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Nonpertnrbative behavior of a hydrogen atom in a van der Waals field
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The spectrum of the hydrogen atom perturbed by the generalized van der Waals interaction
b, V(x, y, z) = y(x +y + P z ) is analyzed with a nonperturbative method of global approximation on a sub-

space grid. Considerable deviation from the perturbation formulas and violation of the analytic spectrum,
which the system exhibits in special cases of the dynamical symmetry P= 2, 1, and 2, have already been found
for the field strengths H= $8y-10 a.u. —10 G, in the region yn (&1 (n-10).

PACS number(s): 31.10.+z, 03.65.Fd, 32.60.+i, 03.65.Ge

The problem of a hydrogen atom in the generalized van
der Waals field [1—3]

AV(x, y, z)=y(x +y +P z )

[where y) 0 and p are constants and (x,y, z) are the coor-
dinates of an electron relative to a nucleus] is of broad inter-
est in physics. A large number of recent publications deal
with different aspects of the well-known particular case,
p=O, of the problem (the quadratic Zeeman effect [4]).An-
other physically interesting limit, as an example of a confin-
ing potential [5], is the spherical quadratic Zeeman interac-
tion (p= 1) [6]. The case, p= Q2, corresponds to the
instantaneous van der Waals interaction between an atom and
metal surfaces [7] and has been a subject of extensive dis-
cussions so far [8].Note also the connection that was found
in [2] between the problem (1) and a set of two coupled
sextic anharmonic oscillators, and the recent analysis of the
chaos-order-chaos transitions in this system (see [2,9,10] and
references therein).

In the paper [1] a general consideration (for arbitrary
0~ p~2), based on the adiabatic invariant

A=(4 —P )A +5(P —1)A, (2)

(where A is the Runge-Lenz vector [4]), has been suggested
for the weak perturbation A V (1). This generalization for an

arbitrary p of the result A =4A —5A, , obtained in [11,12]
for the special case p=1, has permitted a reduction of the
weak perturbation (1) to a simple effective operator within
the manifold n = const,

b, V=-,' yn [A —(p —1)L,+n (p + 1)+p +3]. (3)
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By studying problem (1) as a function of p, one may analyze
how the instantaneous van der Waals (p= +2) and the well-
studied diamagnetic (p=O) cases are related to one another
and connected with the adjacent dynamical symmetries
found in [1] for certain values of p (p= —,', 1, and 2).

In this paper I extend the consideration to the nonpertur-
bative region. Highly excited states of the problem (1) are
analyzed with the method of global approximation on a sub-

space grid [13].The Schrodinger equation in spherical coor-
dinates (R, O, @) is reduced to the system of N differential
equations for the eigenvalue e and eigenfunction
Q(R, Q ) = i/I (R) defined on the subspace grid

Q, =(cos8/}, [14).With the calculated vector (P,(R)}, one
can evaluate the wave function

(4)

approximating the eigenfunction t/t(R, 8) of the initial prob-
lem (1) as N~~. Here Pt(8) are the Legendre polynomials
and P, ' is the inverse matrix N X N to ItPt(8/)}.

In my previous paper [14], devoted to the problem of a
hydrogen atom in crossed fields, a fast convergence of the
expansion (4) with respect to N was demonstrated for the
diamagnetic case (p=O): low-lying excited states had been
analyzed in the region of very strong fields,
I~8= $8y~10 (10 '~ y~10 ), and highly accurate
binding energies of these states were obtained. In this paper
the consideration is extended to a highly excited atom
(n-10) perturbed by the interaction (1).The evaluation has
been performed for two field strengths y, from the region
where the perturbation formulas [1] are still working well
and where the system already exhibits considerable nonper-
turbative behavior. Two such cases are demonstrated in Figs.
1(a) and 1(b), where the normalized energy shifts
5F. = [e + 1/(2n ) ]/( yn ) of the states in the n = 10, m =0
manifold calculated as a function of p are given for two
fields y=2X10 ' and 2X10 . Note that in the diamag-
netic limit (p=O) the calculated spectrum represents the
eigenstates of a hydrogen atom in the strong magnetic fields
H= $8 y-10 and —10 G, respectively. The calculations
with N~6 (i~12) give the order of accuracy —10 for the
shifts AE for y= 2 X 10 and more accurate evaluations for
the weaker perturbation y=2X 10 ' . The deviation of the
shifts AF of the n= 10 manifold presented in Fig. 1(a) from
the perturbation result [1] obtained by a diagonalization of
the operator (3) does not exceed the value —10 for the
field y=2 X 10 ' . Rather unexpectedly the nonperturbative
regime is already apparent for y=2X10 in the region
yn &&1. In this case [Fig. 1(b)] the system exhibits consid-
erable deviation of the spectrum AE from the perturbative
behavior, as in Fig. 1(a). This effect is more evidently devel-
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FIG. l. (a) and (b) Normalized level shifts AE of the multiplet n= 10, m=0 calculated for two field strengths y: dashed curves,
perturbative region y= 2 X 10 '; solid curves, nonperturbative region y= 2 X 10 8. (c) The oscillator strengths from the ground state to the
perturbed manifold n = 10, m=0 for the case P=2: dashed lines, perturbative region y=2X 10 '; solid lines, nonperturbative region
y= 2 X 10 8. (d) Same as (c) but for P= Q2.

