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Counterpropagation of two light beams in a resonant medium so dense that the local driving field differs
from the external field is considered. It is shown that efficient energy transfer between the two beams occurs
if there is some asymmetry between their propagation conditions due to, e.g., their frequency difference or
Doppler detuning caused by the motion of the medium. The directional energy flow may predominate over

absorption and lead to gain.
PACS number(s): 42.50.Ne

Phenomena caused by local fields in optically dense
atomic media are of growing interest because of their pos-
sible applications in optoelectronics and spectroscopy. Physi-
cally, the difference between an externally applied field and a
local electric field, driving atoms or molecules in the me-
dium, may be explained as the consequence of the dipole-
dipole interaction between resonant centers. The difference
can be calculated with the two-level approximation, which is
reasonable for many optically susceptibie media, including
semiconductors [1]. This difference can be expressed via the
Lorentz-Lorenz relation [2] for the local field EX,

L 4
E“=E+ TP, (1)

where E is the externally applied electric field and P is the
volume polarization. The dipole-dipole interaction can sig-
nificantly affect the light-atom dynamics when the atomic
density is sufficiently high. In the case of linear interaction of
weak light beams with the medium, the main consequence of
the local-field effect is a spectral shift of the absorption line
[3]. The value of this shift,

o=4m7u*Ny/3%y, )

(m and N are the dipole moment and the density of resonant
centers, respectively) in units of the transition linewidth
v, , may be considered as the characteristic parameter of the
influence of the local field. In experiments with vapors, o
cannot reach values higher than several units, because with
the increase of atomic densities the collisional self-
broadening of the line occurs (y,%N;). It might be possible
to avoid this restriction by using an atomic beam technique.
Media, where high values of o should be available, seem to
be Rydberg atoms, activated crystals, and semiconductors,
because of their large dipole moments.

For arbitrarily strong light fields, the frequency shift due
to the local field is proportional to the population difference
between the resonant levels, which makes the Bloch equa-
tions nonlinear with respect to the atomic variables [4]. This
fact is the cause of intrinsic optical bistability (IOB) [1,4],
i.e., a bistable dependence of the atomic variables upon the
applied external field intensity. Light propagation through a
medium exhibiting IOB can result in a spatial first-order
phase transition that separates regions of high and low exci-
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tation of the atomic medium [5-7]. The boundary between
the two phases gives rise to nonzero reflectivity in backward
phase conjugation, which might be useful for studying inter-
nal switching characteristics [6].

In this work we are studying the effect of IOB on the
dynamics of two arbitrarily strong light beams counterpropa-
gating in the dense medium. We predict the effect of light-
induced gain, which occurs at a certain ratio between the
beam intensities, when the modulation depth of the light in-
terference pattern exceeds some threshold value. The direc-
tion of the energy transfer between the two fields is deter-
mined by the sign of the small frequency detuning between
them or, equivalently, by a slow motion of the medium along
the direction of light propagation. Such directional energy
flow can be efficient enough to overcome absorption, which
is particularly strong for media exhibiting the IOB. As the
direction of the energy transfer is sensitive only to the sense
of the motion of the medium, this phenomenon could find
applications in mobility detectors and, possibly, in neutral
atom trapping.

The Bloch equations for the polarization amplitude P and
the population difference N governing the two-level atomic
dynamics read, in the slowly-varying envelope approxima-
tion,

dP N ) _ _,u2 L

7 [y, l(w—wo)]P——z—ﬁ NE*,

—dN+ vi(N+Ny)= - (EtP*—EL*p) 3)
dt ! 07 2% ’

where w and w, are the field and transition frequencies, 7y,
and 7y, are the population and coherence relaxation rates,
respectively, and E* is the amplitude of the local driving
field.

After substitution of the Lorentz-Lorenz expression (1)
into (3) we get the following dimensionless system:

d'@+1 i(S P=—n&,
‘d—;[ i(6—on)]7=—né&,

dn r .
Z—;+b(n+1)=§(é@"+é(’*f), 4)
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where we have introduced the following substitutions:

. _ ﬁ‘)’z(/
P=iuNy??, N=nN,, E= z,
M
T=7yt, O=(w—wy)ly,, b=y /y,.

The steady-state (d/d7=0) solutions & ,n, of (4) may
be found from the following expressions:

. mn & _ 1+A? Aes
ST T TR AT

(5)

The expressions (5) have the same form as those of the
standard Bloch equations without the local-field correction.
The only, but very important, difference is that & is replaced
by the renormalized detuning A, which depends on the popu-
lation difference n,. Thus the solutions (5) exhibit a bistable
dependence upon the intensity I=|&]? of the external field,
which is illustrated in Fig. 1(c) The change of the field in-
tensity / with propagation distance due to the presence of
absorption can produce a switch from the upper branch of
the S-shaped bistability curve to the lower one [see Fig.
1(c)], resulting in the formation of two coexisting high- and
low-excitation domains. In Ref. [5] this effect was consid-
ered as a spatial first-order phase transition.

