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The vacuum field in a dielectric cavity where the medium has a rapidly changing time-dependent refractive
index exhibits nonclassical features that are directly related to the distortion of the vacuum fluctuations of the
field. For appropriate parameters, these nonclassical effects are appreciable enough that a suitable measure of
the change in the zero-point noise of the cavity field could provide a way to probe distortions of the vacuum
fluctuations.

PACS number~s!: 12.20.2m

I. INTRODUCTION

The quantum fluctuations of the electromagnetic vacuum
field can be altered by rapid distortions of the vacuum field.
A typical and quite fashionable example consists in changing
the position of a perfectly reflecting mirror in an empty elec-
tromagnetic cavity. The time-dependent boundary condition
of a moving mirror can alter the structure of the cavity
vacuum field. Relevant work on cavity quantum electrody-
namics in the presence of moving boundaries can be found,
e.g., in Refs.@1–3#. Another example consists in changing
the refractive index of a material in time. In this case the
structure of the vacuum is altered due to the dependence of
the zero energy of the field, i.e.,\c(k x

21k y
21k z

2)1/2/2n, on
the index of refractionn, if the k’s denote the mode wave-
vector components andc the speed of light in vacuum.
Yablonovitch suggested that a rapidly growing plasma pro-
duced by short optical pulses@4,5#, or virtual photoconduc-
tivity in the transparent region of a semiconductor@6,5#,
could produce a large rate of change in the index of refrac-
tion.

Physically, the moving mirror and the time-dependent me-
dium produce similar effects and the major interest in this
type of systems has been perhaps the possibility of photon
creation that one can interpret as originating from a rapid
distortion of the vacuum. Such a distortion of the vacuum
may also be considered as a ‘‘dynamical’’ Casimir effect@7#,
if one regards as ‘‘static’’ the one@8# in which the change in
the zero-point electromagnetic energy is due to the presence
of matter whose geometry is held fixed.

In these proposals the effect of photon production is prac-
tically zero so that in any realistic experimental situations it
would be particularly difficult measuring photon numbers to
probe distortion of the zero-point quantum fluctuations of the
field. However, since the emission of photons is a purely
quantum effect, we expect the photon statistics to exhibit
nonclassical properties. In this paper we show that a change
in time of the permeability of the medium inside a dielectric
cavity modifies the quantum statistics of the cavity field. In
particular, distortions of the vacuum field can be easily re-
covered by measuring modifications in the cavity zero-point
noise. Moreover, we show that already in a quasiadiabatic
regime these modifications become appreciable enough to be
measurable and the relevant conditions are discussed. Our

analysis relies on a suitable scheme for the quantization of
the electromagnetic field in a time-dependent medium@9#.
The changes in the quantum statistics of the cavity field due
to the modulation of the medium are determined by using a
simple but exact approach based on the formal analogy with
a quantum-mechanical scattering problem.

II. MODEL

We begin by considering a cavity consisting of two per-
fectly reflecting@10# plane mirrors where only axial modes
can propagate. The space between the mirrors contains a
linear, lossless, and nondispersive@11# medium. For simplic-
ity, we let the magnetic permeability constant throughout the
cavity, while the dielectric permeability varies in time ac-
cording to

«~ t !5«0F12~12r 0 f !
e2pt/t

11e2pt/tG21 S r 0 f[ «0
« f

D . ~1!

Heret denotes the time duration of the change, while«0 and
«f denote the value of the permeability before and after the
modulation. We specifically consider the case in which
«f,«0. For the simplest geometry of a cavity of volume
V5a•b•c the frequency of the mode would vary according
to

Vl~ t !5
cA~ lp/a!21~mp/b!21~np/c!2

A«0

3F12~12r 0 f !
e2pt/t

11e2pt/tG1/2, ~2!

where $l%→l ,m,n50,1,2,..., with the restriction that only
one integer at a time can be zero. We consider only the case
of a linearly polarized field. Since there are no sources, the
Lagrangian of the electromagnetic field inside the cavity is
given by

L5
1

8p E
V
drW@«~ t !„EW ~rW,t !…22„BW ~rW,t !…2#. ~3!

