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The third-order optical susceptibilityx (3) is calculated for a system ofN cold atoms trapped in a three-
dimensional harmonic potential. The dipole-dipole interaction between atoms contributes tox (3) reflecting
quantum statistical properties of atoms. This contribution in Bose condensed systems is proportional toN2 and
is much larger than that in the system of Fermi atoms.

PACS number~s!: 42.65.An, 05.30.2d, 32.80.Lg

In a system of laser-cooled atoms, which has been of great
interest in the field of quantum optics recently, the thermal de
Broglie wavelength can exceed the interatomic distance at
very low temperatures and atoms behave as fully quantum-
mechanical objects under such an extreme condition. We
may therefore expect different behavior for ultracold Bose
and Fermi atoms. In fact, the Bose-Einstein condensation in
dilute Rb atoms has been observed@1#. So far, several theo-
retical investigations on optical responses of cold atoms such
as light scattering and fluorescence have been reported
@2–12#. The nonlinear optical probe is also expected to re-
veal the quantum statistical properties of cold atoms.

In this paper we calculate the third-order optical suscep-
tibility x (3) of ultracold bosonic and fermionic atoms. We
consider a system ofN identical two-level atoms. For sim-
plicity, we assume that the atoms are spinless. It is the nature
of quantum statistics the atoms obey that plays an essential
role and not the spin of the atoms. The relevant electronic
transition of the atom is the transition from ans state~ground
state ug&) to threefold-degeneratep states@excited states
uea&, a5(x,y,z)] and the transition energy is\veg . The
magnitude of the dipole moment for the electronic transition
of the atom is denoted byd. Atoms are trapped in an isotro-
pic and harmonic-oscillator potential of the frequencyn. The
states of an atom in the trapping potential are therefore de-
noted asug&un& for the ground-state potential anduea&un& for
the excited-state potential, whereun& is the eigenstate of the
quantized center-of-mass motion of an atom with massM in
the trap. The indexn is a triple indexn5(nx ,ny ,nz). The
eigenenergy ofun& is given by«n\n(nx1ny1nz1

3
2). Here

we have assumed that the trapping potential is the same for
ground- and excited-state atoms, although this is not the case
in general. Atoms are coherently driven by a strong classical
laser field of frequencyV, wave vectork5(k,0,0), magni-
tude of the electric fieldE, and polarization parallel toẑ.
Atoms interact also with the electromagnetic field of the
vacuum.

The important assumptions and limits in our model are as
follows. First, the size of the trapping potentiala is smaller
than the wavelength of the incident laser fieldl inc52p/k
and that of the electronic transition of the atom
leg52pc/veg . Namely, we take the Lamb-Dicke approxi-
mation. Second, the density of atoms is low, i.e., the atomic
density n5N/a3 satisfiesna0

3!1, where a0 is a typical

atomic size. The atom-atom collisions can be neglected for
the low-density atom gas in the Lamb-Dicke limit. The char-
acteristic energy of the atom-atom collisions may be written
as Ec5nas\

2/M , whereas denotes thes-wave scattering
length and is on the order of 10–100 Å for alkali-metal at-
oms. In order to neglect atom-atom collisions in the present
model,Ec should be smaller than\n and the energy shift
produced by the dipole-dipole interaction between atoms
Ed . The energy Ed may be roughly estimated as
Ed5N\g rad, where g rad5d2veg

3 /6p\«0c
3 is the natural

linewidth of the electronic transition of the atom. For ex-
ample, if we choosea51000 Å, as5100 Å, N5100, and
M5100mH , with mH being the mass of a hydrogen atom,
Ec'0.431026 meV. This is much smaller than
\n5\2/(Ma2)'0.431022 meV and Ed'1021 meV for
\g rad'1023 meV. Furthermore, the intensity of the incident
laser field should be strong enough to satisfyEc!\dE. This
condition can be easily achieved for off-resonant conditions
(V,veg). In the actual Bose condensate, however, the
atom-atom collisions are crucial to prevent the fragmentation
of the condensate into several nearly degenerate states of the
trapping potential and to initiate the nucleation of the phase
transition from a normal Boltzmann distribution@13#. Al-
though the realistic model taking into account atom-atom
collisions is preferable, our simple model may capture the
essential feature of the dilute Bose and Fermi atom gases at
zero or very low temperatures.

