum optics recently, the thermal déhe low-density atom gas in the Lamb-Dicke limit. The char-
Broglie wavelength can exceed the interatomic distance acteristic energy of the atom-atom collisions may be written
very low temperatures and atoms behave as fully quantungs Ec=nasi%/M, whereag denotes thes-wave scattering
mechanical objects under such an extreme condition. Wiength and is on the order of 10-100 A for alkali-metal at-
may therefore expect different behavior for ultracold Boseoms. In order to neglect atom-atom collisions in the present
and Fermi atoms. In fact, the Bose-Einstein condensation iffodel, E; should be smaller thah v and the energy shift
dilute Rb atoms has been obsenjad So far, several theo- produced by the dipole-dipole interaction bet_ween atoms
retical investigations on optical responses of cold atoms suckd- The energy Eq may 3be roughel,y. estimated as
as light scattering and fluorescence have been reportdgd=N7% Yraa, Where ya=d we/6mhisoc” is the natural
[2—17]. The nonlinear optical probe is also expected to re_ImeW|dth of the electronic transition of the atom. For ex-
veal the quantum statistical properties of cold atoms. ample, if we choose=1000 A, a;=100 A, N=100, and

In this paper we calculate the third-order optical suscepM = 100mH;GW'th my being the mass of a hydrogen atom,
tibility x of ultracold bosonic and fermionic atoms. We 5;%—%?/?&%2)~(r)n§>\</.1o—-l;hlr?1e\/lsan<rjnédl 105_Tarlrl]eerv ftgran

‘ A _ - ~0. o~
consider a system df identical two-level atoms. For sim- By~ 10" meV. Furthermore, the intensity of the incident

plicity, we assume that the atoms are spinless. It is the naturleSer field should be strong enough to satEfy<dE. This

of quantum statistics the atoms obey that plays an essential dition can be easily achieved for off-resonant conditions

role and not the spin of the atoms. The relevant electroni
transition of the atom is the transition from aistate(ground (g%;a;%)ﬁ] Ic%ll%?iinic:rj: Icrigfaﬁ t(():ondensate, however, the
i - prevent the fragmentation

state |g)) to threefold-degeneratp states[excited states ¢ yhe condensate into several nearly degenerate states of the
le), a=(x,y,2)] and the transition energy Bweg. The  trapping potential and to initiate the nucleation of the phase
magnitude of the dipole moment for the electronic transitionyansition from a normal Boltzmann distributidii3]. Al-
of the atom is denoted hy. Atoms are trapped in an isotro- though the realistic model taking into account atom-atom
pic and harmonic-oscillator potential of the frequencyThe  collisions is preferable, our simple model may capture the
states of an atom in the trapping potential are therefore desssential feature of the dilute Bose and Fermi atom gases at
noted agg)|n) for the ground-state potential ahe)|n) for  zero or very low temperatures.
the excited-state potential, whelr) is the eigenstate of the  The system without the external laser field is described by
quantized center-of-mass motion of an atom with mds®  the following master equation for the density matrix of the
the trap. The index is a triple indexn=(ny,ny,n;). The  total system, i.e., the atomic system coupled to the electro-
eigenenergy ofn) is given bysyfiv(n,+ny+n,+3). Here  magnetic field of the vacuum:
we have assumed that the trapping potential is the same for
ground- and excited-state atoms, although this is not the case d 1
in general. Atoms are coherently driven by a strong classical GiP(O= 7 [HatHeg+H, ,p(D)], (1)
laser field of frequency), wave vectok=(k,0,0), magni-
tude of the electric fielcE, and polarization parallel ta. where
Atoms interact also with the electromagnetic field of the
vacuum.

The important assumptions and limits in our model are as Ha=2 enCinCont 2 (entHiwegConcs,, 2
follows. First, the size of the trapping potentalis smaller n e
than the wavelength of the incident laser fielgl.=27/k
and that of the electronic transition of the atom _ T
Neg=27Clweq. Namely, we take the Lamb-Dicke approxi- Hs % hwdagag., @
mation. Second, the density of atoms is low, i.e., the atomic
density n=N/a® satisfiesnad<1, wherea, is a typical and
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and
Hi=—k2 2 o (DC Cgndgu—HC,  (9)

n,n’ Au,@
. Iy p(Ng,N2;N3,N4)
with the Franck-Condon factor

. e 1/2 _ . 1 d? 5 ,
gn’nyﬂ(q):d(zgov) egMJ dr equqr)wn’(r)lpn(r) :16,”-4 ﬁcssowegf drf dr

® XD o @eg,l =1 ) Y (NPE(NPR ()P, (1) (9)