If the net field #(z) consists of two components propa-
gating in opposite directions *z, the resulting intensity in-
terference pattern |£(z)|* [Fig. 1(a)] should lead to the es-
tablishment of the population and polarization gratings
ny(z),7%(z) with the same period 7/k, where k is the light
wave number [Fig. 1(b)]. If the interval [1,,;,, ;/,.0x] between
the minimal and maximal intensities in this interference pat-
tern contains one or two switching points I, 4,,, Of the
bistability characteristic, i.e., of the light-intensity depen-
dence of a given atomic variable, e.g., population difference
n, as in Fig. 1(c), the resulting grating should also have a
bistable shape as shown in Fig. 1(b). In a specific experi-
ment, the choice between the two (upper and lower) stable
branches is governed by the system’s previous states, and an
adequate description should necessarily consider the tempo-
ral dynamics leading to the steady state. On the other hand,
the uncertainity in the shape of the grating [n,(z) in Fig.
1(b)] could be avoided by relative motion of the medium
with respect to the light interference pattern, i.e., along the z
axis. Then atoms moving adiabatically along z choose their
switch-up and switch-down points according to the direction
of their relative velocity [see Fig. 1(b)].

To account for the atomic movement, we assume & to be
a sum of two counterpropagating cw waves with slightly
different frequencies:

ge—imt:(g+eikz+iet+g—e-ikz)e~iwt~ (6)

The small relative frequency shift € causes movement of the
grating along z, or, equivalently, if both waves have the same
frequency it can reflect the motion of the medium, since € is
related to the Doppler shift kv as e=2kv. The requirement
of adiabaticity of the motion means that the time taken by an
atom to pass through one period of the interference pattern
should be longer than the shortest of the medium relaxation
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FIG. 1. Light intensity (a) and population difference (b) spatial
distributions over two periods of the grating 27/k=N\, and the
bistable dependence of the population difference upon the light in-
tensity (c). The dashed lines in (b) and (c) represent the unstable
states. The dotted line in (b) corresponds to the stable but not oc-
cupied state. The direction of the relative motion of the medium is
shown. The solid line with arrows in (b) shows the resulting shape
of the population grating.
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times 7/kv>y; '. This condition also ensures that the rela-
tive frequency shift € is small in comparison to the linewidth
v, , which is necessary if effects of phase self-modulation
are to be neglected. The value ~10'! s™! for the linewidth
sets the upper limit on the velocity of the medium, v<10°
cm/s. The present steady-state consideration does not allow a
lower limit for the velocity to be determined, but from intui-
tive arguments it is clear that 7/kv should not exceed the
time constants of any possible intensity variations of the ex-
ternal fields.

The asymmetry of the grating profile in Fig. 1(b) with
respect to the point z= 7r/2k, which is absent in the external
field intensity distribution [Fig. 1(a)], reflects the spatial
manifestation of the hysteresis of n; and results in the ap-
pearance of the odd spatial components in the induced grat-
ing. As will be shown below, it is this shape of the grating
that is responsible for the directional energy flow.

Because of the nonlinear dependence of the polarization
2 on light intensity,

|E(D)P=|E, P+ E_ P+ £, £ |cos[2kz+ (D, — D )],

where &, are the phases of field components
&+ =|&.+ |exp(i®-), the function D(z) = &, related to the
medium susceptibility, should be expanded into a Fourier
series with the basic spatial frequency 2k. The lowest-order
contributions to the susceptibility of the medium to the coun-
terpropagating beams then read

D(z)=Dy+D_.cos[2kz+ (P, —P_)]
+Dsin[2kz+ (P, —D_)]+- -, @)

where the complex Fourier coefficients D, ; are expressed
as follows:

.k [Tk
Dy=Dj+iDy=—| " D(2)dz,

. 2k [k
Dc=D£+ich:?J D(z)cos(2kz+® . — P _)dz,
0

. 2k (7lk
Ds=D§+iD;=? D(z)sin(2kz+ D, —® _)dz.
0

It should be pointed out that the appearance of the finite
odd sine term in expansion (7) is a direct consequence of
IOB, which is manifested on a scale of N\/2. Using the ter-
minology introduced in [5], the spatial first-order phase tran-
sitions are organized in a one-dimensional array, whose spa-
tial phase shift with respect to the light field intensity
distribution leads to a nonmutuality, i.e., directionality of the
Bragg reflection of one of the light waves. Selection of terms
P+ in polarization P corresponding to &.exp(*ikz) results
in the following expressions:

s Igil — . r  tikz— o *+ikz
Pr= DO+M(Dc+le) Ere™M=x.Ee™ (8)

After substitution of expressions (8) into the wave equa-
tion, two coupled equations for the amplitudes of the coun-
terpropagating fields & . are obtained:
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*—& = —KoX+ &+, (9)

where k is the linear amplitude absorption coefficient in the
line center.

