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Photon-number statistics from the phase-averaged quadrature-field distribution: Theory
and ultrafast measurement
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We prove that the photon-number distribution of an arbitrary single-mode optical state can be calculated
directly from the phase-averaged quadrature amplitude distribution, measured using optical homodyne detec-
tion. We experimentally demonstrate the application of this result by measuring the ultrafast (subpicosecond),
time-resolved photon-number statistics of a weak field from a pulsed diode laser. Also presented is a numerical
calculation of the photon-number distribution of a quadrature-squeezed vacuum state.

PACS number(s): 42.50.Ar, 03.65.Bz, 42.50.Dv

Recently, measurements of the probability distribution

Pz(xtt) of the quadrature-field amplitude xe of an optical field
have been used for the experimental determination of optical
quantum states [1].The set of distributions (Pe(xe)} has
been measured using optical homodyne detection (OHD),
which is based on the interference of the signal field with a
strong, coherent reference field (local oscillator), which has
an adjustable phase with value 8 [1,2]. Given the set of dis-
tributions for a sufficiently large number of 8 values, the
Wigner distribution of an arbitrary quantum state can be re-
constructed using tomographic reconstruction [1,3]. The
Wigner distribution of a quantum state is uniquely related to
the density operator, and thus represents the complete experi-
mental determination of the state of a given mode [4], which
in turn yields the probability distributions for all possible
observables, such as photon number and optical phase [5].

If the single-model state is known beforehand to have a
uniform distribution of optical phase (phase-random state),
the Wigner distribution can be calculated from a single
quadrature amplitude distribution using an integral transform
[6]. However, if the state does not have a uniform optical
phase distribution, it is interesting and useful to ask whether
the photon statistics of an arbitrary state can be obtained
without measuring the full set (P&(xtt)) and using this to
reconstruct the Wigner distribution. Here we present a
method for doing this and experimentally demonstrate its
application to a weak field from a pulsed diode laser. The
demonstrated sampling time of the technique is 330 fs,
which is over an order of magnitude faster than previously
demonstrated techniques [7]. It should be straightforward to
extend the sampling time to 1.0 fs.

Consider a case where a lack of precise phase control of
the signal and local oscillator (LO) prevents measurements
of the set of distributions (Pe(x) 8)}using OHD, and infor-
mation on the measured optical state is thus incomplete.
Here we address what information can be obtained from the
phase-averaged quadrature-field amplitude distribution

1 f2+P(()=, d8 Pa(xe=g),
2W)0

where $ is used for the quadrature amplitude after 8 aver-
aging. These data would result from collecting a single

Pe(xtt) =(xelplxe)=(xlUt(0)pU(0)lx). (2)

This shows that phase shifting the LO field by 8 corresponds
to shifting the signal field by —8, so we will denote the
phase-shifted density operator as p( —0)=—Ut(0) pU(0).

The phase-averaged quadrature probability distribution
given in Eq. (1) can be rewritten as

1 f2'
P(~) =

)
d 0&xI U'(0) s U(0) lx) l.=,=(xl p, lx) I.=(,

where we defined a density operator p„ for the phase-
randomized version of the actual state p,

72~
p„= d0 p( —0).

2'7T J 0
(4)

Next we prove the intuitively reasonable result that the
photon-number distribution does not change when the optical
phase of an arbitrary state is randomized [8]. The photon-
number distribution of the phase-random state p„ is given by

quadrature-amplitude probability distribution using a LO
field with a (uniformly) randomly modulated phase. We
prove that the photon-number distribution p(n) of any
single-mode optical state can be calculated directly from the
phase-averaged quadrature-amplitude distribution through a
simple integral transform, without assuming any special
form of the optical state. We present an analytical functional
representation of this new transform.

The in-phase quadrature amplitude is defined in terms of
the lowering operator a as x=(a+at)/Q2 and has eigen-
states lx). When an arbitrary signal field in state I'Ir) passes
through an optical phase shifter (e.g., a block of
glass) the resulting phase-shifted state is U(0)l%'), where

U(0) =e ' ", with tt =attt and 0 is the optical phase shift
[8,9]. When using a LO field that has been phase
shifted by 0, optical homodyne detection measures the dis-
tribution of the phase-shifted quadrature amplitude
xs=(ae' +ate ' )/Q2, which is represented by the basis

lxs) = U(0) lx). For a signal field state described by the den-
sity operator p, the measured quadrature distribution is

1050-2947/95/52(2)/924(4)/$06. 00 52 R924 1995 The American Physical Society



52 PHOTON-NUMBER STATISTICS FROM THE PHASE-AVERAGED. . . R925

f2'
P(n) =(rilp. ln) = d~(nlUt(0) pU(~)l&) (5)

Using
uj'

c O-

n=o

U(0) [n) = e ' "fn) = /n)e ' "

in Eq. (5), it is apparent that

p(n) =(n~ p„~n) = (n~ p~n).