oped for oscillator strengths. This is demonstrated in Figs.
1(c) and 1(d), where the relative oscillator strengths (dipole
transition probabilities W"„=3~(lti„~z~ p„L) ~ ) are given for
p= 2 and +2 for y from both the perturbative and nonper-
turbative regions. A few calculated wave functions

QL(R, H) of the multiplet n= 10, m=0 are presented in Fig.
2 for the instantaneous van der Waals (p= Q2) perturbation.
For labeling these wave functions I use the rotational quan-
tum number L—a good quantum number of the rotationally
invariant case p = 1, where the dynamical symmetry
O(4) DO(3)L occurs, the square L of the angular momen-
tum is a constant of motion, and 4 =3(n —1 —L ) [1].Ap-
plying calculated "correlative diagrams" given in Figs. 1(a)
and 1(b) one may use the L quantum number for labeling the
spectrum of the van der Waals perturbed hydrogen atom (1)
in the entire region 0~p~2, although for deciphering the
points of the calculated spectrum, which are far removed
from the value p= 1, one needs to use the good quantum
numbers of other dynamical symmetries of the system [1]
that are appropriate to the considered case of p. In the vicin-
ity of the point p=-,' they are the eigenvalues rg(ran+1)
of the square W~ of the operator M= (A, ,AY, L,)

[A = '4 (A, +A ) as p= ~ and the system exhibits the
O(4)ZO(3) DO(2) symmetry]. Near p=2 the spectrum
has a doublet structure; since A = 15A, as p=2, the A, is a
constant of motion with the eigenvalues q = nz —n &, and the
dynamical symmetry is O(4)DO(2)qI30(2) (the problem
becomes separable in parabolic coordinates).

Note that although a considerable violation of the analyti-
cal spectrum of the van der Waals perturbed atom (1) at the
points of the dynamical symmetry [1]

—", g(g+1) — m + ,'n + —", ,
-

2n AE„A = ' 5n + 1 —3L(L+ 1), p= 1

, 15(nq —n, ) —3m +5n +7,

occurs for y=2X10, the spectrum still preserves the
rotational structure near the points p=-,' and 1 and the
doublet structure at the vicinity of p=2 (see Fig. 1). The
states of the spectrum at the point P= Q2 exhibit both neigh-
boring symmetries of P=l and 2, which is more sharply
demonstrated by the picture of the dipole oscillator strengths
[Fig. 1(d)]: the lines above EE=2 5repeat the doublet str.uc-
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FIG. 2. Wave functions PJ (R,x= —cos8) of the hydrogen atom multiplet n = 10, m = 0, perturbed by the instantaneous van der Waals

interaction (1) (P= J2) for y=2X 10
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ture of the P=2 case [Fig. 1(c)] and below this point are
strongly suppressed, as in the case of rotational symmetry
0=1

In conclusion I would like to underscore the fact that non-
perturbative behavior of the hydrogen atom in the field 5 V
(1) is already found in the region y, n —10 (&1 (n -10)

and must be taken into account in the analysis of atomic
spectra perturbed by strong magnetic fields or by the instan-
taneous van der Waals interaction with a metallic wall [8]
when y- y, (H, = ~y, -106 6 for P=O). Moreover, an
evaluation for higher n (-30—40) shows a significant de-
crease of the critical field y, , corresponding to a transition to
the nonperturbative region.

Due to the fast convergence of the expansion (4), apply-
ing the method of global approximation on a subspace grid

[13,14] offers a highly accurate quantum computation of
the van der Waals perturbed hydrogen atom. The key idea of
this approach, the reduction of the initial multidimensional
problem on jR, O} to the problem on the subspace grid
(R, 8;}[13],has also been successfully exploited in the "dis-
crete variable representation" [15], which was recently ap-
plied to the hydrogen atom in crossed fields [16], in the
Lagrange-mesh calculations [17],and in the "pseudospectral
method" [18]. It also looks promising to adapt a shooting-
relaxation technique [19] for improvement of the reported
results.
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