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Two-mode heterodyne phase detection
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We present an experimental scheme that achieves ideal phase detection on a two-mode field. The two modes
a and b are the signal and image band modes of a heterodyne detector, with the field approaching an eigenstate
of the photocurrent Z=a+b~. The field is obtained by means of a high-gain phase-insensitive amplifier
followed by a high-transmissivity beam splitter with a strong local oscillator at the frequency of one of the two
modes.

PACS number(s): 03.65.Bz, 42.50.Dv

The quantum-mechanical measurement of the phase of
the radiation field is the essential problem of highly sensitive
interferometry, and has received much attention in quantum
optics [1,2]. Most of the work has been devoted to measure-
ments on a single-mode electromagnetic field, where the
measurement cannot be achieved exactly, even in principle,
due to the lack of a unique self-adjoint operator [3].

It can be readily recognized that the absence of a proper
self-adjoint operator in the one-mode case is mainly due to
the semiboundedness of the spectrum of the number operator
[4,5], which is canonically conjugated to the phase in the
sense of a Fourier-transform pair [6]. This observation dis-
closes the route toward an exact phase measurement in terms
of two-mode fields, where a phase-difference operator be-
comes conjugated to an unbounded number-difference opera-
tor [7].Moreover, as already noticed in Ref. [8], a two mode
field corresponds to a complex photocurrent Z such that

[Z,Zt] = 0, with a self-adjoint phase operator p = arg(Z) that
can concretely be measured. Despite its promising possibili-
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ties, not much work has been devoted to the two-mode phase
detection, and attention has been focused mostly on the al-

gebraic structure. of the photocurrents (see Refs. [5—7] and
references therein). Only in Ref. [8] has a concrete experi-
mental setup been devised, based on unconventional field
heterodyning with the signal and image-band modes both
non vacuum.

Here in this Rapid Communication, following the route
opened by Ref. [8], we study the eigenstates of the hetero-

dyne photocurrent Z and provide an experimental scheme
that approaches them. We then analyze the measurement of
the two-mode phase P= arg(Z), showing that the ideal sen-
sitivity limit 8P = 1/n can be achieved for a large mean num-

ber of photons n.
It has been proved by Yuen and Shapiro [9] that the output

photocurrent Z of a heterodyne detector (for unit quantum
efficiency, and in the limit of strong local oscillator and van-
ishing beam splitter reflectivity) is just the operator
Z=a+bt, where a denotes (the annihilator of) the signal
mode and b the image-band mode. In ordinary heterodyning
the image-band mode b is vacuum and is responsible for the
additional 3-dB noise. Here, similarly to Ref. [8], we use the
heterodyne detector in an unconventional way, namely with a
nonvacuum b mode, and look for field states that are eigen-
vectors of the current Z.
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It is easy to check that the following vector [8],
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is the eigenvector of Z with complex eigenvalue z. In Eq. (1)
lp)Sly&) denotes a vector in the two-mode Hilbert space
M~= M~, SMt, , and x) & represents an eigenvector of the

quadrature X~= —,'(c te'~+ H.c.) of the pertaining mode
c=a,b. The notation I)) is a reminder that the state is a
two-mode one. The set (lz))j is completely orthonormal for
~, with scalar product

strong pump

FIG. 1. Outline of the experimental setup to generate two-mode

phase states approaching heterodyne eigenstates. The PIA produces
the "twin beams" in Eq. (9) and the beam splitter achieves the

displacement (11) (see text).
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In the number representation the vector (1) reads as follows:

lz)) = e' " y c„(z,z) ln) s lm),
n, m=O

with

c„„+x(z,z) = c„+x„(z,z)

In the parametric approximation of the infinite classical (un-

depleted) pump the modes a and b are identified with a

couple of signal and idler modes of the amplifier [the gain is

(1 —lt. ) '].Apart from an irrelevant phase factor, the eigen-
state lz)) can be generated by l0)) upon displacing either a or
b. Displacing the mode a, we have

))=e' e"' "lo)).

, ,
z'L„'(lzl')exp ——lzl' .