H, andHg represent, respectively, the Hamiltonian for the
free atomic system and that for the electromagnetic field o
the vacuumH, describes the interaction between them an
k (—1) denotTes a formal expansion parameter. In Egk.
and(4), a,, (a4,) denotes the annihilatiofcreation) opera- i N
tor for thqeﬂphgltLon of momenturg, energyw,=clq|, and Poplw,r)= édw(q)exp(—lq«r)M_Elvz €54, (10
linear transverse polarizatio®y,, («=1,2). InEgs.(2) and
(4), Cgn (c;n) denotes atomic annihilatiofcreatior) operator . . .
for the statgg)|n) andcg, (c&') denotes the atomic annihi- Wheredw(q) is the element of solid angle abogtand P in
lation (creation operator for the statge®)|n). They satisfy Eq. (8) §tands for the principle value. Here we assumed that
the usual commutation or anticommutation relations depend® €quilibrium temperature of the vacuum is zero. Further-
ing on whether atoms are bosons or fermions. In(Bg.Vis ~ More, we neglected the difference between diffeegfs be-
the quantization volume for the electromagnetic field of thec@user is much smaller tgam)eg- _
vacuum andy(r)= én (X) bn (Y) b, (2) is the eigenfunc- In order to calculatex®, we add a perturbation term
. Lo y z [Hex(1),o(t)]/i% to the right-hand side of Eq6) and solve
tion corresponding to the state |[n), where : . . . X

2m 2 - ) the resulting equation forr(t) iteratively with respect to
$n(X) =Hp(x/a)exp(-x*/2a%)/Jaym2"n!_with the nth- He,(t) under the initial conditiono(t— —)=|®) Dy
order Hermite polynomiaH, anda= yA/Mv. o(t) = | Do) Dol + e D(t) + 0P+ - - .. Here|dy) is the ini-

We follow the standard procedure of treating the vacuumj| state of the system oRl atoms. Since we are in the
as a reservoir and eliminating the degree of freedom of th¢ 3mp-Dicke limit, the incident laser field excites atoms co-
vacuum field mod¢14]. Taking the trace over variables of herently over the entire volume of the atomic system. There-
the vacuum field modeB), we obtain the following master fyre, the interaction between the atomic system and the ex-
equation for the reduced density matrit) =Tr(g)p(t): ternal incident laser field is written as

n Egs.(8) and(9),

d 1
G170 =7 [Ha,o(O)]+x*Aa(t), (6) Hex(t)= — P'E exp(—iQt)—H.c., (12)

where the “damping term’Ao(t) is calculated in the Born- |«
Markov approximation as

Ao(®)=i 2 2 Aup(Ng,Nping,ng) P=d X p'(N1,no)chh Chn, (12

ni,N,n3,Ny a,B nq,Ny

x{c cgn.cl cB L a(t)}_
{en,San,Can,Cen, (1)} the polarization operator am{n; ,n,) = (n;|€*¥|n,) the ma-
trix element for the transition from the statg)|n,) to the
- > > Iy 5(N1,Nz5N3,N4) state|e?)|n,). We assume that for the system of Bose atoms
N1.N2.N3.Ng @.f |®,) is the state where the lowest-energy statgn,) with
at t B n,;=(0,0,0) isoccupied by allN atoms coherently, i.e., a
X [{Cen,Con; CanyCen,s T (V1 + p(larfe(:ctly Bc))se cond%nsedystate, and for the systgm of Fermi
atoms|®,) is the state where each of loweNt states is

—2¢], Can, o (t)Con Can.]- (7)  occupied by one atom. In both casgB) is the lowest-
energy state for the system Nfatoms. The “damping term”
Here{A,B}.=AB=xBA, k’Ao(t) in Eq. (6) is also treated perturbatively:
, 5 oV =g+ ko) + ko) + - -. This turns out to be the
A, a(NgNyiNg Ny = d medw ot expansion with respect fy,,q/ 6 With 6= w¢4— (2, the off-
af T2 T T 16w ficeg Jo o w— weg resonance frequency. Therefore, this expansion can be car-

ried out when the number of atoms is moderate or the off
resonance is large.
The third-order induced polarization is calculated through

, , G)(t), the third-order part ofo(t) with respect of
X (1 (1), ® fo part. ofa(t) P

xf drf dr’ @ ,p(w,r =1") i, (1)



1050 TOHYA HIROSHIMA AND YOSHIHISA YAMAMOTO 53

in the first order of k2. Here |0>=|<I>0)=(cgn1)N|vac)/
INL () g)=cdn(cdn )V Hvad/V(N=1)1, and [(n)e)
i i = cin(Cgn) " Hvag/V(N—1)! with [vag) being a state with
:; <¢o|P0(3)[Q]|¢o>+; ($1]Pa®[Q]|¢1),  no atoms. Equation&l4) and (15) yield, respectively,

0 1

p(3)[Q]:%fw dt exgi Q)T Po®(1)]