It follows from (8) and (9) that the real part of the sus-
ceptibilities x. , which is responsible for the energy wave
balance (Imy. contributes to the refractive index), can be
divided into two parts. Linear and nonlinear absorption are
given by the term D{+ D’|&=/2& .|, and it is the imaginary
part Di of the sine component D; that is responsible for the
directional energy flow.

Analysis of (8) shows that the shape of the grating, as
displayed in Fig. 1, is ensured by the motion of atoms in a
positive z direction or, equivalently, by the positive sign of
the detuning €. The corresponding distribution of the value
ImD(z) has a negative Fourier sine component ImD <0,
which means that the energy is transferred from &_ to
&, . Consequently, even if |&,|=|&_|, Rex,.<Rey_, and
under certain conditions the energy flow can dominate the
absorption, given by D and D”; hence wave &, which
propagates in the direction of motion of the medium, can be
amplified. This flow occurs only when D:#0, which re-
quires the following inequalities for the amplitudes of the
counterpropagating beams:

(=180 <Lign, (Z:|+|E_D*>1,,, (10)
where I4,,, and I,, are defined as the switch-down and
switch-up points on the bistable curve (see Fig. 1). In other
words, the depth of the intensity modulation of the spatial
interference pattern should include the bistability interval
[Idown ;Iup]-

The range of amplification of wave &, (&_ for €<0)
defined by conditions (10) is shown in Fig. 2. The asymme-
try with respect to the line |E,|=|E_| appears to be due to
the cross effect.

To solve the propagation problem (9), we calculated nu-
merically the distributions of susceptibilities y. on the plane
{&+;&_} for different sets of the atomic parameters. The
amplitudes of the beams, which entered the medium with the
boundary values &, (z=0)= Iﬂr/z and &_(z=L)=1"?, were
changed because of the absorption, and eventually could sat-
isfy (10). This seriously affected the counterpropagation dy-
namics, resulting in the occurrence of spatial first-order
phase transitions. A typical distribution of the beams’ inten-
sities along the propagation direction z is shown in Fig. 3.
This figure clearly exhibits the presence of the amplification
regime for beam &, , caused by the directional energy flow.
The discontinuity in spatial derivatives of the field can also
be considered as the spatial phase transition between regions
with different propagation properties. In contrast to the situ-
ation described in Ref. [6], this phase transition indicates a
change in the profiles of the polarization and the population
grating; in other words, in the character of the distributed
feedback. This means that the transition zone should be
thicker than one wavelength of the illuminating light.

Naturally, a question about the validity of the approxima-
tion of amplitudes slowly varying in space could arise if we
remind ourselves that the value of the local-field coefficient
o is of the order of linear on-line (w= w,) absorption losses
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FIG. 2. Diagram displaying the range of amplification of the
wave &, (shaded area) at §=—2 and 0=20. The dashed line
encloses the region of the energy transfer.

per wavelength koA [4]. This approximation is correct, pro-
vided the field amplitudes & are not significantly affected
over one grating period. Referring to Fig. 2, one can see that
self-induced gain is obtained in the region of sufficient and
unequal field intensities, which ensures strong saturation of
the nonlinear absorption coefficient for all points along z.
Even in the most critical case, |£,|=|&_|, when the total
intensity in nodes of the interference pattern is zero, the
smallness of the absorption coefficient in comparison to
should be ensured by the local-field linear frequency shift,
reducing the linear on-line absorption by a factor of o2, as
can be seen from (5).

It should be noted that directional energy flow as a con-
sequence of IOB can occur not only with counterpropagating
beams but also in any other geometry of the interacting
waves in which light-induced gratings could be created. For
sufficiently dense samples, such energy transfer should affect
many nonlinear processes, e.g., forward two-wave interac-
tion, forward and backward four-wave mixing, and nonlinear
spectroscopy signals. JOB creates a spatial hysteresis in the
gratings’ profiles, which is eliminated by relative motion of
the light interference pattern and the medium, producing an
asymmetric shape in the grating profiles, and the nonrecip-
rocal Bragg scattering of light beams on them results in an
intense energy flow, which could compensate a nonlinear
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FIG. 3. Longitudinal distribution of the field amplitudes |&, |
and | #] _ in the medium for §= —2, o =20. The gain for the beam
&, occurs in the middle part of the plot.

absorption. The sense of the energy transfer depends strongly
on the mutual orientation of the beams’ propagation direction
and on the direction of the relative light-medium motion.
This phenomenon could find an application in sensitive mo-
tion detectors, allowing motion of the medium to be detected
at speeds much slower than N7y, .

We also wish to point out that energy transfer of the kind
described above is related to a momentum transfer, i.e., with
the exertion of mechanical force. Attenuation of one of the
counterpropagating beams together with enhancement of the
other lead to a strong stimulated optical force acting upon
atoms in a direction determined by the relative detuning of
the two beams, or by the atomic motion with respect to the
light interference pattern. This effect could be very useful in
optical trapping of neutral atoms. Most exciting seems to be
the possibility of strong atomic compression by overcoming
the repulsive forces arising from radiation trapping [8], since
the force we discuss here occurs only at sufficiently high
densities.
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