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We have implemented a completely analytical linear combination of atomic orbitals-Xa local density-
functional method with exact energy gradients. The superiority of the analytical method over the corresponding
grid-based technique in terms of speed, smooth energy surfaces, and accurate gradients is demonstrated in
calculations for the umbrella inversion mode of ammonia. The equilibrium geometry and inversion barrier
height are also shown to compare well to experimental data.

PACS number(s): 31.15.Ew, 02.70.—c, 82.20.Wt

During the past 30 years, there has been a continual
growth of interest in density-functional methods of electronic
structure. These techniques are inherently faster than the
classic ab initio methods, and recent calculational [1,2] and
theoretical [3,4] studies have shown that density-functional
techniques have an accuracy that is at least comparable to
that of small configuration-interaction studies.

Since 1975 [5] a number of density-functional program
packages have been developed that use a linear combination
of atomic orbitals (LCAO) representation of the wave func-
tion. In principle, these codes should be capable of comput-
ing detailed energy surfaces, reactive pathways, and kinetics
for large molecular systems; however, none of the current
program packages has yet proved to be generally useful for
these purposes.

There has been a great deal of recent progress in improv-
ing the accuracy of density-functional calculations for disso-
ciation energies and activation energies through improve-
ments to the form of the exchange-correlation functional [6].
However, a practical computational package for energy sur-
faces must possess other important features as well as accu-
racy. It should be computationally fast, it should produce
smooth energy surfaces, and it should be able to calculate
accurate energy gradients for the computed surface. In these
areas, there is still much room for improvement.

The primary computational difficulty in density-
functional techniques arises from the form of the exchange-
correlation potential and energy. These involve, at a mini-
mum, fractional powers of the electron density, such as p'?
and p*?. When the wave function and orbitals are expressed
in many-center LCAO expansions, a fractional power of the
charge density does not have a simple, closed form as a sum
of separate terms. With few exceptions [7,8], all of the pub-
lished LCAO density-functional algorithms address this
problem by using a three-dimensional grid of points, either
to perform the integrations involving the potential by nu-
merical methods, or to fit the potential to a simpler functional
form. Because the electron density decreases roughly expo-
nentially away from the nuclear cusps, overlapping atom-
centered grids are used almost universally.

The presence of a discrete grid will cause irregularities in
an energy surface [9,10]. At each point on the surface, a
““grid error” is introduced into the computed energy, and the
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size of this error varies as a function of geometry, producing
“grid noise.”” Even when the grid error is small on an abso-
lute scale, its variation can be rapid enough to cause signifi-
cant distortions in the shape of an energy surface that varies
by only a few kcal/mol. Grid noise can make it difficult to
evaluate vibrational wave functions or kinetic parameters for
a computed energy surface. The noise will also affect the
energy gradients, reducing their usefulness for locating ex-
trema.

At the simplest conceptual level, a very fine grid with a
large number of points can be used to reduce the noise, but
this is always at the expense of computational speed; and
speed is one of the primary attractions of a density-functional
approach. The development of techniques to decrease grid
error while keeping the number of grid points moderate is an
active research area [10—14]. These techniques include new
grid quadratures, ‘“‘adaptive” grids that check their own pre-
cision, and point-weighting schemes that attempt to create a
smooth transition between grids centered on neighboring
atoms.

The alternative is to develop analytical methods that
eliminate the grid entirely. We have implemented a density-
functional technique that requires no molecular grid and that
includes analytical expressions for the calculation of energy
gradients. This method gives smooth energy surfaces in a
fraction of the computational time of a grid-based method.
Because the gradients are exact, it is possible to locate ex-
trema rapidly and efficiently.

The mathematical formalism for this method was origi-
nally developed by Dunlap [7,15]. The grid-based LCAO
computer program package written by Mintmire was the
starting point for our implementation [16].

Begin by assuming a p!/3 form for the exchange potential:

V=413 C,p"3, (1)
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For all the calculations reported here, @ has been given the
standard Gaspar-Kohn-Sham value of 2/3.

where
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The functions p'” and p?? are fitted to sets of integrable,

atom-centered functions:

p1/3%;5=2 ail;, (3)

i
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where an overbar denotes a fitted approximation to a quan-
tity. In the present implementation, {A4,} and {B;} are identi-
cal sets of Hermite Gaussian functions, although, in general,
this is not required. Taylor expansions of the exchange en-
ergy to first order p— (p*)3 and (p'?)%2—p?? give the ex-

pression:

E=1CTo) 1T 2T )T 7T,

in which angle brackets indicate an integration over all
space.

Variational minimization of the exchange energy with re-
spect to the fitting coefficients {a;} and {b;} then gives the
set of coupled, nonlinear equations

<Aip>“j2k ajbi(AAjB)=0, (6)
,Z: ajak<AjAkBi)—§ bi(BB,)=0. (7

These equations are solved via the Newton-Raphson method
to determine the fitting coefficients. Equations (6) and (7)
involve at most three-center integrals, so that this is still an
N? method. The particular form of Eqs. (6) and (7) depends
on the p'” form for the exchange potential; the addition of
correlation corrections or nonlocal exchange-gradient terms
would produce a more complicated set of nonlinear equa-
tions to solve.

