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Decoherence from spontaneous emission
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Starting from a generalization of the Weisskopf-Wigner model for the case of a two-level atom with a largely
spread center-of-mass wave function, we show that spatial correlations are destroyed to some extent by a

spontaneously emitted photon. We derive a particularly simple form of the corresponding decoherence function
and determine the dependence of the decoherence on orientation and size of a detector registering the outgoing
photon.

PACS number(s): 03.75.8e, 03.65.8z, 32.80.—t

I. INTRODUCTION

When describing an excited atom that is spontaneously
emitting a photon one usually considers the atom strongly
localized, i.e., pointlike compared to the wavelength of the
emitted light. Though this assumption is usually adequate in
regard to the extension of the electron cloud around the cen-
ter of mass of the atom, it need not be so in regard to the
atom's center-of-mass wave function P(x, t) Through mo.d-

ern experimental technology it has become possible to pre-
pare atoms whose uncertainty in position exceeds consider-
ably the wavelength of the emitted light [1—3]. It was shown
in a recent pioneering experiment by Pfau et al. [4] that in
this case the emitted light decoheres the spatial correlations
of the atomic density matrix. These authors also gave a short
theoretical treatment of the decoherence effect. Focusing on
one spatial dimension (z), they started from the observation
that the averaged density matrix for the center-of-mass coor-
dinate, gt 1(z) = fp(z' —z,z') dz', the transverse one point-
coherence function, is just the Fourier transform of the dis-
tribution for the z component of the momentum. The final
momentum distribution is readily calculated [5], and Fourier
transforming the result yields the final coherence function

gft 1(z) in the product form

where g~') is the initial coherence function, and the decoher-
ence function D(z) proves to be the Fourier transform of the
distribution for the momentum (in the z direction) of the
emitted photon.

In the present paper we will generalize this result in three
ways: (i) we will consider a wavepacket in the full three-
dimensional space; (ii) we will study the change of the
atomic density matrix p(x, x ) itself, i.e., the true two-point
correlation function; and (iii) we will evaluate the decoher-
ence function on condition that the emitted photon has hit a
detector with variable size. We will show that a relation simi-
lar to Eq. (1) holds, namely [6]

for excitation and hence subsequent spontaneous emission).
We will derive an explicit expression for the decoherence
function D(r) and discuss its properties. Moreover, we will
clarify the physical assumptions and approximations on
which Eq. (2) rests.

First of all, let us illustrate the physical meaning of the
decoherence function in an atomic interference experiment
of Young's type. We assume the impinging wavepacket to be
"quasimonochromatic"; i.e., to have a well-defined de Bro-
glie wavelength. Then, in perfect analogy to classical optics,
the "intensity"; that is, the probability to detect an atom, at a
given position in the observation plane, can be written as

I-p(x, x)+ p(x+r, x+r)+2 Re (p(x,x+r)e'~ ' r, (3)

where the argument 7. in the phase factor denotes the differ-
ence of the propagation times from the locations of the holes
x and x+ r in the interference screen to the observation point.
One learns from Eq. (3) that the visibility of the interference
pattern is given by

I,„I;„2lp—(x,x+ r) lI,„+I;„p(x,x) + p(x+ r, x+ r)
' (4)

II. GENERAL THEORY

We utilize a recently found solution [7] to the problem of
spontaneous emission, in the dipole approximation, from an
extended wavepacket. This is an extension of the treatment
by Weisskopf and Wigner [8], taking the center-of-mass mo-
tion into account. We are interested in the atomic state only
after the emission has happened; thus we consider the ini-
tially excited atoms only at times t larger than the mean
lifetime of the excited level 70 . In this case the solution [7]
for the wave function l'qr(t)) of the total system reduces to

The influence of decoherence according to Eq. (2) is now
readily explained: It follows from Eq. (3) that the phase of
the decoherence factor D(r) gives rise to a shift of the inter-
ference pattern, whereas its modulus, according to Eq. (4),
describes a reduction of the visibility.

p, ;„(x,x+r, t) = p(x, x+r, t) D(r), (2)

where the density matrix p, ;«describes atoms that have
undergone spontaneous emission, whereas p refers to atoms
that have not (provided they were treated identically except

1050-2947/95/52(2)/905 (4)/$06. 00 52 R905 1995 The American Physical Society



R906 OLE STEUERNAGEL AND HARRY PAUL 52

P coo
exP -E

2f M+MJ 2
t

P;(P,k, ;t) =k, no(P+fik;) , z' pk, Ak,

(6)

Here p denotes the atomic momentum, @nd kj and cuj are the
wave vector and the frequency of the radiation modes. The
label j stands for both the wave vector and the polarization,
coo denotes the atomic eigenfrequency, M is the atomic mass,
and no(p) denotes the initial center-of-mass wave function,
for the atom, in momentum representation. The X's are the
coupling constants (in units of A, ) describing dipole coupling.
Due to our assumption t&&go, the atom is in the ground
state with certainty. Hence the internal atomic state does not
af'feet the density operator for the center-of. -mass dynamics
and has therefore been discarded in Eq. (5).