We express the field in terms of a vector potentialAW so that
in the Coulomb gauge¹W •AW (rW,t)50 one has
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EW ~rW,t !52
1

c

]AW ~rW,t !

]t
, BW ~rW,t !5¹W 3AW ~rW,t !. ~4!

Introducing the expansion over the cavity normal modes

AW ~rW,t !5(
l

Ql~ t !AW l~rW ! ~5!

and assuming that the relative rate of change of the perme-
ability is slow compared to the frequency of the excited cav-
ity mode, i.e.,]«/«]t,Vl , the Lagrangian becomes@12#

L5
1

2 (
l

@Q̇l
22Vl

2~ t !Ql
2#. ~6!

The generalized momenta arePl5dL/dQ̇l5Q̇l and the
corresponding Hamiltonian may be written as

H5
1

2 (
l

@Pl
21Vl

2~ t !Ql
2#. ~7!

The radiation field in a nonstationary dielectric can therefore
be described by an infinite set of uncoupled harmonic oscil-
lators with time-dependent frequency. The quantization of
the field is straightforward. Making use of standard ap-
proaches, we associate Hermitian operatorsQ̂l and P̂l with
the classical variablesQl andPl and we postulate the famil-
iar commutation relations

@Q̂l ,P̂l8#5 i\dl,l8 . ~8!

The following non-Hermitian photon destruction and cre-
ation operatorsâl(t) and âl

†(t) can be introduced,

âl~ t !5@Vl~ t !/2\#1/2$Q̂l1 iVl~ t !21P̂l%,

âl
†~ t !5@Vl~ t !/2\#1/2$Q̂l2 iVl~ t !21P̂l%, ~9!

whose commutation rules directly follow from Eq.~8!,

@ âl~ t !,âl8
†

~ t !#5dl,l8 , @ âl~ t !,âl8~ t !#5@ âl
†~ t !,âl8

†
~ t !#50.

~10!

The Hamiltonian operator can then be written as

Ĥ~ t !5(
l

\Vl~ t !@ âl
†~ t !âl~ t !1 1

2 #, ~11!

so that before and after the modulationĤ is the usual Hamil-
tonian for a simple harmonic oscillator with a given constant
frequency. For timest1!2t/2 andt2@t/2 the Hamiltonians
are, respectively,

Ĥ~ t1!5\V1@ âl
†~ t1!âl~ t1!1 1

2 #,

Ĥ~ t2!5\V2@ âl
†~ t2!âl~ t2!1 1

2 #, ~12!

where we denote byV1[Vl(t1)5vl /A«o and V2

[Vl(t2)5vl /A« f the initial and final frequencies, which
are both assumed to propagate in the cavity. Herevl is in-
stead the unperturbed cavity vacuum frequency.

We now derive an expression for the photon operators
âl(t2)[â2 and âl

†(t2)[â2
† in terms of those before the

modulation of the dielectric, i.e.,âl(t1)[â1 and âl
†(t1)

[â1
† . Using a formalism originally due to Brown and Car-

son @13#, such an expression can be obtained from the as-
ymptotic solutions of the equation of motion for the photon
oscillator complex coordinate, or from Eq.~6! with Ql

5ql1ql* ,

q̈l1Vl
2~ t !ql50. ~13!

