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Formation of stable solitons in quadratic nonlinear media
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Dispersive quadratic media with wave mixing between the first- and second-harmonic modes due to a
x@ nonlinearity are shown to inhibit wave collapse and to support stable solitons. The stability of this
coupled-soliton family is demonstrated by means of a Lyapunov analysis based on the energy integral of the
wave-coupling equations. The dynamics of the coupled modes is finally studied using a virial identity, which
predicts either a stable propagation of the mutually trapped solitons or a spreading of both waves, depending

on the incident-beam power.

PACS number(s): 42.50.Rh, 02.30.Hq, 42.60.Jf, 42.65.Jx

Solitons play an important role in the dynamics of disper-
sive wave systems in nonlinear media where they arise as
steadily propagating localized wave structures with finite en-
ergy. Well-known examples are the envelope soliton of elec-
tromagnetic waves propagating in dielectric media with a
third-order nonlinear response, i.e., in the so-called Kerr or
x® media characterized by an intensity-dependent refractive
index. These solitons are usually solutions to the nonlinear
Schrodinger equation (NSE), which is exactly solvable in the
(1+1)-space-time-dimensional case for which solitons are
stable. It turns out, however, that solitonlike solutions to the
NSE in higher dimensions are unstable and may undergo a
catastrophic collapse, provided.the initial beam power ex-
ceeds a threshold value (see, e.g., [1]). In this case, the beam
ultimately collapses by localizing its energy in essentially
one point with strongly damaging effects. Thus these cubic
media have limited applications in the guiding and steering
of optical beams. Therefore, the propagation of intense light
beams in quadratic nonlinear media (so-called x(» materials)
has attracted wide attention because of the possibility of
forming multidimensional solitary waves that appear to be
stable. In such media, solitonlike structures are formed by
the interaction of the fundamental and second-harmonic
waves that mutually trap each other and form a bound state.
This effect is often referred to as the x®: x® cascaded non-
linearity, which has been observed experimentally in several
different materials (see, e.g., [2]). Very recently, a large num-
ber of theoretical works have described the formation and the
dynamics of both temporal and spatial solitons [3-6], al-
though the first investigation of soliton formation in such
media dates back to Karamzin and Sukhorukov [7]. Further,
Kanashov and Rubenchik [8] showed that (3+1)-
dimensional solitons are stable in analogous systems.

In the following, we investigate the behavior of multidi-
mensional localized structures in dispersive quadratic media.
Our investigations apply to spatial soliton-type structures in
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(D +1)-dimensional space, i.e., a D-dimensional transverse
“plane” orthogonal to a one-dimensional propagation direc-
tion, but may easily be generalized to temporal as well as
spatiotemporal soliton structures by, e.g., replacing one of
the transverse spatial coordinates by a retarded time variable.
For the sake of convenience, the terminology ““soliton” will
henceforth be employed to mean stable-shaped solitary
waves, as is often used in this context (see, e.g., [3—8]). We
find that in x(®) media wave collapse will not take place for
any dimension D of physical significance (D=3). Further-
more, we prove that the solitonlike solution is generally
stable in the Lyapunov sense for all D<<4, and we detail the
possible motions of the stable coupled solitons in terms of
the initial data. Here, we must specify that the stability of the
(D +1)-dimensional solitons should be interpreted as stabil-
ity with respect to perturbations belonging to the same di-
mensional space. Thus it does not exclude the so-called
waveguide instability; e.g., the instability of a (2+1)-
dimensional stationary structure with respect to perturbations
developing along the third dimension, as studied in [8].