(6)
-2-

I

0
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Equation (3) shows that the phase-averaged quadrature
distribution of an optical state is equivalent to the fixed-
phase quadrature distribution of the phase-randomized state,
and Eq. (7) shows that the photon-number distribution of an
optical state does not change if the phase of that state is
randomized. Therefore, we are left to derive the photon-
number distribution of a phase-random state given its
(single) quadrature probability distribution. The transforma-
tion between the quadrature distribution of a phase-random
state and its resulting Wigner distribution W(x,p) has previ-
ously been derived by Leonhardt and Jex and is given by [6]

W(r) = d(—
J+r

B~P( g)

I
oo t'oo

p(n)=2( —1)" dx dp L„[2(x +p )]
J —~

where W(r) depends only on r= gx +p since the state is
phase random, and 8~ denotes a derivative.

The photon-number distribution p(n) can be obtained
from the Wigner distribution by integrating Laguerre poly-
nomials L„(x) over the Wigner distribution [10]

FIG. 1. Calculated value of the function M„(g) versus g for n

equal to 0 and 9.

(oo

p(n) =2( 1) dg P(g)8g (g).

Equation (12) can be simplified using the properties of the
step function and changing variables to q=r /g, and sub-
stituting the power-series representation of the Laguerre
polynomial [11]into Eq. (12) yields

ln't ti ez.(6) = —X
2m=p m ~ (m) Jp $1 —q

22m+ 1 g2m+ 1

=p (2m+1). !

X4(m+ 1,m+-,'; —g ), (14)

where 4&(n, P;z) is a degenerate (confiuent) hypergeometric
function.

Taking the derivative with respect to g of Eq. (14) and
using the properties of the hypergeometric function, and
combining with Eq. (13), we obtain the final result

X e-t""'&W(x,,). (9) S (~) = d4 M.(()P(k), (15)

Transforming Eq. (9) into polar coordinates and using Eq.
(8), one obtains the photon-number distribution directly from
the phase-averaged quadrature probability distribution as

( oo

p(n) = —2( —1)" r dr L„(2r )
3o

where the function M„(g) is given by

( —1)m+" l n )
M„($)= g 2 +'(2m+1)(2

=p (2m+1)!!(m)

X4(m+1,m+; —g ). (16)
t

oo

Xe dg-
&+r

8(P(()'
q2 „2' (10)

This can be rewritten as

p(n) = —2( —1)" d4' ~P(()z.((),
J —~

where

Z„($)=
Jo

L„(2r )e
r dr [8(g—r) —0(—g —r)],

(12)

and O(x) is the Heaviside step function. Integrating Eq. (11)
by parts one obtains the simple form

Thus, the photon-number distribution of an arbitrary optical
state can be determined by averaging the function M„(()
over the phase-averaged quadrature probability distribution.
This result is in the same spirit as recent work on sampling
the density matrix using optical homodyne detection [12].

The function M„(g) can be calculated using the power-
series representation for 4(n, P;z). As can be seen from Eq.
(16) the function M„(g) is an even function in (. Figure 1
shows plots of the function M„(g) for n equal to 0 and 9.
Once the set of functions iM„(()) is calculated, the photon-
number distribution can be easily and quickly calculated
from the phase-averaged quadrature probability distribution
measured using OHD.

The use of OHD in the detection and characterization of
squeezed light is widespread [13].In the case of quadrature-
squeezed light the precise control of the phase difference
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FIG. 2. (a) Theoretical phase-averaged quadrature probability
distribution for a quadrature-squeezed vacuum state and (b) the re-
sulting calculated photon-number distribution. 0.02—

c) d)

between the signal and the LO is necessary in order to ob-
serve high levels of squeezing. On the other hand, we have
shown here that if only the photon-number distribution is
sought, the difficulty of phase control and tomographic re-
construction can be eliminated. As a first example of the
usefulness of this theory, we present a numerical calculation
of the photon-number distribution of a quadrature-squeezed
vacuum state calculated from the theoretical phase-averaged
quadrature field distribution.