In what follows, we will assume that no polarization-
sensitive measurement is performed on the emitted photon.
Choosing the two independent polarization directions associ-
ated with the wave vector k= k(cosqsin6, sing&sin@, cos6) as
ui = (cosqeos@,sinqeos6, —sin@) and uz = (—sing, cosy, 0),
we can perform the summation over the two polarizations,
for given k„with the result

I) kl'—= I] k,il'+ I) k,zl'

=gk[(d, sing —d~cosy)

+ (d,cosycosil+ d sinycosil —d, sinful) ], (7)

where d= (d, ,dY, d, ) is the atomic dipole moment and gk a
universal coupling constant.

We imagine that a detector equipped with an optical im-
aging system collects radiation corresponding to a certain
solid angle AA in k space. Then, according to the axioms of
quantum mechanical measurement theory, a response of the
detector will give rise to a reduction of the wave function (5)
to the density matrix (in p representation)

p, ,«(p,p';t) = const g p, (p, k, ;t)p,*(p',k, ;t), (8)
j[AA]

where the trace over j is restricted to those modes whose
propagation direction falls into the solid angle AA.

We now assume that the atomic velocity is small com-
pared to the velocity of light (nonrelativistic approximation).
Then the second term in the denominator of Eq. (6) is neg-
ligibly small compared to coo, and the same holds true for
the first term [9].Hence in what follows we will drop those
terms and pass from Eq. (8) to the x representation

p, ;«(x,x', t) = const d p d p' d k lkkl e ' P

J tan] (oi ohio) +'Yo

where Eq. (7) has been used. Upon substituting p+ fik=P, p'+ flak, =P', we can rewrite Eq. (9) as

(9)

p, ;«(x,x', t)=const d P d P' (P) rr(pr) —i[(P —P' )lzfr+(P' P) k]r/M—
d3k l) [2 i(P x P' x')Ifr ik (x' ——x)

2 2
AA] (o~ —foo) +yo

= const
e ik (xf —x)

d'k l) klzpr x+ t yr*'x'+ t 2 z
3 [AA] M )

'
( M ) co —coo +y()

' (10)

where co= ck.
lt is obvious from Eq. (10) that we arrive at an expression

of the factorized form (2) if we neglect the kick the atom
experiences due to emission, expressed by the correction
6kt/M in the argument of the atomic center-of-mass wave
function. When will this be justified? Inserting for t the value
10yo consistent with the derivation of Eq. (6), and assum-
ing the atomic velocity in the laboratory frame to be of the
order of 1000 m/s, we determine the ratio of the shift in-
duced by the recoil of an optical transition (coo=10' /s,
yo=10 /s) to the particle's de Broglie wavelength kdi) and
find: Iikot/(Mkdfi) =27rc/(v coot) =2 X 10 . Clearly such a
small relative shift can be neglected.

Dropping this correction in Eq. (10) we arrive at the de-
sired result (2), where the decoherence factor is given by

which is, in fact, the Fourier transform of the momentum
distribution for the registered photons. Thus Eq. (11) is the
extension of the previous result [4] in three respects: (i) it is
the generalization to three dimensions; (ii) it allows us to
study the influence of actual measurements on the emitted
photons; and, what is most important, (iii) it describes the
decoherence of the full density matrix. Of course, since the
decoherence factor depends only on r, it also describes
the deterioration of the averaged density matrix
Jd x p(x, x+ r;t), i.e., the one-point coherence function that
was studied in [4] for the one-dimensional case. Finally, one
learns from Eq. (2) that the normalization condition for the
decoherence function simply reads D(0) = 1, thus determin-
ing the constant prefactor in Eq. (11).

III. DISCUSSION

D(r)=const d k lkkl z
~ t»] o~ ~oo + 'Yo

Let us now discuss different experimental conditions, i.e.,
detectors that, seen from the atom's position, cover various
solid angles AA in k space.
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FIG. 1. Dependence of the decoherence function [Eq. (13)] on
the parallel and the orthogonal components of the displacement
vector r with respect to the dipole axis d, kB =4m.

A. AD=4m

This is the situation one encounters when a fictitious de-
tector is employed that counts any photon, or, more physi-
cally, when no measurement is made at all. The integral, Eq.
(11), can be split into two angular integrations over p, l9,

and one radial integration over k running from 0 to ~. The k
integral can be extended over the whole real axis introducing
a negligible error [10]; hence this yields a residual integral
and the intermediate result

0.7

I
2m f

D4 (r)= dq
So Jo

(12)

'Tr

d g g ~)
~2 —

yO ~cos8l icucrcose

70

Neglecting the very smooth envelope e ~o"~"'~ and inserting
the coupling according to Eq. (7), we finally obtain

=3 1 2 sin(kor)
D4 (r)= —

2 2 sine(kor)d~+
kor

cos(kor)

(kor) .75

X(2d~~ —d~) (13)

where d~~ and d~ denote the parallel and the orthogonal com-
ponents, respectively, of the dipole moment d with respect to
r and sine(x) =(sinx)/x. It follows from the behavior of the
sine function that the coherence is destroyed for kor ~1; i.e.,
when r is of the order of the wavelength k. This is indeed
what one expects from a simple physical argument: The ra-
diation could be collected by a microscope to image the
emitter. It is well known from classical theory that in this
way one can determine the position of the emitter with an
accuracy that is roughly given just by X. Hence, quantum
correlations must be restricted to a spatial region of exten-
sion ) .