We start our analysis from the set of equations describing
the coupling of the slowly varying envelope of the funda-
mental wave with the second harmonic (see [4] or [6] for the
details of the derivation):

i(0E1/0z) + y\V2E |+ x1E¥Eexp(—idkz) =0, 6))
i(dE,/0z) + sziE2+ XzE%exp(i5k2)=0, 2)

where the diffraction operator V2 acts in a D-dimensional
transverse plane of spatial coordinate vector x, . The wave-
space convection (also called “walk-off” effect [5]) has been
disregarded. Here, E; and E, are the amplitudes of the fun-
damental and second-harmonic modes with wave numbers
k, and k,, respectively. 6k is the wave-vector mismatch
6k=2ky—k,, y1,=1/2k,, denote the diffractive coeffi-
cients, and x;, correspond to the appropriate components of
the second-order nonlinear susceptibility tensor. By means of
simple rescalings and phase-shifted transformations, Egs. (1)
and (2) can be brought into the canonical form

i(ow/df) +Aw+w*v =0, 3)
2i(dv/d) +Av—Bv+w?=0. 4)

In Egs. (3) and (4), the Laplacian A is expressed in terms of

the transformed space variable E= vkqi/ 'ylyz 3 {=kyz de-
notes the new longitudinal length coordinate, and
B=6ka/k; where a=1vy;/y,=2 justifies the factor 2 in
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front of (4). Finally, the normalized amplitudes w and v
are related to E; and E, as w=(Jayix2/k))E{, v
=(x1/k)Eexp(—idkz). Equations (3) and (4) can be ap-
plied to model, for instance, nonlinear interactions in lithium
niobate (LiNbO3) materials [2, 3]: such materials have high
second-order coupling coefficients, so that the nonlinear
scale length, which the light wave has to propagate to
achieve a 27 phase rotation, is of the order of a few milli-
meters at reasonable power levels and remains considerably
shorter than typical waveguide lengths of the order of a few
centimeters. Following the crystalline anisotropy, the field
polarization, and the ambient temperature, it is further pos-
sible to select the incident fundamental and second-harmonic
components of a laser beam in such a way that the wave-
number mismatch 8k is almost vanishing (k,~2k;) for ab-
sorption lengths of several centimeters. As already estab-
lished in, e.g., [8], the system (3),(4) admits the following
two invariants, namely the “mass” or “power”:

N= f (Jv]?+3lwl?) dP¢, )

and the energy (Hamiltonian) integral
. 1 . B
H= le|2+—2-|Vv|2+ 5|v|2—Re(w2u*) aPe. (6)

In order to investigate the various dynamical aspects of
the coupled waves (w,v), we construct a so-called “virial”
identity, in analogy with the standard result of the NSE [1],
consisting in the double derivative with respect to the longi-
tudinal distance ¢ of the mean square radius

1(::)=f E(lv|*+ 3lw|?) aP¢. @)

To compute the virial relation, we first multiply (3) by
(£w*/2) and (4) by (£*v*), then integrate the imaginary
part of the sum of the resulting equations to obtain

-4 - - o
:9—{:2 Imj E-(w*Vw+uv*Vu) dP¢. 8)

Besides, we can determine the { derivative of both the con-
tributions on the right-hand side of Eq. (8) by making use of
the following: on the one hand, one starts with Eq. (3) and

multiplies it by (E -ﬁw*), which leads, after a straightfor-
ward integration over space, to

9 2.9 * gD
b—zlmf (&-Vw)w*d?¢

=f{2|v7w|2+ne{(§‘.\7v*)w2], PE (9
On the other hand, we multiply (4) by (£-Vuv*), which
yields

ai{lmf (€-Vu)v* aP¢

=f {|€u|2+Re[(§-Vw2)v*]+%Re(wzv*)} daP¢. (10)

We finally differentiate Eq. (8) once more with respect to

¢, and use the former relations (9) and (10) to obtain the

virial identity

2’ 35,124 15,12y 40 B 2 4D

W=(4“D)f (|Vw| +5|Vv| )d §+D H— Ef lUI d § .
1)

From this relation, it can easily be concluded that no collapse
[in the sense that I({)—0 at a finite { with, e.g., I“<O] of
solutions w( g, {) and v(E, {) can occur for D<4. Indeed, let
us a priori suppose the contrary, i.e., that 7({)—0 at a finite
{={,; then necessarily both the integrals [&2|v|? dP¢
and [&*|w|? dP¢ have to vanish separately and simulta-
neously as {— {.. Employing the Schwarz inequality after a
simple integration by parts, we obtain (f|g|? d£)?
<(4/D?)[&%|g|* dP¢ [|Vg|? dP¢ applied to any L>2-integ-
rable function g, so that the previous assumption should
imply that both the gradient norms [|Vw|? dP¢ and
J Iﬁvlzdo ¢ diverge as {— .. By virtue of the constancy of
H and since the finiteness of N ensures that the two masses
N,=[|w|?> d’¢ and N,=[|v|? d°¢ remain bounded, the
quantity I, should thus diverge in the vicinity of the col-
lapse focus ., hence predicting the spreading of both wave
forms, which contradicts the starting hypothesis. Therefore,
{-dependent solutions w and v can never collapse at any
finite distance ¢, and will be expected to exist globally for
every { by keeping a bounded gradient norm.

