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Double photoionization of helium at low photon energies
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The cross sections for single and double photoionization of helium at energies from the threshold of double
ionization to 280 eV are calculated by combining the previously developed hyperspherical close-coupling
method with a discretization procedure for the continuum spectrum of He+. No pseudoresonances due to the
discretization are found. Both the length and acceleration forms of the dipole operator are used, and the results

hardly depend on these different gauges. The results are compared with previous theories and experiments.
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The theoretical calculation of atomic processes involving
two electrons in the continuum, or double continuum, is one
of the most difficult problems in atomic physics. An example
is the double photoionization of helium, in which two elec-
trons are emitted. Double ionization by a single photon could
not occur if the electron-electron correlation were absent,
since the photon-atom interaction is the sum of one-electron
operators. Especially at low photon energies, the two elec-
trons in the continuum are strongly correlated. Therefore,
this correlation effect must be taken into account accurately,
and must be difficult to treat by perturbation theory. On the
other hand, the cross sections o.++ for double ionization are
much smaller than those for single ionization, o+, and the
determination of o.++

by subtracting o.+ from the total
photoionization cross section o., is bound to be plagued by
the loss of accuracy.

The many-body perturbation theory (MBPT) treats the
electron-electron correlation perturbatively, and has been
successful in the calculations of o.++ for He at high photon
energies co [1—3]. The cross sections at very high co may be
calculated by using an asymptotic-to formulation [4,5]. A
recently proposed method for calculating o+ for low co [6]
uses a trial function that is simple at short electronic dis-
tances from the nucleus but that satisfies the asymptotic
boundary condition that is correct in the stationary-phase
limit. Another method circumvents the correct asymptotic
boundary condition for two outgoing electrons, invoking
projection operators to separate double ionization from
single ionization [7].

There is a class of methods for single photoionization and
electron-impact excitation that describes the asymptotic
wave function in a close-coupling-type expansion form. If
one uses bound-state-like pseudostates to represent the target
continuum states by discretization, one may extract o.++

from calculations similar to those for single photoionization.
A method combining this technique with the eigenchannel
R-matrix method was applied recently to low-co o.++ for He
with some success [8].However, the spurious oscillations of
o++ found as a function of cu had to be smoothed out arti-
ficially.

In this paper, we combine the hyperspherical close-
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coupling (HSCC) method [9] with the technique of pseu-
dostates for discretizing the continuum He+ states, and cal-
culate o.++ for He from the threshold to 280eV. This
method is nonperturbative and takes full account of the
electron-electron correlation effect. The calculated o.++

seems to be free from spurious oscillations, and is found to
be almost gauge independent, which is a feature absent in
previous theoretical o.++.

For the two-electron wave function of He expressed as
W(r, , rz) =(R ' sinn cosn) '4(R, crA) in terms of the hy-
perspherical coordinates, the Schrodinger equation may be
written as

1 g H,
~+ 2 E&(R,u—, A) =0,

where R = (r, + r2) is the hyperradius, ct = arctan(r2/r, )
1/2

is the hyperangle, and 0 denotes collectively the four angles
(r, , r2) . The adiabatic Hamiltonian H, d for a fixed R, written
in the hyperspherical coordinates, may be found in Ref. [9].
The eigenfunctions of H, d define hyperspherical adiabatic
channel functions [10].

The configuration space is divided into two regions, the
inner region (R ( RM) and the outer or asymptotic region
(R ) RM). In the inner region, the wave function 4('"1 is
expanded as

4 '" (R, n, A) = g F (R) P~(ot, A.;R) (2)

in terms of diabatic basis functions P defined in Refs.
[9,11].Substituting Eq. (2) into the Schrodinger equation (1),
one obtains close-coupling equations for F~ )(R). These
equations may be solved by well-established computational
methods, and independent sets of solutions at the boundary
R = RM may be obtained; further details may be found else-
where [9].Extensive studies of two-electron systems [9,11—
15] have shown that the strong electron-electron correlations
in the inner region for processes with one electron in con-
tinuum are well described by the expansion in terms of the
rapidly convergent basis functions (@ ), which are set up
numerically and are independent of the total energy E. This
suggests that the same HSCC method should also be power-
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ful for describing the electron-electron correlations in the
inner region for double photoionization in the low-energy
region.