The system without the external laser field is described by
the following master equation for the density matrix of the
total system, i.e., the atomic system coupled to the electro-
magnetic field of the vacuum:

d

dt
r~ t !5

1

i\
@HA1HB1HI ,r~ t !#, ~1!

where

HA5(
n

«ncgn
† cgn1(

n,a
~«n1\veg!cen

a†cen
a , ~2!

HB5(
q,l

\vqaql
† aql , ~3!

and
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HI52k(
n,n8

(
qm,a

zn8n,m
a

~q!cen8
a† cgnaqm2H.c., ~4!

with the Franck-Condon factor

zn8n,m
a

~q!5dS \wq

2«0V
D 1/2eqm

a E dr exp~ iq•r !cn8
* ~r !cn~r !.

~5!

HA andHB represent, respectively, the Hamiltonian for the
free atomic system and that for the electromagnetic field of
the vacuum.HI describes the interaction between them and
k (→1) denotes a formal expansion parameter. In Eqs.~3!
and~4!, aqm (aqm

† ) denotes the annihilation~creation! opera-
tor for the photon of momentumq, energyvq5cuqu, and
linear transverse polarizationeqm (m51,2). InEqs.~2! and
~4!, cgn (cgn

† ) denotes atomic annihilation~creation! operator
for the stateug&un& andcen

a (cen
a†) denotes the atomic annihi-

lation ~creation! operator for the stateuea&un&. They satisfy
the usual commutation or anticommutation relations depend-
ing on whether atoms are bosons or fermions. In Eq.~5!, V is
the quantization volume for the electromagnetic field of the
vacuum andcn(r )5fnx

(x)fny
(y)fnz

(z) is the eigenfunc-

tion corresponding to the state un&, where
fn(x)5Hn(x/a)exp(2x2/2a2)/AaAp2nn! with the nth-
order Hermite polynomialHn anda5A\/Mn.

We follow the standard procedure of treating the vacuum
as a reservoir and eliminating the degree of freedom of the
vacuum field mode@14#. Taking the trace over variables of
the vacuum field mode (B), we obtain the following master
equation for the reduced density matrixs(t)5Tr(B)r(t):

d

dt
s~ t !5

1

i\
@HA ,s~ t !#1k2Ls~ t !, ~6!

where the ‘‘damping term’’Ls(t) is calculated in the Born-
Markov approximation as

Ls~ t !5 i (
n1 ,n2 ,n3 ,n4

(
a,b

Dab~n1 ,n2 ;n3 ,n4!

3$cen2
a† cgn1cgn3

† cen4
b ,s~ t !%2

2 (
n1 ,n2 ,n3 ,n4

(
a,b

Gab~n1 ,n2 ;n3 ,n4!

3@$cen2
a† cgn1cgn3

† cen4
b ,s~ t !%1

22cgn1
† cen2

a s~ t !cen4
b† cgn3]. ~7!

Here$A,B%65AB6BA,

Dab~n1 ,n2 ;n3 ,n4!5
1

16p

d2

\c3«0
PE

0

`

dv
v3

v2veg

3E drE dr 8 Fab~v,r2r 8!cn1
~r !

3cn2
* ~r !cn3

* ~r 8!cn4
~r 8!, ~8!

and

Gab~n1 ,n2 ;n3 ,n4!

5
1

16p4

d2

\c3«0
veg
3 E drE dr 8

3Fab~veg ,r2r 8!cn1
~r !cn2

* ~r !cn3
* ~r 8!cn4

~r 8!. ~9!

In Eqs.~8! and ~9!,

Fab~v,r !5 R dv~q!exp~2 iq•r ! (
m51,2

eqm
a eqm

b , ~10!

wheredv(q) is the element of solid angle aboutq and P in
Eq. ~8! stands for the principle value. Here we assumed that
the equilibrium temperature of the vacuum is zero. Further-
more, we neglected the difference between different«n’s be-
causen is much smaller thanveg .