13
9 (0lo(3[0]0)=— 2 ((Mlo(Foll(ne  (16)
where ¢, denotes the state where no atoms are excited and n
¢, the state where only one atom is excited and the summa-
tion is done over all possibleb, and ¢,. Here we have and
assumed that the wave vector and the polarization of the
probe field are the same as those of the puexpernal inci-
den) field and used the same notatiBrifor the polarization
operator for the pump field defined by E42) and that for
the probe field appearing in E6L3). The third-order optical = 2{()ea01[(n)e). 17
susceptibility is given by @[ Q]1=P®[Q]/(g,E?). In this "
paper, we calculatg®[Q] up to the first order ofc?. It
should be noted that®)[ Q] thus defined is the third-order
optical susceptibility for the entirdl atom system and is not
normalized by the volume of the atomic system. @
First, we calculate the third-order optical susceptibility for {(Melo'“L01](n)e)
Bose condensed atomg’[Q]. Most of the procedure is N (dE)? , N (dE)?
straightforward; however, the calculation of the matrix ele- =7 W|p(n,n1)| + T
ment(®d,| ?[0]|d,) requires some caution. This is deter-
mined as shown below. It is easy to show that

(0lo3)r0]j0y=— ; ) ((N)gla D01 (n)g)
n(#nq

The matrix elemen((n)g|aE?[O]Kn)g) does not contribute
to PEQ] and{(n)4| o' >[0]f(n)e> is given by

X2
n/

p(n,nl)p*(n’.nl)< (N=D)[A,Any,n;ng,n")

d d
— (2) —_ (2) =
gil0lo@DI0)+ 2 F{(Melaglme=0 (14 [T

in the zeroth order ok? and .
+2 [A,An",n;n",n")—=il",(n",n;n",n")]| +c.c|.
d d nH
— (2) _ (2)
dt<o|a(l)(t)|0>+n(§nl) dt<(n)g|‘7(1)(t)|(n)g> (18)
d .
S mde@mn)) =0 15 Here we assumed 6>¢,,. By using Egs.(16) and (17),
;dt« el oOln)e) (19 xP[Q] is calculated as
|
N d* N d*
(3) —_ _ * ’ "
Xg [] 4 sgh38 4 5ohio %‘4 % p*(n’,ny)p(n”,ny)
x| 2(N=1)[24A,4n;,n";ny,n") +iT,(ny,n";n;,n")]+3> A, (ng,nng,n)+i X ,ng,nng,n)|. (19
n n

The second term in large parentheses on the right-hand side Gi®exhibits the ultraviolet divergence. This term originates
from Lamb shift, which can be formally renormalizeddq so that we neglect it. We further simplify the above expression

by assuminga/A¢gy,a/Njnc—0 andN>1. The result is

d* Neg

a

2N
1+i—2M Yrad
T

1) 1)

3
) -
XEBS [Q]_ 480(ﬁ5)3 58}1 (20)

with €g=NA(n;,n;)/4=’. The dimensionless quantity is given by

A(n,n")= H ! !

ZXy.z 2Men ! 2"n’

f dt tzf drfdr’ exp(—|r|2—|r’|2)H§(X)Hﬁy(y)
0 X

. . |z-2'|?
2]0(t|r—r’|)+12(t|r—r’|)<3— 1) , (21)

2 ’ 2 ’ 2 ’
XHR (@H, (X )H (y)H, (2) i
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the j,(x) being spherical Bessel function of the first kind.

Second, the third-order optical susceptibility for the sys-

tem of Fermi atomg{®[ Q] is obtained in the same way:

Nd* 2N v, Y
(3) — . rad rad
XFl=- a5ttt s T gF’
(22)
with

N N
2 2 A,

Z||—\

1
F—4—
where A(n; ,n;) is also given by Eq(21). The third-order

optical suscept|b|I|tyX(3) is composed of three terms. The
first leading-order term—0.2Nd*/[eq(%6)°] originates
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term is the contribution of the spontaneous decay. The third
term is the contribution of the dipole-dipole interaction in-
duced by the electromagnetic field of the vacuum and explic-
itly depends on quantum statistics. For the system of Bose
condensed atoms,&g is calculated as @2N/4772
=0.0193N, while for the system of Fermi aton& is esti-
mated as 0.0368 foN =35, 0.0462 forN=>56, and 0.0565
for N=84. Although &g is also approximately proportional
to N, it is much smaller thagg . The reduction o€ comes
from the oscillating behavior of the single-particle wave
function ¢,,(r) for largen . When we choos&=20Nv,.4,

the contribution of spontaneous decayN R4/ 726~1

X 102, while that of the dipole-dipole interaction in Bose
condensed  systemég(Neg/@)> ¥rag/ S~1X 10 3(\gg/a)3,
which becomes of the order of 1 far=0.1\.,. The second

from the simple fact that in the course of coherent excitatiorand third terms ofy(® are proportional taN“ and this en-
the degree of freedom to excite one atom in the ground-stateancement factor is due to the collective response of atoms

potential is reduced fronN to N— 1. Therefore, this term

located within a distance smaller thag,. and\.q, i.e., the

does not reflect quantum statistical properties. The seconsuperradiative character of atoms.
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