To extract the information on double photoionization, we
use a discretization method [8,16] in the outer region R )
RM. In other words, the double continuum or the two-
electron continuum is represented by an electron interacting
wi&h a He+ ion in the continuum that is represented by a
discretized pseudostate. More specifically, the wave function
in the outer region is expressed as

'qr, '"'(rt, rz)=r 'g y;(r, r" )[f (r )8;,—g;(r )K;,],

(3)

where r~ = min(r&t, trz) and r& = max(rt, rq). The func-
tions f; and g; are regular and irregular Coulomb functions
for open channels, linear combinations of exponentially de-
caying and growing functions for weakly closed channels,
and an exponentially decaying function and a null function
(=0) for strongly closed channels; see Ref. [9] for details.
The function q; is written as

(4)

in terms of an eigenfunction pzM of the square of the total
orbital angular momentum and its projection onto a quanti-
zation axis. The function R„-,(r~) is an eigenfunction of the
radial Schrodinger equation of the hydrogenic He+ ion sub-
ject to the boundary condition that it vanish at a boundary

r& =rM=RMI+2, i.e.,

Under this condition, the He+ levels are completely dis-
cretized. One may assume that the eigenstates with eigenval-
ues e„-I ( 0 represent a spectrum of true bound states; some
lowest eigenvalues are expected to be good approximations
to true bound-state energies, and other, higher eigenvalues
represent collectively a range of the bound-state spectrum.
Positive eigenvalues may be assumed to represent the con-
tinuum. In other words, one may interpret the channels with

e„,( 0 in the asym-ptotic solutions (3) as representing single
ionization of He and the channels with e-I & 0 as represent-
ing double ionization [8,16].

We calculate the K matrix by smoothly matching the so-
lutions obtained in the inner region with the outer-region
solutions at R = RM, using a two-dimensional matching
procedure [11].The wave functions of the final states of
single and double photoionization are thus set up. The cross
sections may be obtained from the matrix elements of the
dipole operator between those final states and the initial
state, the latter being calculated by the conventional HSCC
method [ll]. One may use any of the three forms, or gauges,
of the dipole operator, namely, the length form, the velocity
form, and the acceleration form. These forms weigh different
spatial regions of the wave functions, but should give an
identical result if the wave functions are exact. Actually the
exact helium wave functions of the initial and final states are
unknown, and the cross sections depend necessarily on the
choice of the gauge.
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FIG. 1. Single-photoionization cross sections for He. (a) Solid
curve: present results. Solid circles: experiment [18]. (b) Reduced
cross sections a„+ of Eq. (7). Solid curve: present results. Broken
curve: eigenchannel R-matrix method [8]. ~: experiment [18]. +:
B-spline method [19].0: many-body perturbation theory [2].

o o p, =opto (6)

at high photon energies cu (higher than a few keV), where
o p is a constant independent of co. The cross section deviates
from the ~ scaling law at low ~. The reduced cross
section is defined by

o =o /oh (7)

In the present calculation, 175 diabatic basis functions
P„were used in the expansion (2) to construct the final
continuum states, and the matching procedure was per-
formed at RM = 30 a.u. Both the matching radius and the
number of basis functions were varied in test calculations
(several RM between 20 and 70 a.u. being tested), and the
convergence in o.++ within several percent and in o.+ within
three digits was confirmed. The good convergence of o.+

even with RM as small as 30 a.u. is due to the dominance of
o.+ by the partial cross section for the production of He+
(ls), whose wave function is well localized and is almost
exactly reproduced under the boundary condition (5). Both
the length and acceleration forms of the dipole operator were
used and the results were confirmed to be almost the same, as
seen below; the velocity form was not used because of the
numerical difficulty in the hyperspherical-coordinate calcula-
tions in this form [17].

The single-ionization cross section calculated using the
acceleration form is shown in Fig. 1(a) and is compared with
the results of recent experiment [18].We find a good agree-
ment, except near the double ionization threshold of 79.0 eV,
where the present results are slightly higher than the experi-
mental data.

To demonstrate the difference between various theoretical
results, we define a reduced cross section o.„+ as follows. The
single-ionization cross section o.+ has an asymptotic form
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FIG. 2. (a) Double-photoionization cross sections for He. (b)
The ratio of the cross sections for double to single photoionization.
Solid and short-broken curves: present results from the acceleration
and length forms of the dipole operator. Long-broken and fine solid
curves with wiggles: eigenchannel R-matrix method, acceleration
and velocity forms [8]. 0 and 0: many-body perturbation theory,
acceleration and length forms [2].

at all values of co, and tends to 1 in the high-co limit. The
reduced cross sections from the present calculation and some
recent calculations [2,8, 19] are compared in Fig. 1(b); a de-
tailed comparison of the cross sections from other theories
and experiments is found in Ref. [18].The present calcula-
tion reproduces almost exactly the results of the eigen-
channel R-matrix calculation of Ref. [8]. The cross section
calculated from multichannel continuum states by a least-
squares approach in a B-spline basis set [19] is systemati-
cally higher than the experiment and the present results,
while the result of the MBPT calculation [2] is systemati-
cally lower than the experiment and other theories.

