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Preparation energy for electromagnetically induced transparency
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We discuss a requirement for the laser energy that is necessary to initiate electromagnetically induced

transparency: The number of photons in the coupling laser pulse must exceed the product of the number of
atoms in the laser path times the ratio of the oscillator strengths of the probe and coupling laser transitions.

PACS number(s): 42.50.Rh, 32.80.Dz, 42.50.Hz, 42.65.Ky

It has been shown experimentally that if two lasers are
applied to a resonant three-state system (Fig. 1), the atoms
will be driven to a population trapped state, and a medium
that is opaque to a probe laser can, by applying both lasers
simultaneously, be made transparent [1—4]. When both lasers
are pulsed, the dynamics of this process is especially inter-
esting and the extent to which transparency is established
depends on the relative pulse shapes, their rate of change
relative to the instantaneous Rabi frequency (adiabaticity),
and the timing of the applied pulses [5—9].

One method for establishing electromagnetically induced
transparency (EIT) is to use matched pulses; i.e., pulses that
have identical complex envelopes but arbitrary absolute am-
plitude and phase. In Ref. [6], EIT with matched pulses has
been studied for the special case where the linewidth of state

l3) is large compared to both the Rabi frequencies and the
rate of change of the applied pulses. Here, we extend this
work to allow for an arbitrary linewidth of state l3) and
focus on the time scale and minimum laser energy that is
necessary to establish transparency in an ideal, Doppler-free
medium. We give numerical evidence and heuristic argu-
ments that show that the time scale for establishing transpar-
ency with adiabatic matched pulses is much shorter than the
time scale for establishing a population trapped state of a
single atom; and for pulses that vary slowly as compared to
the Pythagorean sum of the Rabi frequencies on the two
transitions, pulsewidth is irrelevant and the requirement for
the initiation of transparency is that the number ofphotons in
the l2)—+l3) transition laser pulse exceed the number of at
oms in the laser path times the ratio of the oscillator
strengths of the probe and coupling laser transitions.

Our notation is established in Fig. 1. At time t=0, all of
the atoms are in the ground state l1). The envelopes of the
probe and coupling laser pulses are denoted by the complex
(dimensionless) quantities f(z, t) and g(z, t), respectively
[10].We consider one-dimensional propagation and write the
electromagnetic fields in terms of their Rabi frequencies

Ba& j= —II fa3,
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The quantities a~ and a, are defined as the power absorption
coefficients of the probe and coupling laser with all of the
atoms in state l1) or state l2), respectively; i.e., a~=No~
and ct, =err, , where rr&=2toz~lpi3l /(cepAI 3), o.,
=2to,

l p23l /(cepAI 3), N is the atom density, and the p, ;,
are the transition matrix elements.

We define new variables

To avoid the need for density-matrix notation we assume
that state l3) decays to states that are outside the system. We
study the ideal case where the linewidth of the l1)~l2)
transition is zero and where inhomogeneous broadening can
be neglected. (As discussed below, these are reasonable ap-
proximations for short laser pulses. ) We make the rotating-
wave approximation and neglect the contribution of other
transitions to the propagation constant. Working in local time
r=t z/c, the eq—uations for the probability amplitudes a;
and electromagnetic fields f(z, 7.) and g(z, r) are

Q~(z, t) = Re(Q~f(z, t)exp[j(ro„t —k~z)]),

A, (z, t) = Re(Q,g(z, t) exp[ j(to, t —k,z) ]),

where the quantities A~ and 0, are real and independent of
space and time.

FIG. 1. Energy-level schematic for the analysis. Pulse shapes

f(r) =g(r) are applied at z =0.
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The probability amplitude of state a3 is the same in either
basis; i.e., b 3

= a 3 and 0 = A +0
Equations (la) and (1b) are then
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where ui —=(0,u + Q~ u, )/0, , uz =—(0 u~+ 0,u, )/0, ,
and u3—= (A~A, /fl, )(up —u, ).

For matched pulses applied to a medium with all atoms
initially in the ground state, the initial condition on the atoms
at r=O, for all z, is a, (z,O) =1, az(z, O) =a3(z,O) =0,
and therefore bi(z, O) =0, /0, , bz(z, 0) =Q~/A, , and

b3(z, O) = 0. The boundary condition on the fields at z= 0, for
all r, is f(O, r) =g(O, r) and therefore h(O, r) =0 and

s(O, r) =f(O, r).
We observe that if either b2= h = b3= 0 or b& = s

= b3=0, then all derivatives are zero; and in this sense, the
paired variables b&, s and b2, h, both with b3=0, are the
normal modes of the system [6]. It is apparent from Eq. (3)
that if matched pulses are applied at z=O, then irrespective
of adiabaticity, ultimately the system will evolve into the
first of these normal modes, and thereafter the medium will
be transparent. But as I 3 decreases, the time scale for estab-
lishing the normal mode and transparency becomes ever
longer.