The quadrature probability distribution for a quadrature-
squeezed vacuum state is given by I 14]

(-g'l
Pq(g) = exp

( ice)

where w&= cosh(s)+sin(20)sinh(s), s is the gain parameter,
and the quantum efficiency of the detection system is as-
sumed to equal unity. By numerically integrating Eq. (17) we
calculated the phase-averaged quadrature probability distri-
bution. Figure 2(a) shows a plot of P(() for s=3.0. By
integrating P(() with the set of functions (M„(g)), we then
calculate the photon-number distribution of the squeezed
state, which is shown in Fig. 2(b). Although all phase infor-
mation on the squeezed state is lost by averaging over the
LO phase, the photon-number distribution of the state and
the even-odd oscillations in photon number characteristic of
quadrature-squeezed light can be calculated.

A case in which the phase difference between the LO and
signal cannot be controlled is that of a pulsed laser. Although
a laser pulse has a well-defined phase on each pulse, the field
builds up from a few, random spontaneous emission events,
and thus has a random phase from pulse to pulse.

We have demonstrated the use of dc-balanced OHD
I I] to

measure the time-resolved photon-number statistics of a 5-ns
pulsed field with a sampling time of 330 fs, set by the dura-
tion of the LO pulse. The ultrafast sampling allows us to
measure the photon statistics of very broadband fields such
as a diode laser below threshold [15].We use an argon-laser-
pumped Ti:sapphire laser in combination with a chirped-
pulse regenerative amplifier to generate ultrashort, trans-
form-limited LO pulses (330 fs) at a wavelength of 830 nm
and a repetition rate of 4 kHz with approximately 10 pho-
tons per pulse. Our signal is from a Sharp LT015 laser diode
with a wavelength of 830 nm and a pulse width of 5 ns. The
laser-diode-current drive pulse is triggered by the LO
through an adjustable electronic delay having 80-ps jitter,
which sets the time-resolution limit in this experiment. Be-
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FIG. 3. Measured quadrature-amplitude distributions for (a)
t = 4.0 ns and (b) t = 6.0 ns, and the resulting photon-number distri-
butions for (c) t=4.0 ns and (d) t=6.0 ns, obtained from (a) and (b)
by using Eq. (15).
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FIG. 4. Measured average photon number versus time delay
between the LO and start of the signal pulse.

cause the overall efficiency of the homodyne detection sys-
tem (-65%) is less than 100%, we should say that the mea-
sured p(n) corresponds to an effective field that has suffered
detection losses.

Figure 3 shows examples of the measured quadrature
probability distributions and the resulting photon-number
probability distributions at two different times in the pulse, at
l(a) and (c)] 4 ns and [(b) and (d)] 6 ns after the laser diode
turns on. The distribution in Fig. 3(c) shows nearly Poisson
statistics, as expected for a laser above threshold. Figure 3(d)
shows a transition to thermal-like statistics as the laser drops
below threshold near the end of the pulse.

Figure 4 shows the average photon number (n) during the
330-fs sampling time, obtained from quadrature distributions
measured at 80 different time delays between the LO and the
beginning of the signal pulse. Relaxation oscillations with a
period of 300 ps are observed in the average photon number
(n) as the laser first turns on.

In conclusion, we have derived a transformation between
the photon-number distribution of an arbitrary optical state
and the single phase-averaged quadrature-field amplitude
distribution. This transformation is simply an integration of
the quadrature distribution over a set of well-behaved, ana-
lytical functions (M„(g)). Since the phase-averaged quadra-
ture distribution can be measured using OHD with a phase-
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random LO, this theory is useful in all cases where phase
control of the optical fields is difficult or impossible. The use
of OHD using ultrashort phase-random LO pulses to mea-
sure time-resolved photon-number statistics offers promise
for time resolving the photon statistics of weak, ultrafast op-
tical sources such as molecular and semiconductor systems.

Note added in proof. Subsequent to the submission of

this paper, a paper with similar theoretical results was pre-
sented at the 3rd Central-European Workshop on Quantum
Optics: H. Paul, U. Leonhardt, and G. M. O'Ariano, Acta
Phys. Slov. 45, 261 (1995).
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