Figure 2(a) compares the calculated o.+ with the results
of the MBPT calculation [2] and the eigenchannel R-matrix
calculation [8]. The present theory is seen to produce an
length-form result (weighing the large-R part of the wave
functions the largest) and an acceleration-form result (weigh-
ing the small-R part the largest) that are in good agreement
with each other and that show no oscillations as functions of
the photon energy cv. The results of the eigenchannel
R-matrix method were obtained by smoothing out the spuri-
ous oscillations that resulted from the use of pseudostate
basis functions; small oscillations are found even after the
smoothing. These functions were defined by an artificial
boundary condition similar to Eq. (5). The two-electron ex-
citation configurations involving these pseudostate basis
functions in the expansion of the inner-region wave function
led to pseudoresonances in o.++. The present method avoids
the use of pseudostates in the inner region, and this appears
to be the reason for the absence of spurious oscillations in
o.++ in the present work.

The velocity-form and acceleration-form results of the
eigenchannel R-matrix calculations differ from each other,
and sandwich the present results between them at the higher

FIG. 3. Comparison of the calculated ratio (solid curve) of the
cross sections for double to single photoionization with experimen-
tal data of Ref. [20] (~), Ref. [21] ( ), Ref. [22] (E), Ref. [23]
(0), Ref. [24] ( 0 ), and Ref. [25] (X).

energies in the figure, though both of them are smaller than
the present results near the maximum. In fact, the length-
form eigenchannel R-matrix calculations gave "unreason-
ably high values of double-photoionization cross sections"
[8], which are therefore not reported in Ref. [8]. The good
agreement between the present length-form and acceleration-
form results is considered to stem from the adequate account
of the strong electron-electron correlations in the inner re-
gion by the use of the hyperspherical diabatic-basis expan-
sion. The length-form and acceleration-form results of
MBPT calculations are significantly different from each
other and both are smaller than the present results. This may
imply that the perturbative treatment of the electron-electron
correlations by the MBPT has not converged. It has been
discussed [4] that the acceleration form, which weighs the
near-nuclear part of the wave function the largest, is more
reliable than the length form at high energies. Figure 2(a)
appears to support this even at low energies, if we assume
the present results to be accurate.

We note that an earlier MBPT calculation in Ref. [1]gave
much larger o. + than any of the results shown in Fig. 2(a).
Recent calculations by using a simple trial function satisfy-
ing reasonable asymptotic boundary conditions [6] and by
using projection operators to circumvent the boundary con-
ditions [7] agree well with the present results.

The ratio o ++/o. + is usually measured in place of
o.++, since the absolute value of the latter is difficult to
determine. This ratio is also considered to serve as a probe of
electron correlations in the study of the physics of double
photoionization. This ratio is shown in Fig. 2(b) and is com-
pared with the results of other theories, corresponding to Fig.
2(a).

The discrepancy among different theories at the higher
energies in Fig. 2 is emphasized more in Fig. 2(b) for the
ratio tr"+/o+ than in Fig. 2(a) for o. + itself. On the other
hand, the discrepancy in o.++!o.+ becomes smaller at ener-
gies close to the maximum of o. +. Thus, for example, the
ratio obtained from the acceleration-form MBPT calculation
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is close to and slightly larger than the present result near the
maximum, though o.++ itself is considerably smaller than
the present result near the maximum because of the smaller
tr+ by MBPT, as shown in Fig. 1(b). This illustrates the
importance of comparison between different theories not
only in terms of o++/o (as in most literature) but also in
terms of o.++ directly.

Comparison of the present acceleration-form ratio with
available experimental data [20—25] is made in Fig. 3. Most
data lie above the present result, with the exception of the
oldest data. We note that a recent measurement between 85
and 150 eV, still unpublished [26], has led to cross-section
ratios that are in excellent agreement with the present calcu-
lations.

In conclusion, we calculated the cross sections for single
and double photoionization of helium from 80 to 280 eV by
extending the hyperspherical close-coupling method. The
length and acceleration forms of the dipole operator led to
cross sections for double photoionization that were in good
agreement with each other. The present method uses a dis-

cretization procedure for the He+ continuum to represent the
double continuum states of He in the asymptotic region. This
circumvents the use of the correct asymptotic boundary con-
dition for two outgoing electrons. This necessarily introduces
drawbacks. First, the region of the configuration space in
which the two electrons escape far from the nucleus is ne-
glected, and hence the current Aux flowing into an asymp-
totic region with rt =r2 is ignored, as discussed in Ref. [8].
Second, calculations close to the eigenenergies of the pseu-
dostates may sometimes be deteriorated by the effects of
pseudothresholds. With these drawbacks, however, the
present method produced accurate low-energy cross sections
for helium.
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