Differentiating Eq. (5) with respect to the coordinates of
nucleus A gives the gradients of the exchange energy as

V4E..=3C, 2 aV(Aip)
- %Cazk a;a;biV(AA;By)
i,7,

+1C,2> bib;VA(B:B;). (8)
1]

In contrast, the exchange energy and gradients of the ex-
change energy in the grid-based Xa method are given by

E,.=C.{p"p) ©)

and

VAExc:%Caz ai<AivAp>' (10)
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FIG. 1. Total energy of NH; as a function of the angle between
the N—H bond and the threefold, symmetry axis (£ H—N—X).
The N—H bond is held fixed at 1.0496 A, the value obtained from
a full analytical geometry optimization. All calculations were car-
ried out using the 6-31G** basis set. The numbers in parentheses
indicate the number of grid points in the form, ((number of points
on N)/ (number of points on each H)).

The fit of p'? is carried out numerically, and no fit of p? is
performed.

We have used the umbrella inversion mode of ammonia to
illustrate the performance of the analytical method as com-
pared to that of the grid-based method. This inversion is a
classic problem that has been studied by a wide variety of
different theoretical techniques. Our atomic orbital basis is
the 6-31G** basis set, with the slight modification of using a
set of five d-type polarization functions rather than a set of
six second-order functions. Two additional basis sets are
used in the calculations, one for fitting the charge density in
the Coulomb potential and the other for fitting p'* and p?3
in the exchange energy. These two bases are comprised of
uncontracted Hermite Gaussians. The charge-fitting
(exchange-fitting) basis is derived from the orbital basis set
by multiplying the exponent of each primitive Gaussian in
the orbital basis by a factor of 2(2/3) to give the exponent
for each uncontracted Gaussian of the same angular momen-
tum in the charge-fitting (exchange-fitting) basis set. The
only exception is that the set of five d-type orbital functions
gives rise to a set of six second-order charge-fitting
(exchange-fitting) functions.

Figure 1 illustrates the effect of grid noise. We report a
range of three grid sizes denoted by ((number of points on
N)/(number of points on each H)). These computations use
pruned grids, in which the number of angular points in-
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FIG. 2. Energy gradients of NH; with respect to

£ H— N—X, corresponding to the total energy calculations re-
ported in Fig. 1. Note that the (3300/1300) and (1500/600) grids
produce nearly identical gradients.

creases as a function of radius. The angular grid at each
radius is rotated by a random angle, in order to reduce direc-
tional bias. Becke’s fuzzy-weighting scheme is used [17].

The root-mean-square (rms) grid error in the smallest grid
that we report in Fig. 1 is 0.25 kcal/mol. This is comparable
to the error in the SG1 grid proposed as a standard by Gill
et al. (0.2 kcal/mol) [10]. In our intermediate grid, the rms
error is reduced to 0.13 kcal/mol; in the largest grid, 0.08
kcal/mol. Despite the small average size of these grid errors,
the grid noise is still significant, particularly for the smallest
grid. The severity of the noise depends not on the average
grid error, but on the size and rapidity of the variation in that
error as a function of geometry. The effect of grid noise on
the energy surface would be more dramatic than this in larger
and less symmetric species than NHj.

The analytical calculations contain no grid noise, and are
also faster than the grid-based technique. On a VAX 6400, a
single point on the NH; energy surface requires approxi-
mately 110 s of CPU time for the analytical method versus
140, 240, or 420 s for the grid-based method using the (700/
300), (1500/600), and (3300/1300) grids, respectively.

Figure 2 illustrates the difficulties with gradients in the
grid-based method. The (700/300) gradients are useless for
geometry optimization. They do not reflect the symmetry of
the energy surface and do not vanish at the energy extrema.
Much of this is the result of grid noise. The (1500/600) gra-
dients are an improvement. They are nearly symmetric and
vanish close to the energy extrema, however, they are not
exact. The (3300/1300) and (1500/600) gradients are almost
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identical; the remaining errors in these gradients are due not
to the grid, but rather to basis-set incompleteness.

The expression for the gradients in the grid-based method
[Eq. (10)] is only exact in the limit of a complete exchange-
fitting basis set. To the extent that this basis is incomplete,
the computed gradients are not the true derivatives of the
energy surface. In fact, when the basis set is incomplete, the
gradients do not conserve linear and angular momentum;
there are net forces and torques on the molecule. For the
grid-based calculations in Fig. 2, these phantom forces have
been calculated and removed from the gradients by subtrac-
tion. Several research groups who use numerical integration
rather than fitting techniques have recently developed and
implemented algorithms that rigorously conserve momentum
by including appropriate correction terms [11-14]. However,
some of these groups have cautioned that these terms can
introduce additional numerical problems, particularly for
smaller grids [13,14]. The gradients for the analytical method
do not suffer from grid noise or basis-set incompleteness
problems. They are exact derivatives of the computed energy
surface.