Asymptotic solutions can be found noting that Eq.~13! is
formally identical to a one-dimensional quantum-mechanical
barrier penetration problem. In fact, this equation turns into a
one-dimensional Schro¨dinger equation if we make the fol-
lowing replacements: timet→ space coordinatex, oscillator
coordinate q(t)→ wave function c(x), and frequency
V2(t)→2m[E2V(x)], whereE andV(x) are the total and
potential energy of a particle of massm. The two asymptotic
wave functions in the barrier penetration problem, say,cf
andcb , are described by a 232 unitary and symmetric scat-
tering matrixS @13#. Its elements give the transition ampli-
tudes for a particle incident from the right to be reflected to
the right (Rf) or transmitted to the left (Tb) and the transi-
tion amplitudes for a particle incident from the left to be
reflected to the left (Rb) or transmitted to the right (Tf). The
behavior ofcf andcb is the same as the asymptotic solutions
of Eq. ~13!, say,qf andqb , which can then be described by
the same matrixS @13#. In particular, for the present photon
problem the elements ofS give the transition amplitudes for
a photon moving backward in time to be reflected forward
(Rf) or scattered backward (Tb) in time and the transition
amplitudes for a photon moving forward in time to be re-
flected backward (Rb) or scattered forward (Tf) in time.

By evaluating the Wronskian ofQ̂l , from Eq. ~9!, and
either of the two scattering solutionsqf andqb for t1!2t/2
and t2@t/2 and then equating these two asymptotic values,
â2 andâ2

† are found to be linearly related by elements ofS to
the initial operatorsâ1 andâ1

† @13#. Following this procedure
for the case of photons moving forward in time the Wronsk-
ian operatorW[ Q̂l ,qf ] yields

â25
Tf

uTf u2
ei ~V1t12V2t2!â12

Rb*Tf

uTf u2
e2 i ~V1t11V2t2!â1

† ,

~14!

while for photons moving backward in time the Wronskian
operatorW[ Q̂l ,qb] yields

â15
Tb*

uTbu2
e2 i ~V1t12V2t2!â22

RfTb*

uTbu2
e2 i ~V1t11V2t2!â2

† .

~15!

Note that@ â2 ,â2
†#5@ â1 ,â1

†#, which preserves unitarity.
We now proceed to give an expression for the coefficients

of the transformation in Eqs.~14! and~15!. In practice, only
Rb needs to be determined. This is easily done by observing
that the barrier penetration problem associated with Eq.~13!
and the potential in Eq.~2! corresponds to a well-known
example of a one-dimensional scattering above the barrier
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for which an exact analytical solution is available@14#. The
reflection coefficient associated with the potential in Eq.~2!
is @14#.

uRb,V1 ,r0 f
~t!u25

sinh2H V1t

2
@12Ar 0 f #J

sinh2H V1t

2
@11Ar 0 f #J . ~16!

For typical values of the parameters used in our photon prob-
lem uRb,V1 ,r0 f

(t)u2!1.

III. FIELD STATISTICS

We proceed to analyze the squeezing generated by the
time-varying permeability of the medium inside the cavity.
This effect occurs when the quantum fluctuations in one of
the quadrature components of the cavity field drops below
the vacuum level. Such an effect is characterized by states of
the electromagnetic field having negative normally ordered
variances, i.e., states with no classical analog. The two Her-
mitian quadrature operatorsX̂ and Ŷ are defined as@15#

â5X̂1 iŶ, â†5X̂2 iŶ, ~17!

so that ifDX5^[ X̂2^X̂&] 2& andDY5^[ Ŷ2^Ŷ&] 2& denote
the corresponding fluctuations, one has, after the modulation,

DX
DYJ 5 1

4 $112^â2
†â2&62 Rê â2

2&%7 1
4 @^â2

†&6^â2&#2. ~18!

Since [X̂,Ŷ]5 i /2 the uncertainty relationDXDY> 1
16 must

hold and a state of the field is said to be squeezed whenDX
or DY reduces below14. With the help of Eqs.~14! and ~10!
one can expresŝâ2&, ^â2

2&, and^â2
†â2& in terms of the com-

plex reflection amplitudesRb5uRbueifb and Rf5uRf ueif f .
The latter are determined by the modulation of the medium
and the cavity parameters. From the properties of the matrix
S it follows that uRbu5uRf u[uRu. For a cavity initially in a
coherent state, i.e.,â1ua&5uaue2 iV1t12 ifua& and ^auâ1

†

5uaueiV1t11 if^au, one has

^â2&5
uau

A12uRu2
$e2 iV2t22 if1 if f2uRue2 iV2t21 if1 if f2 ifb%,

~19!