The absence of a finite-distance collapse seems in contrast
with solutions to the nonlinear Schrodinger equation, which
is recovered in the limit of large |8|— + as displayed in
[4—6], since for space dimensions D=2, the resulting cubic
NSE admits collapsing solutions when 8>0. However, per-
forming in Eqgs. (3) and (4) the high-order perturbative ex-
pansion of v,

U=Uo/ﬂ+vl/ﬂz+"' ’ UO=W2, (12)

in the limit S—o, we obtain a modified NSE for w,

i j;—‘y--4~Aw+ l(lwlz-— 4 |w|4)w+ 2 [w*(Vw)2—|w|2Aw]=0
g B B B ’
(13)
from which the cubic NSE is simply restored by retaining the
dominant contributions including the first-order term in
1/B. From Eq. (13), it is then observed that, whereas. the
correction of the dispersive part may be neglected for large
B3, the salient modification carried into the equation for w by
the perturbation (12) consists in a higher-order nonlinearity
that always exhibits a sign opposite that of the cubic term.
Consequently, the whole nonlinear potential plays the role of
a saturating nonlinearity that ultimately arrests the collapse
as |w|? grows up along the longitudinal axis. These argu-
ments display further evidence of the absence of collapse in
x® materials.

As no catastrophic singularity develops in either of the
coupled waves, we now search to identify the regular shapes
of solutions w and v. Therefore, we look for stationary
(¢-independent) spatially localized solutions to Egs. (3) and
(4) of the form [3-6] w(&Q)=w'(&€)exp(iNy), v(&0)
=p'(£€)exp(2i\{), where the new space-dependent complex-
valued functions w' and v’ satisfy the coupled set of ordi-
nary differential equations

—Aw' +Aw +w'*p' =0, (14)
—(B+4N)v' +Av'+w'2=0. (15)

We first notice that both stationary states (w’,v’) reach an
extremum at the center £=0, at least for D>1. In addition,
the differential equations (14) and (15) do not admit a simple
rescaling permitting us to reduce the eigenvalue A to unity
without loss of generality, except in the extreme cases of a
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resonant wave mixing B=0 and of the NSE limit
|B|— +oo [this can be seen by performing the substitutions

w'(&)—Aw' (VN E) and v’ (£)—Av' (VA E) in Egs. (14) and
(15), leading to a modifying of B8— B/\]. Furthermore, lo-
calized solitonlike solutions may exist under the sufficient
requirement A >max{0,— B/4}. Following this condition, we
conclude that bright solitons, corresponding to the NSE limit
with a positive B, are always ensured to exist as soon as
A>0, whereas those corresponding to the opposite case
B<0 may exhibit a localized shape, provided that the eigen-
value N belongs to the restricted spectrum A\ > — /4. Unlike
the NSE limit, localized bright solitons can thus develop
even for a negative B, as discussed by, e.g., Torner [6]. In
what follows, we will assume that the previous condition for
having localized stationary solutions is fulfilled.