If the matched pulses are adiabatic (Bf/Br(&A, ), prepa-
ration occurs much more quickly, and depends only on the
energy of the pulses. Figure 2 shows this result: At z=0, we
apply matched pulses with Rabi frequencies 0~=1 and
II,= 10, and numerically solve Eq. (1) to obtain the pulse
shapes at the end of a medium that is 50 units long. The
decay rate I 3 of state I3) is decreased so that in part (a) it is
10 and in part (b) it is 0.01.The absorption coefficients of the
probe and coupling lasers are equal, o.~= n, , and vary in-
versely as I 3, so that the product of the absorption coeffi-
cient and decay rate is constant. This normalization keeps the
total number of atoms in the laser path unchanged as I 3 is
reduced.

The solid and dashed curves in each part of Fig. 2 show
the probe pulse in local time at the start and end of the
medium. Irrespective of the ratio of I"

3 to the Rabi frequen-
cies, the pattern is the same. For early times the medium is
opaque and the probe pulse is absorbed. At a critical time,

FIG. 2. Probe amplitude vs local time (s) at z=0 (solid lines)
and z =50 (dashed lines). In each figure, 0 = 1, 0,= 10, and the

applied pulse is ten units long. In the successive figures, the decay
rate is reduced and the absorption coefficient n~=n, =—n is in-
creased so that the atom density length product is constant. (a)
I'3=10, u=0.1. (b) I'3=0.01, u='100. The tick mark at r=11.7
denotes the time at which the integral from zero to ~ of the coupling
laser photons is equal to the number of atoms in the laser path.

which is roughly the same in both figures, the medium rather
abruptly becomes transparent. The upward tick at 7.= 11.7 in
each figure denotes that time at which the integral of the
coupling laser photons from zero to v = 11.7 is equal to the
number of atoms in the path of the laser beam. We thus
observe that the medium becomes nearly transparent at a
time when the number of coupling laser photons that have
passed through it is equal to the (oscillator strength
weighted) number of atoms in the laser path.

In Fig. 3 we focus on the case where I 3=0.01 and exam-
ine the behavior of the atoms in both the bare and in the
normal mode bases. The solid and dashed curves show the
probability amplitudes at the start (z = 0) and end (z= 50) of
the medium. At z=0, the optical pulses are exactly matched
and the atoms exhibit strong oscillations in their probability
amplitudes. For matched pulses, these oscillations occur
when I'3(A, , and decay on a time scale of 1/I'3. This is
the time scale for establishing transparency for a single atom
or of an optically thin sample. In this example, this time
scale is much longer than the applied pulse. At z=50, the
atom behavior is different. Here, the oscillations in the prob-
ability amplitudes are much less pronounced and, as the
probe pulse passes, the, atoms may be viewed as making a
transition to a reasonably good normal mode, thereby estab-
lishing transparency in a time much less than 1/1 3.

It is important to note that the coupling laser energy that is
required to initiate transparency is not absorbed by the me-
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FIG. 3. Atomic probability am-

plitude vs local time (s) for the
conditions of part (b) of Fig. 2.
The behavior of the atoms is
shown at z=O (solid lines) and
z=50 (dashed lines) in the bare
and normal mode bases. At the
time when the medium becomes
transparent, the atoms make a
transition to a reasonably good
normal mode.
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FIG. 4. Probe amplitude vs local time ss at z=O (solid lines)

g 0 =0 = 10.All other conditions are theand z= 50 (dashed lines .
same as in Fig. 2.
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FIG. 5. Probe amplitude vs local time (s) for unequal absorption
coefficients and parameters Q&=1, A, =10, 1 3=0.01, n =200,
and n, =100. z=0 (solid line) and z=50 (dashed line). The tick
mark at ~= 13.54 denotes the time at which Eq. (4) is satisfied.

The actual probe pulse losses in Figs. 2(a) and 2(b) are 7.4%
and 5.3%, respectively.

In Fig. 4 we show the input and output laser pulses for
equal Rabi frequencies. Preparation occurs somewhat sooner
than in the case for a small probe; but overall, to within a
factor of 2 in preparation energy, the behavior is comparable
to the small probe case. Figure 5 shows that we obtain simi-
lar behavior when the absorption coefficients a~ and n, are
not equal.

These results suggest the application of picosecond and

subpicosecond lasers to EIT experiments in their own right,
and to nonlinear processes [12] and laser without inversion
experiments that use EIT [13,14]. The requirements on the
coupling laser pulse are that (a) it must be short as compared
to the inverse linewidth of the

~
1)—+ ~2) transition, (b) it must

vary slowly as compared to its instantaneous Rabi frequency,
and (c) it must have an energy such that the number of pho-
tons exceeds the oscillator strength weighted number of at-
oms in the laser path.

For metal vapors or gases, these conditions are easily sat-
isfied. Two-photon Doppler widths are usually less than 0.1
cm and therefore require pulses shorter than 50 ps. Effi-
cient nonlinear frequency conversion will require an atom-
length product of about 10'6 atoms/cm, and therefore sev-
eral mJ per cm of laser energy density. For matrix elements
of 1 a.u. , the Rabi frequency at 10 W/cm is about 10
cm and therefore satisfies the rise-time requirement. For a
beam diameter of 1 mm, experiments in metal vapors or
gases will require picosecond time-scale pulses, with pulse
energies of about 1 mJ.

In essence, group delay allows counterintuitive prepara-
tion of EIT on a time scale that is short as compared to the
decay or dephasing rate of the upper state. This type of
preparation requires pulses that vary slowly as compared to
their instantaneous Rabi frequency.
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