For geometry optimization calculations using a standard
gradient-minimization algorithm, the gradients from the grid-
based calculations in Fig. 2 are of limited utility. The gradi-
ents from the analytical method, on the other hand, are very
reliable. When the efficiency of optimizations is taken into
account, the analytical technique is an order of magnitude or
more faster than the grid-based method. For example, in op-
timizing the NH; geometry starting from an H—N—X angle
of 105° and N—H bonds of 1.1 A, the (3300/1300) grid
requires 136 min of VAX 6400 CPU time to reach the energy
minimum, while the analytical method requires only 13 min.

Our computed NH; geometry and inversion barrier com-
pare well with the experimental values. We find the N—H
bond=1.0496 A and £H—N—X=114.7° compared to
the experimental geometry, the N—H bond =1.0124 A and
/ H—N—X=112.2° [18]. The inversion barrier found in
Fig. 1 is 6.97 kcal/mol, but this surface has rigid N—H
bonds. When the N—H bonds are allowed to relax during
the inversion, the computed barrier is reduced to 6.16 kcal/
mol, compared to the experimental value of 5.78 kcal/mol
[19].

We are using the analytical X« technique described here
to carry out a study of the torsional surfaces of the isoelec-
tronic series, C,Hg, N,H,, H,0O,, which will be reported
along with a more detailed description of the method in a
future publication. Results to date suggest that the timing and
smoothness advantages of the analytical technique over the
grid-based method increase for these larger and less symmet-
ric molecules.

Currently the most serious limitation on the analytical
method is that the nonlinear equations (6) and (7) are re-
stricted to p'/3 potentials. A variety of correlation and nonlo-
cal gradient correction terms are now often added to the ba-
sic p' potential [6], and these additional terms can be
important, particularly for the quantitative description of
bond dissociation energies [20]. It would be desirable to ex-
tend the present formalism to allow such terms to be incor-
porated in the exchange-correlation potential. In its present
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form, we expect the method outlined here to have its most
valuable applications in the description of conformational
changes for which the net electron density gradients do not
vary markedly [21], and in the initial rapid search of reactive
energy surfaces to locate the positions of extrema and saddle
points.

KATRINA S. WERPETINSKI AND MICHAEL COOK 52

We would like to thank B. I. Dunlap, J. W. Mintmire, and
C. T. White for helpful discussions and correspondence, and
for their encouragement. We particularly thank John Mint-
mire for providing us with a copy of his grid-based LCAO
program. This work was supported in part by UMass Faculty
Research Grant No. 1-03360.

[1] A. D. Becke, J. Chem. Phys. 96, 2155 (1992).

[2] R. M. Dickson and A. D. Becke, J. Chem. Phys. 99, 3898
(1993).

[3] M. Cook and M. Karplus, J. Phys. Chem. 91, 31 (1987).

[4] V. Tschinke and T. Ziegler, J. Chem. Phys. 93, 8051 (1990).

[5] H. Sambe and R. H. Felton, J. Chem. Phys. 62, 1122 (1975).

[6] A. D. Becke, Phys. Rev. A 38, 3098 (1988).

[7] B. L. Dunlap, J. Phys. Chem. 90, 5524 (1986).

[8] Y. C. Zheng and J. Alml6f, Chem. Phys. Lett. 214, 397 (1993).

[9] B. I. Dunlap and M. Cook, Int. J. Quantum Chem. 29, 767
(1986).

[10] P. M. W. Gill, B. G. Johnson, and J. A. Pople, Chem. Phys.

Lett. 209, 506 (1993).

[11] B. G. Johnson and M. J. Frisch, Chem. Phys. Lett. 216, 133
(1993).

[12] B. G. Johnson, P. M. W. Gill, and J. A. Pople, Chem. Phys.
Lett. 220, 377 (1994).

[13]J. Baker, J. Andzelm, A. Scheiner, and B. Delley, J. Chem.
Phys. 101, 8894 (1994).

[14] N. C. Handy, D. J. Tozer, G. J. Laming, R. W. Murray, and R.
D. Amos, Israel J. Chem. 33, 331 (1993).

[15] B. I. Dunlap and N. Résch, J. Chim. Phys. 86, 671 (1989).

[16] J. W. Mintmire, Int. J. Quantum Chem. Symp. 24, 851 (1990).

[17] A. D. Becke, J. Chem. Phys. 88, 2547 (1988).

[18] W. S. Benedict and E. K. Plyler, Can. J. Phys. 35, 1235 (1957).

[19] J. D. Swalen and J. A. Ibers, J. Chem. Phys. 36, 1914 (1962).

[20] A. D. Becke, J. Chem. Phys. 96, 2155 (1992).

[21] T. Ziegler, Chem. Rev. 91, 651 (1991).