The physical (normalizable) state lz))x approaching lz)) for
infinite gain is obtained in the same way,

(4)

Equation (4) is obtained from Eq. (1), using the number rep-
resentation of the quadrature

It 2 ) 1/4 in/

y(xln) = —' e H„(/2x),2"n!

along with the following identity between Hermite and La-
guerre polynomials:

z))x=e'~&e" (1—X )' g ( —k)"ln)Sln). (11)
n=0

The displacement in Eq. (11) can be achieved by combining
the "twin beams" l0))x with a strong coherent local oscilla-
tor lp)(p~~) in a beam splitter with a transmissivity

r~ 1, such that
l pl gl —r= lzl (the local oscillator is at the

frequency of the signal mode a). The experimental setup to
generate the state (11) is sketched in Fig. 1. The state (11)
has an average number of photons

+ dx
e ' H„(x+y)H„+x(x+t)=2"+"n!L„(—2yt)t . 2X

n = x((zla'a+ b'biz))x= lzl'+
I

(12)

The Dirac-normalized states lz)) have an infinite total num-

ber of photons, and we seek physically realizable states ap-
proaching

l z)) for infinite photon numbers. The eigenstate
corresponding to a zero eigenvalue is given by

The state (11) is now impinged into a heterodyne detector
with signal mode a and image-band mode b. The probability

density of getting the value z for the output photocurrent Z
with the field in the state lw))„ is given by

1
Io)) = + ( —)"ln)Sln).

This is just the "twin beams" at the output of a phase-
insensitive amplifier (PIA) in the limit of infinite gain [10].
One has
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(14)

In the limit k~ 1, one has that l((zlw))/, l
—++ (z —w),

confirming that the state lw))/, approaches the eigenstate

lw)) of the current Z.
The detection of the phase @=arg(Z) is described by the

marginal probability density of (13), namely,

1
8$= =

n
(18)

classical approximation for the local oscillator at the beam
splitter requires that its intensity lPl be much greater than
the input photon number =(1—X) ' of the "twin beams. "]
Optimizing 8'P versus lwl at fixed n one obtains the sensi-
tivity
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for lwl =(1—X) ', namely for signal photons equal to the
"twin-beams" photons. The sensitivity (18) obeys the same
power law as the ideal sensitivity for one-mode phase detec-
tion (actually it is improved by a constant factor equal to
1.36; see Ref. [1]).

The ideal phase sensitivity (18) has been derived with the

hypothesis of unit efficiency at the heterodyne photodetector.
It is easy to show that for nonunit quantum efficiency (inde-
pendent of frequency in the range between signal and image-
band modes) Eq. (14) becomes

(16)

corresponding to the rms phase sensitivity [12]

1
(g y2) 1/2

Qz lwl
(17)

In the limit of infinite gain at the PIA (X~1 ) one has

b, z -1/2(1 —X) and n=lwl —+(1—X) '. [Notice that the

where H=arg(w), and erf(x) denotes the error function
E2

erf(x) =2/+mfodte ' . .Notice that the probability density

(15) is just the Born rule for the self-adjoint operator
P= arg(Z) = —i/2 ln (Z/Zt); this is well defined on the Hil-

bert space ZWo, the orthogonal complement in W~ of the

space Mo spanned by vector l0)) in Eq. (7) [11].The integral
over r in Eq. (15) just sums up degeneracies of eigenvectors
(3); the zero-eigenvalue vector is not degenerate, and gives a
zero-measure contribution to the integral. The first Gaussian
term in the last line of Eq. (15) gives a uniform phase prob-
ability distribution for the "twin-beams" input state l0))i, .

For 6/, && lwl, Eq. (15) approaches the Gaussian form

Then, it is clear that the result (18) holds only in the limit
1 —g(& w, whereas in the opposite situation
1 —y&& w one obtains the usual shot noise
8i//i = g(1 —z/)/2n.

In conclusion, we have presented a feasible scheme to
detect a two-mode phase of the field, approaching the eigen-
states of the heterodyne current Z. The state of the field is
obtained by means of a high gain PIA followed by a high
transmissivity beam splitter with strong local oscillator at the
signal frequency. The ideal rms sensitivity BP= 1/n is
achieved for large photon numbers n&) 1 and for signal pho-
tons lwl =n/2. The gain of the PIA (parametrically ideal) is
tuned to the value g= 1/4n, and the quantum efficiency at
the photodetector must be very good, namely 1 —rg(&2/n.

Hence, the two-mode phase detection could be experi-
mentally achieved, but the technical requirements are strict:
two local oscillators plus a classical pump at the PIA (all of
them coherent and at different frequencies); linear amplifica-
tion for high gains, with the pump still undepleted; and very
good quantum efficiency. This shows how technical difficul-
ties can rise when going from one-mode to two-mode phase
detection.
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