^â2
2&5

uau2

12uRu2 $e22iV2t222if12if f

1uRu2e22iV2t212if12if f22ifb%

2
uRu~112uau2!

12uRu2
e22iV2t22 ifb12if f , ~20!

and

^â2
†â2&5

uRu21uau2@11uRu222uRucosF#

12uRu2
. ~21!

Heref and uau2 denote the initial phase and average number
of photons in the field, both of which can be controlled ex-
perimentally, whileF[2f2fb . When uau250 we recover

the case of the cavity vacuum state. The expression for the
quadrature fluctuations readily follows:

DXx

DYx
J 5

1

4
1

uRu
2@12uRu2#

@ uRu7cos~2x22f f1fb!#. ~22!

The t2 time dependence has been replaced by the phasex :
this angle determines the quadrature phase of the field and is
governed by the detection scheme that is used@16#. In view
of the physical mechanism that produces squeezing, one can
interpret the photon creation originating from the distortion
of the zero-point quantum fluctuations of the field as a non-
linear excitation of the vacuum so that photon pairs can be
created. This two-photon character of the field is clearly ap-
parent in the transformation in Eq.~14!. The quantum effects
induced by this nonlinear excitation are strictly determined
by the time duration of the excitation, by the material and
cavity mode parameters. We plot in Fig. 1 the minimum
value of the variance in Eq.~22! as a function of the modu-
lation time for different cavity and material parameters. The
system exhibits maximum squeezing~;5%! for infrared
cavity modes and times of the order of fractions of a pico-
second. In general, an increase of the resonant wavelength,
or larger values of the initial dielectric constant«0, make
squeezing available at slightly longer times. The modulation
depth r 0,f and the modulation speedt ~fixed l,«0!, consis-
tently with ]«/«]t,Vl , ultimately determine the maximum
achievable squeezing. It is instructive to observe that squeez-
ing is independent of the initial phase and amplitude of the
field: equal contractions in the quadrature fluctuations obtain
for either an initialvacuum stateor an initialcoherent state.
The size of the electromagnetic vacuum distortions can then
be recovered through a measure ofeither the zero-point
noise reductionor the noise reduction in a cavity mode ini-
tially populated by a large coherent mean field.

Thephoton-counting statistics, on the other hand, is ana-
lyzed in terms of deviations from classical Poisson statistics:
This is conveniently assessed in terms of the MandelQ

FIG. 1. Minimum zero-point noise in the field of a dielectric
cavity as a function of the modulation timet ~in psec! of the me-
dium. The vacuum level limit 0.25 corresponds to the unperturbed
cavity, while smaller values are achieved with a modulation of the
medium. The upper~lower! set of curves corresponds to 5%~10%!
relative change in the permeability with the following parameters
~from top to bottom!: $l55 mm, «051%, $l530 mm, «051%, and
$l530mm, «052%. For a 5%~10%! change in the dielectric perme-
ability the maximum noise reduction is;2.5% ~5%!.
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factor @15# Q[^[Dn] 2&2^n&/^n& with ^[Dn] 2&
5^n2&2^n&2. The sign ofQ determines whether̂@Dn#2&
exceedŝn& or ^n& exceedŝ@Dn#2&, i.e., whether the photon-
counting statistics is super- or sub-Poissonian. Since for a
classical stochastic fieldQ must be non-negative, sub-
Poissonian photon statistics is regarded as an essential quan-
tum feature of the field@15#. For a cavity field initially in a
coherent state the photon-number fluctuations after the
modulation are

^@Dn̂2#
2&5

2uRu21uau2@118uRu224uRucosF#

~12uRu2!2
, ~23!

so that

Q25
uRu41uRu21uRuuau2@ uRu318uRu22~11uRu2!cosF#

~12uRu2!$uRu21uau2@11uRu222uRucosF#%
.

~24!