In order to calculatex (3), we add a perturbation term
@Hext(t),s(t)#/ i\ to the right-hand side of Eq.~6! and solve
the resulting equation fors(t) iteratively with respect to
Hext(t) under the initial conditions(t→2`)5uF0&^F0u;
s(t)5uF0&^F0u1s (1)(t)1s (2)1•••. HereuF0& is the ini-
tial state of the system ofN atoms. Since we are in the
Lamb-Dicke limit, the incident laser field excites atoms co-
herently over the entire volume of the atomic system. There-
fore, the interaction between the atomic system and the ex-
ternal incident laser field is written as

Hext~ t !52 1
2 P̂

†E exp~2 iVt !2H.c., ~11!

with

P̂5d (
n1 ,n2

p* ~n1 ,n2!cgn2
† cen1

z ~12!

the polarization operator andp(n1 ,n2)5^n1ueikxun2& the ma-
trix element for the transition from the stateug&un2& to the
stateuez&un1&. We assume that for the system of Bose atoms
uF0& is the state where the lowest-energy stateug&un1& with
n15(0,0,0) isoccupied by allN atoms coherently, i.e., a
perfectly Bose condensed state, and for the system of Fermi
atoms uF0& is the state where each of lowestN states is
occupied by one atom. In both casesuF0& is the lowest-
energy state for the system ofN atoms. The ‘‘damping term’’
k2Ls(t) in Eq. ~6! is also treated perturbatively:
s (n)5s (0)

(n)1k2s (1)
(n)1k4s (2)

(n)1•••. This turns out to be the
expansion with respect toNg rad/d with d5veg2V, the off-
resonance frequency. Therefore, this expansion can be car-
ried out when the number of atoms is moderate or the off
resonance is large.

The third-order induced polarization is calculated through
s (3)(t), the third-order part ofs(t) with respect of
Hext(t),
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P~3!@V#5
1

2pE2`

`

dt exp~ iVt !Tr@ P̂s~3!~ t !#

5(
f0

^f0uP̂s~3!@V#uf0&1(
f1

^f1uP̂s~3!@V#uf1&,

~13!

wheref0 denotes the state where no atoms are excited and
f1 the state where only one atom is excited and the summa-
tion is done over all possiblef0 and f1 . Here we have
assumed that the wave vector and the polarization of the
probe field are the same as those of the pump~external inci-
dent! field and used the same notationP̂ for the polarization
operator for the pump field defined by Eq.~12! and that for
the probe field appearing in Eq.~13!. The third-order optical
susceptibility is given byx (3)@V#5P(3)@V#/(«0E

3). In this
paper, we calculatex (3)@V# up to the first order ofk2. It
should be noted thatx (3)@V# thus defined is the third-order
optical susceptibility for the entireN atom system and is not
normalized by the volume of the atomic system.

First, we calculate the third-order optical susceptibility for
Bose condensed atomsxB

(3)@V#. Most of the procedure is
straightforward; however, the calculation of the matrix ele-
ment^F0us (2)@0#uF0& requires some caution. This is deter-
mined as shown below. It is easy to show that

d

dt
^0us~0!

~2!~ t !u0&1(
n

d

dt
^~n!eus~0!

~2!u~n!e&50 ~14!

in the zeroth order ofk2 and

d

dt
^0us~1!

~2!~ t !u0&1 (
n ~Þn1!

d

dt
^~n!gus~1!

~2!~ t !u~n!g&

1(
n

d

dt
^~n!eus~1!

~2!~ t !u~n!e&50 ~15!

in the first order ofk2. Here u0&5uF0&5(cgn1
† )Nuvac&/

AN!, u(n)g&5cgn
† (cgn1

† )N21uvac&/A(N21)!, and u(n)e&
5cen

† (cgn1
† )N21uvac&/A(N21)! with uvac& being a state with

no atoms. Equations~14! and ~15! yield, respectively,

^0us~0!
~2!@0#0&52(

n
^~n!eus~0!

~2!@0#u~n!e& ~16!

and

^0us~1!
~2!@0#u0&52 (

n~Þn1!
^~n!gus~1!

~2!@0#u~n!g&

2(
n

^~n!eus~1!
~2!@0#u~n!e&. ~17!