Detailing the properties of the ground states w' and v’,
we multiply Eq. (14) by (w'*), on the one hand, and by

(Z-Vw'*), on the other hand, then integrate in space both of
the resulting equations. We next repeat the previous opera-
tions in Eq. (15) by formally replacing w' —v’. A simple
combination of the space-integrated results yields the double
identity

4 - "
f Re(w'?'*) dD§=5f (19w 2+ 390’ [2) aPé

2

showing that the nonlinear potential [Re(w'?v'*) dP¢ re-
mains positive when it is expressed in terms of the soliton
solutions. We can then express the Hamiltonian integral (6)
as a function of the ground-state solutions: using the right-
hand side of identity (16), we obtain

HGs=(1'%)f (JVw']2+ 3| Vu'|?) aP¢+ gj lv'|? aP¢

D—-4 "2 4D
=EZ)\NGS+6—_1—) lv’|? dP¢, 17)
where the index GS henceforth refers to the ground states
(w',v’). Thus, Hgs is ensured negative as B<0 and
D <4. We now prove the stability of the coupled-soliton so-
lution by arguing that the functional

S=H- gj |v]|? dP¢ (18)

can be viewed as a Lyapunov function that remains bounded
from below for any space dimension D <4, and whose bound
admits for a fixed invariant N a global minimum reached on
the coupled-soliton family. With this aim, we begin estimat-
ing the nonlinear potential of (6) by making use of the
Schwarz and Sobolev inequalities,

f Re(w?v*) dP¢

<cl [ 19wt aoe) [ i ave) N T worare. ao

where C denotes a positive constant. By means of this in-
equality, H is bounded from below as follows for D <4:

H- §j lv|? dP¢

D
- D 3 D R ry
af [Vw|?dP¢g—21"3CN2~ :r(f |Vw|2¢10§) , (20

where the total mass N has been used to bound the norms
N, and N,. Note that as the latter norms always remain
bounded separately, the functional (18) can really be re-
garded as a proper Lyapunov functional, even though the
second integral is not a true constant of motion: at fixed N
and up to some additional positive contributions in AN as-
suring the positiveness of the Lyapunov function, this previ-
ous choice applying to both cases 820 could be checked to
restore the forthcoming stability results in a way similar to
the ones deduced from a more general prescription as, e.g.,
S=H+\N. Like this one, the integral (18) is indeed

bounded from below by a functional of [|Vw|? dP¢ reach-
ing a global minimum, as seen from the right-hand side of
the inequality (20). The latter estimate indicates that Egs. (3)
and (4) admit some fixed-point (stationary) solutions that are
stable. In fact, the important integral, from which the stabil-
ity of the stationary solutions follows, is the Hamiltonian H
that exhibits a strict minimum. To examine which kind of
fixed-point solutions can realize this minimum of H, we use
the property according to which functional S admits a single
minimum: we introduce

Tsf(|7w|2+%lv*v!2) dP¢, Iozkef<w2v*) dP¢, (21

such that S=T—1,. Following the standard procedure re-
viewed in [1] and [9], the minimum of S is identified by
using the scale transformations

wE D —a" TwEa), vED—a T0(Eal) (22

that preserve the L? norms attached to each wave w and v in
expression (5). Here, a denotes a constant parameter playing
the role of a Lagrange multiplier that only affects the energy
integral when one inserts (22) into S, leading to S,
=T/a’>—1I,/aP’?. Differentiating S, with respect to the
parameter a constrained on the value a=1 then yields the
minimum of §. By doing so, one deduces that the latter
functional admits a single minimum reached when the solu-
tions satisfy the relation /o=47/D, which is nothing else but
the relation (16) realized by the ground-state solutions.
Hence, as inferred from the previous variational problem
85=0, S contains a stable fixed point, on which its minimum
is reached and which corresponds to the coupled-soliton so-
lutions. This minimum also corresponds to the minimum of
H, so that we now dispose the inequality

H=Hg;. (23)

‘We have thus shown that not only are localized solutions to
(3) and (4) stable in the Lyapunov sense, but also that the
stable stationary solutions realizing a minimum of the energy
integral exactly consist of the soliton solutions w’ and v’.
Once created, and provided that their respective initial data
guarantee a nonlinearity level sufficiently strong to form a
self-trapping attractor, the two waves w and v may therefore
converge along ¢ towards some stable stationary shapes
whose spatial distribution in the transverse plane fits with
w' and v’, respectively.

