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Grid-free density-functional technique with analytical energy gradients
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We have implemented a completely analytical linear combination of atomic orbitals-Xo. local density-
functional method with exact energy gradients. The superiority of the analytical method over the corresponding
grid-based technique in terms of speed, smooth energy surfaces, and accurate gradients is demonstrated in
calculations for the umbrella inversion mode of ammonia. The equilibrium geometry and inversion barrier
height are also shown to compare well to experimental data.

PACS number(s): 31.15.Ew, 02.70.—c, 82.20.Wt

During the past 30 years, there has been a continual
growth of interest in density-functional methods of electronic
structure. These techniques are inherently faster than the
classic ab initio methods, and recent calculational [1,2] and
theoretical [3,4] studies have shown that density-functional
techniques have an accuracy that is at least comparable to
that of small configuration-interaction studies.

Since 1975 [5] a number of density-functional program
packages have been developed that use a linear combination
of atomic orbitals (LCAO) representation of the wave func-
tion. In principle, these codes should be capable of comput-
ing detailed energy surfaces, reactive pathways, and kinetics
for large molecular systems; however, none of the current
program packages has yet proved to be generally useful for
these purposes.

There has been a great deal of recent progress in improv-
ing the accuracy of density-functional calculations for disso-
ciation energies and activation energies through improve-
ments to the form of the exchange-correlation functional [6].
However, a practical computational package for energy sur-
faces must possess other important features as well as accu-
racy. It should be computationally fast, it should produce
smooth energy surfaces, and it should be able to calculate
accurate energy gradients for the computed surface. In these
areas, there is still much room for improvement.

The primary computational difficulty in density-
functional techniques arises from the form of the exchange-
correlation potential and energy. These involve, at a mini-
mum, fractional powers of the electron density, such as p"
and p

' . When the wave function and orbitals are expressed
in many-center LCAO expansions, a fractional power of the
charge density does not have a simple, closed form as a sum
of separate terms. With few exceptions [7,8], all of the pub-
lished LCAO density-functional algorithms address this
problem by using a three-dimensional grid of points, either
to perform the integrations involving the potential by nu-
merical methods, or to fit the potential to a simpler functional
form. Because the electron density decreases roughly expo-
nentially away from the nuclear cusps, overlapping atom-
centered grids are used almost universally.

The presence of a discrete grid will cause irregularities in
an energy surface [9,10]. At each point on the surface, a
"grid error" is introduced into the computed energy, and the

V, =4/3 C p",

where

(9 ( 3 1/3

C = —
' —nA
i 4 i g

(2)

For all the calculations reported here, o. has been given the
standard Gaspar-Kohn-Sham value of 2/3.

size of this error varies as a function of geometry, producing
"grid noise. " Even when the grid error is small on an abso-
lute scale, its variation can be rapid enough to cause signifi-
cant distortions in the shape of an energy surface that varies
by only a few kcal/mol. Grid noise can make it difficult to
evaluate vibrational wave functions or kinetic parameters for
a computed energy surface. The noise will also affect the
energy gradients, reducing their usefulness for locating ex-
trema.

At the simplest conceptual level, a very fine grid with a
large number of points can be used to reduce the noise, but
this is always at the expense of computational speed; and
speed is one of the primary attractions of a density-functional
approach. The development of techniques to decrease grid
error while keeping the number of grid points moderate is an
active research area [10—14]. These techniques include new
grid quadratures, "adaptive" grids that check their own pre-
cision, and point-weighting schemes that attempt to create a
smooth transition between grids centered on neighboring
atoms.

The alternative is to develop analytical methods that
eliminate the grid entirely. We have implemented a density-
functional technique that requires no molecular grid and that
includes analytical expressions for the calculation of energy
gradients. This method gives smooth energy surfaces in a
fraction of the computational time of a grid-based method.
Because the gradients are exact, it is possible to locate ex-
trema rapidly and efficiently.

The mathematical formalism for this method was origi-
nally developed by Dunlap [7,15]. The grid-based LCAO
computer program package written by Mintmire was the
starting point for our implementation [16].

Begin by assuming a p" form for the exchange potential:
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The functions p" and p
' are fitted to sets of integrable,

atom-centered functions: -55.422 -8.0

1/3 1/3

-55.424-
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(5)

where an overbar denotes a fitted approximation to a quan-
tity. In the present implementation, (A;) and (B;) are identi-
cal sets of Hermite Gaussian functions, although, in general,
this is not required. Taylor expansions of the exchange en-

ergy to first order p —(p" ) and (p" ) —p
' give the ex-

pression:
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in which angle brackets indicate an integration over all
space.

Variational minimization of the exchange energy with re-
spect to the fitting coefficients (a,) and fb;J then gives the
set of coupled, nonlinear equations
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In contrast, the exchange energy and gradients of the ex-
change energy in the grid-based Xn method are given by

&-=C.(p'"p)

and

VAE, =-, C g a;(A;VAp). (10)

These equations are solved via the Newton-Raphson method
to determine the fitting coefficients. Equations (6) and (7)
involve at most three-center integrals, so that this is still an
N method. The particular form of Eqs. (6) and (7) depends
on the p" form for the exchange potential; the addition of
correlation corrections or nonlocal exchange-gradient terms
would produce a more complicated set of nonlinear equa-
tions to solve.

Differentiating Eq. (5) with respect to the coordinates of
nucleus A gives the gradients of the exchange energy as

FIG. 1. Total energy of NH3 as a function of the angle between
the N—H bond and the threefold, symmetry axis (2 H—N—X).
The N—H bond is held fixed at 1.0496 A, the value obtained from
a full analytical geometry optimization. All calculations were car-
ried out using the 6-316**basis set. The numbers in parentheses
indicate the number of grid points in the form, ((number of points
on N)/ (number of points on each H)).

The fit of p' is carried out numerically, and no fit of p is
performed.

We have used the umbrella inversion mode of ammonia to
illustrate the performance of the analytical method as com-
pared to that of the grid-based method. This inversion is a
classic problem that has been studied by a wide variety of
different theoretical techniques. Our atomic orbital basis is
the 6-31G**basis set, with the slight modification of using a
set of five d-type polarization functions rather than a set of
six second-order functions. Two additional basis sets are
used in the calculations, one for fitting the charge density in
the Coulomb potential and the other for fitting p' and p
in the exchange energy. These two bases are comprised of
uncontracted Hermite Gaussians. The charge-fitting
(exchange-fitting) basis is derived from the orbital basis set
by multiplying the exponent of each primitive Gaussian in
the orbital basis by a factor of 2(2/3) to give the exponent
for each uncontracted Gaussian of the same angular momen-
tum in the charge-fitting (exchange-fitting) basis set. The
only exception is that the set of five d-type orbital functions
gives rise to a set of six second-order charge-fitting
(exchange-fitting) functions.

Figure 1 illustrates the effect of grid noise. We report a
range of three grid sizes denoted by ((number of points on
N)/(number of points on each H)). These computations use
pruned grids, in which the number of angular points in-
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form, we expect the method outlined here to have its most
valuable applications in the description of conformational
changes for which the net electron density gradients do not
vary markedly [21],and in the initial rapid search of reactive
energy surfaces to locate the positions of extrema and saddle
points.
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