Unlike for squeezing, the counting statistics exhibits nearly
opposite behaviors, depending on the initial number of pho-
tons in the cavity. For an initialvacuum statethe photon-
number fluctuations after the modulation always exceed the
photon-number mean value: in this case the dielectric origi-
nates radiation with a super-Poissonian statistics andQ2 is
close to unity. This is a typical feature of the effect of
squeezing on the vacuum@15#. Therefore a rapid change in
time of the permeability somehow reorganizes the phase of
the vacuum, which is inherently random. For acoherent state
with an initial nonvanishing mean number of photons the
number distribution may instead become slightly narrower
than before the modulation for appropriate values of the
phaseF ~fixed t! or of t ~fixed F!. In this case the phase
uncertainty for the state resulting from a change of the re-
fractive index becomes larger than that of the original coher-
ent state to satisfy the usual number-phase uncertainty@15#.
Figure 2 ~upper frame! represents the variation ofQ2 with
N[uau2 andF, for a modulation of fixed duration. The addi-
tion of an appropriately large coherent amplitude can convert
the super-Poissonian statistics of the perturbed vacuum into a
sub-Poissonian photon-number distribution. This nonclassi-
cal effect, however, survives only for very short modulations.
Figure 2~lower frame! represents the variation ofQ2 with N
and the lengtht of the modulation. In this case, for eacht,
we takefb andf so that the phase differenceF is fixed and
equal to 0. For the parameters considered here only a few
percent narrowing of the photon-number distribution takes
place for modulations shorter than some fractions of picosec-
ond and completely disappears thereafter. The sub-
Poissonian regime takes place provideduRu31uRu
1uau2[ uRu322uRu218uRu22],0, whenF50. SinceuRu is
much smaller than unity this condition sets, for eachuRu, a
lower bound on the initial number of cavity photons leading
to a narrowing of the photon-counting distribution. For the
cavity and pumping parameters we examine here,
uaminu

2'1022, which produces in practice a very sharp super-
to sub-Poissonian transition.

In general, the appearance of effects associated with a
distortion of the zero-point vacuum fluctuations is restricted
to a nonadiabatic regime@1–5#. However, for a dielectric
cavity sizeable effects occur also in a quasiadiabatic regime

or when the time scales of the dielectric modulation become
comparable to those associated with the photon cavity fre-
quency. Notice that in this case one still has]«/«]t,Vl

since the relative change in the dielectric permeability is usu-
ally rather small~,10%! @17#. On the other hand, when the
modulation time scales are larger than those for the cavity
mode frequency nonclassical effects completely disappear.
Thus, for slow changes of the permeability the response of
the vacuum fluctuations is always adiabatic and no effect is
observed, while rapid enough changes can cause real transi-
tions, boost quantum fluctuations into real photons, and
modify the quantum statistics of the cavity vacuum.

IV. CONCLUSION

We use a rather straightforward approach to study the
quantization of the electromagnetic field in a time-dependent

FIG. 2. Upper frame: MandelQ factor as a function of the
photon numberN and the field phaseF for t50.01 psec. Lower
frame: MandelQ factor as a function of the photon numberN and
the time durationt ~in psec! for F50. The cavity field is initially in
a coherent state with average photon numberN, phaseF, andQ50.
The cavity and material parameters are, respectively,l525mm and
r 0,f5«0/« f51.11. A super- to sub-Poissonian transition occurs for
N>1022 and modulations shorter than 0.3 psec~upper frame! or
phasesuFu<p/2 ~lower frame!, producing up to a 5% maximum
narrowing of the distribution. ForN.2 the features of this figure
are unchanged.
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medium and to demonstrate nonclassical effects in the field
of a one-dimensional dielectric cavity whose medium has a
rapidly changing time-dependent refractive index. Squeez-
ing, in particular, occurs and a measure of the change of the
zero-point noise in a dielectric cavity would then provide a
way to probe distortions of the zero-point fluctuations of the
radiation field. For certain time scales, cavity and material
parameters noise reductions of the order of a few tenths of a

decibel could be achieved, which are just large enough to be
measurable@18#, unlike the immeasurable number of pho-
tons produced by such a distortion.
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