The matrix element̂(n)gus (1)
(2)@0#u(n)g& does not contribute

to P(3)@V# and ^(n)eus (2)@0#u(n)e& is given by

^~n!eus~2!@0#u~n!e&

52
N

4

~dE!2

\2d2
up~n,n1!u21

N

4

~dE!2

\2d3

3(
n8

Fp~n,n1!p* ~n8,n1!S ~N21!@Dzz~n1 ,n;n1 ,n8!

2 iGzz~n1 ,n;n1 ,n8!#

1(
n9

@Dzz~n9,n;n9,n8!2 iGzz~n9,n;n9,n8!# D 1c.c.G .
~18!

Here we assumed\d@«n . By using Eqs.~16! and ~17!,
xB
(3)@V# is calculated as

xB
~3!@V#52

N

4

d4

«0\
3d3

2
N

4

d4

«0\
3d4 (

n8
(
n9

p* ~n8,n1!p~n9,n1!

3S 2~N21!@2Dzz~n1 ,n8;n1 ,n9!1 iGzz~n1 ,n8;n1 ,n9!#13(
n

Dzz~n1 ,n;n1 ,n!1 i(
n

Gzz~n1 ,n;n1 ,n! D . ~19!

The second term in large parentheses on the right-hand side of Eq.~19! exhibits the ultraviolet divergence. This term originates
from Lamb shift, which can be formally renormalized toveg so that we neglect it. We further simplify the above expression
by assuminga/leg ,a/l inc→0 andN@1. The result is

xB
~3!@V#52

Nd4

4«0~\d!3 F11 i
2N

p2

g rad

d
1

g rad

d S leg

a D 3jBG , ~20!

with jB5ND(n1 ,n1)/4p7. The dimensionless quantityD is given by

D~n,n8!5 )
a5x,y,z

1

2nana!

1

2na8na8 !
E
0

`

dt t2E drE dr 8 exp~2ur u22ur 8u2!Hnx
2 ~x!Hny

2 ~y!

3Hnz
2 ~z!Hn

x8
2

~x8!Hn
y8

2
~y8!Hn

z8
2

~z8!F2 j 0~ tur2r 8u!1 j 2~ tur2r 8u!S 3uz2z8u2

ur2r 8u2
21D G , ~21!
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the j n(x) being spherical Bessel function of the first kind.
Second, the third-order optical susceptibility for the sys-

tem of Fermi atomsx f
(3)@V# is obtained in the same way:

xF
~3!@V#52

Nd4

4«0~\d!3 F11 i
2N

p2

g rad

d
1

g rad

d S leg

a D 3jFG ,
~22!

with

jF5
1

4p7

1

N (
i51

N

(
j51

N

D~ni ,nj !,

whereD(ni ,nj ) is also given by Eq.~21!. The third-order
optical susceptibilityx (3) is composed of three terms. The
first leading-order term20.25Nd4/@«0(\d)3# originates
from the simple fact that in the course of coherent excitation
the degree of freedom to excite one atom in the ground-state
potential is reduced fromN to N21. Therefore, this term
does not reflect quantum statistical properties. The second

term is the contribution of the spontaneous decay. The third
term is the contribution of the dipole-dipole interaction in-
duced by the electromagnetic field of the vacuum and explic-
itly depends on quantum statistics. For the system of Bose
condensed atoms,jB is calculated as 3A2N/4p7/2

.0.0193N, while for the system of Fermi atomsjF is esti-
mated as 0.0368 forN535, 0.0462 forN556, and 0.0565
for N584. AlthoughjF is also approximately proportional
to N, it is much smaller thanjB . The reduction ofjF comes
from the oscillating behavior of the single-particle wave
function cn(r ) for largen . When we choosed520Ng rad,
the contribution of spontaneous decay 2Ng rad/p

2d'1
31022, while that of the dipole-dipole interaction in Bose
condensed systemjB(leg/a)

3g rad/d'131023(leg /a)
3,

which becomes of the order of 1 fora'0.1leg . The second
and third terms ofx (3) are proportional toN2 and this en-
hancement factor is due to the collective response of atoms
located within a distance smaller thanl inc andleg , i.e., the
superradiative character of atoms.
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