Moreover, one observes from the result (13) that coher-
ence is damped off faster in the direction of r parallel to the
dipole moment than perpendicular to d. This feature be-
comes evident from Fig. 1.

In what follows we will specialize to the case of a ran-
domly orientated dipole; then the second term in curly brack-
ets of Eq. (13) vanishes.

FIG. 2. Modulus of the decoherence function for a randomly
oriented dipole tEq. (18)] dependence on the parallel and the or-

thogonal components of the displacement vector r with respect to
the detector axis. The collecting angle of the detector is assumed to
be a polar cap with polar angle 7r/10 (a), sr/3 (b), and m. (c), re-

spectively. Note the different scaling of the coordinate axes in these
plots.

B. LLQ(4m

For a randomly orientated dipole the squared coupling
constant (7), ~)J, reduces to gkd . Even with this simpli-
fication, the integration over the polar angles in Eq. (11)
becomes rather involved for the general case of a fixed de-
tector position with collecting angle AA as well as an arbi-



R908 OLE STEUERNAGEL AND HARRY PAUL 52

trary displacement r. It is only when we adapt the shape of
AA, for given r, to a polar coordinate system with its polar
axis in the r direction, i.e., assume AA to be bound by
6

&
«-6- 6z, y& ~ y- yz, that the integration can be done

analytically. Neglecting the effect of the finite atomic life-
time yo, the integrand, as a function of k, can be approxi-
mated, up to a constant factor, by a delta function
8(k —ko), where ko= coo/ c. Then the integral (11) is readily
evaluated yielding

exp( ikor cos6, ) exp—(i kor cosi)2)
Da„r) =

ikor(cos6, —cos62)

plane perpendicular to the direction of observation. More-
over, it becomes obvious from Eq. (16) that D(r) falls off
slower, the smaller 6z —6&, i.e., the smaller AO, .

In the more practical case of a detector with a collecting
angle, the form of which does not depend on the direction of
r, we will choose the central axis of AA as the polar axis
and the detector to be a polar cap, 0~@~2~, 0»6~6&.
Then, characterizing the direction of r by the polar angles

P and 8, we have to calculate the integral

I'2'
D(r) =const sins)di) dq&exp(ikor[cos(q —tt)

&o Jo

= sine(kor [costi —cos62]/2) X sin@sinH+ cos@cosO]) . (17)

X exp(ikor [cost) i+ cos@2]/2) .

Note that D/sti(r) does not depend on tp2
—cp, when normal-

ized such that D(0) =1. We see from Eq. (14) that, in con-
trast to the case kB=4m, the decoherence factor is now a
complex function. For the extreme case of a detector cover-
ing an infinitesimal solid angle dA, Eq. (14) simplifies to

Ddri(r) =exp[iko r] . (15)

@+a, a, —a~= sine korsin — -sin
2 2 j

(16)

One learns from Eq. (16) that ID(r) I, for fixed 62 —6i, falls
off faster the closer the detector's central axis along

(6,+ 82)/2 comes to the equator of the polar coordinate
system at 6= 7r/2. Since the polar axis is given by the r
direction, this means that the decoherence is strongest in the

This simple result shows that a photon emitted into a pre-
cisely defined direction does not decohere the atomic density
matrix, but only shifts its phase. Hence it is not the photon's
recoil that is primarily responsible for the decoherence ef-
fects, but the optical resolving power of the employed detec-
tor. The destruction of coherence is described by the modulus
of D(r) that follows from Eq. (14) as

ID(r)
I

= l»nc(kor [costi —«s~2]/»
I

The integral over y yields the Bessel function Io, i.e., we
arrive at the result

D(r) = const
~

sin@ di) Io(korsin@sin@)
00

Xexp(ikorcos@cose) . (18)
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This integral has been evaluated numerically. The results are
depicted in Fig. 2. One recognizes from Fig. 2(a) that the
decoherence is much stronger in the direction of r orthogonal
to the detector axis, compared to the parallel orientation.
Moreover, it is obvious that with growing collecting angle
AA the decoherence effect becomes stronger, as predicted
also by the analytic solution (16).

In summary we have used a recent extension of the
Weisskopf-Wigner theory of spontaneous emission to derive
an explicit expression for the decoherence function. In posi-
tion representation this decoherence function simply is a fac-
tor changing the density matrix of the atomic center-of-mass
wave function. We have specified the underlying approxirna-
tions and studied various observational conditions.
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