We now investigate the different types of dynamics of the
fundamental and second-harmonic waves when they propa-
gate in a dispersive quadratic medium. To do this, we again
make use of the virial identity and deduce that the integral S
(18) in the last contribution of the right-hand side of (11)
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plays a major role in the behavior of the coupled solitons.
Indeed, when S is assumed to be positive, I, is larger than a
strictly positive constant, so that J({) must necessarily di-
verge as {— +oo for initial data without a space-dependent
phase. Thus, the mean square radius of the two solitonlike
waves centered on the origin increases with ¢, which means
that both of them tend to spread out in the transverse plane as
follows: either the fundamental and second harmonic waves
can spread out on the center when their respective disper-
sions strongly dominate the attracting x(®) nonlinearity, or in
the case of a moderate dispersion, they can form solitons, but
the latter must separate and then move away from each other
symmetrically with respect to the center. In this latter situa-
tion, both modes spread out as {— + o since the nonlinear
coupling linking w to v vanishes in this same limit. From a
physical viewpoint, the basic condition S=0 will be defini-
tively ensured whenever initially one has

H=(B/2)N
or H=0

if B>0, (24)
if B=<o0. (25)

Established from the virial (11), these inequalities corre-
spond to some conditions that are sufficient to initiate the
spreading process.

When the above constraints are not satisfied initially,
then the solitons may merge and, due to their stable nature,
propagate without any deformation inside the medium as
{ increases. More precisely, starting with some initial
waves, such as I,(0)<0, solitons mutually trap by first
self-contracting. As no collapse occurs, they afterwards
converge towards stable solitonlike shapes satisfying
I;({)=1; gs=0 [the vanishing of /,,({) on the GS solu-
tions simply results from inserting (17) into the virial identity
(11)] and propagate as an undeformed self-trapped structure
in the nonlinear medium. Note that assuring 1,,<0 amounts
to imposing the necessary conditions inferred from §$<<0:

H<(B/2)N if B> 0, (26)
or H<0 if B<0. 27)

Keeping in mind the boundedness of H (23), condition (27)
moreover consists in assuring a sufficiently high initial
power N>2H /B in the case of a positive phase mismatch
B>0. These results are in agreement with Torner et al.’s
numerical simulations where (1+1)- [5] and (2+1)- [10] di-
mensional bright solitonlike waves have been observed to
spread out and to “walk” away from each other below an
intensity threshold, while they stick together and develop a

trapped coupled-soliton state above the same threshold. In
accordance with the requirements (25) and (26), Refs. [5,10]
exhibit coupled waves with a positive H [with, e.g.,
v(;g:,O):O], which may remain self-trapped for >0, but
spread out for 8<0.

In conclusion, we have shown that the coupled-soliton
solution constitutes stable stationary solutions towards which
the fundamental and second-harmonic waves in materials
with a second-order nonlinearity can converge along the
propagation axis. This is a simple consequence of the robust-
ness of the Hamiltonian that has been proven to remain
bounded from below for any space dimension number
D<4. This result applies to any value of the phase mis-
match, which generalizes the recent estimates obtained for
B=0 in [10, 11]. Accordingly with this result, no collapse
has been demonstrated to occur. The proof of the absence of
collapse has been established from the virial relation, which
enabled us to distinguish two types of motions depending on
the incident beam power N: either N exceeds a critical
threshold and both waves can coexist in a mutual trapping
and propagate with a stable shape given by the soliton solu-
tions, or N lies below this threshold and the solitonlike states
continue to exist but decouple and ultimately spread out in
the transverse plane. In the former situation, the nonlinear
effects appear to be initially strong enough to maintain a
mutual trapping for both waves, whereas in the latter one, the
dispersion effects dominate the nonlinearity.

Finally we point out that all the above-discussed results
may immediately be applied to structures “moving” with a
velocity ¢, since Egs. (3) and (4) are invar-iant with respect
to the transformations

w(&,O)—w(E—cg,expi(c-E 12— /4),
v(&,0)—i(E—cl,exp2i(c- & /2—c?L/4).
Concerning the case of a spatial soliton, it is worth mention-

ing that the velocity ¢ can induce a bending of the beam
through the medium; for instance, if the incoming beam ex-
hibits a spatially varying phase (as in, e.g., c- 5), the spatial
solitary structure will be bent with an angle #=tan™!|c| with
respect to the incident beam. Since this moving soliton is
stable, this previous property has obvious applications in
connection with steering of optical beams and with all-
optical switching.
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