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Two-color excitation of a hydrogen atom has been studied by solving the time-dependent Schrodinger
equation. We have chosen the two laser frequencies to be the fundamental and its third harmonic with an
adjustable phase between the two laser fields. This has been proposed and successfully implemented in the past
for ““coherent control” of atomic and chemical processes. Here we have extended the study to the high-
intensity domain and well into the tunneling and the stabilization regimes. We show that in the tunneling
regime the two-color excitation can enhance the intensity of harmonics by more than two orders of magnitude
compared to a single color at the same effective intensity. In the stabilization regime we confirm that two-color

excitation can be used to generate higher harmonics.

PACS number(s): 32.80.Rm, 42.50.Hz

The dynamics of an atom driven simultaneously by two
frequencies displays important novel features that cannot be
seen with single-frequency driving [1-3]. As an example, an
enhancement of high-order harmonic generation has been
demonstrated in the irradiation of rare-gas atoms with a com-
bination of the fundamental and third harmonic of a laser
field [4]. Also, early work on two-color experiments using
the fundamental and the second harmonic of a laser field
showed that the relative phase between two fields can have a
significant influence on the ionization yield, the photoelec-
tron spectra, and the associated angular distributions [5]. The
effects associated with the relative phase between two fields
should be more evident for the cases in which the electron
wave packet is strongly driven by the laser field. One should
expect, therefore, to observe larger effects in the tunneling
regime and in the stabilization regime. With all these pre-
mises in mind, we certainly would like to know not only how
two-color excitation of neutral atoms boosts the overall har-
monic generation but whether one can drive the higher-order
harmonics more efficiently.

In this paper we shall address these questions by calculat-
ing the harmonic generation from a hydrogen atom interact-
ing with a two-color laser field. The two laser frequencies are
chosen to be the fundamental and its third harmonic at the
same intensity and with a relative phase between them. Our
goal has been to study the effects of the two colors and the
influence of the relative phase in the tunneling and the sta-
bilization regimes. Our results confirm some of the previous
findings using one-dimensional models [6], and show how, in
the tunneling regime, the harmonics can be enhanced by
more than three orders of magnitude compared to a single
color at the same field strength. In the stabilization regime
the harmonic spectra generated can be extended to higher
orders than those achievable using one-color excitation. Our
study is based on numerical solutions of the time-dependent
Schrodinger equation, which we solve using a partial-wave
decomposition of the electron’s wave function, together with
a split operator and Crank-Nicholson algorithm, as described
elsewhere [7-10]. Application of this method to two-color
excitation is straightforward as long as both fields have the
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same linear polarization. We choose to work in the length
gauge, where the interaction term can be written in the form

Hy,=r-[E sin(wf)+Es,sin(3ot+ ¢)1f(1), (1)

where E » and E3a, are the fundamental and third harmonic
field amplitudes, w is the fundamental frequency, and ¢ the
relative phase between the two fields. The function f(¢) is
the pulse shape function, which is chosen to be
f(t)=sin*(mt/7), where 7 is the pulse length; here we con-
sider a pulse length of 32 optical cycles of the fundamental
frequency. To produce the maximum enhancement of the
harmonic conversion efficiency we choose the same field
amplitude for both fields, i.e., E,=E;,. With these condi-
tions, the time varying electric field has a maximum for a
relative phase difference between the two fields of ¢=r,
when the maximum field strength of the combined fields
reaches the value E=2F , twice each cycle. For a phase
difference of ¢= /2 the maximum amplitude achieved is
E=1.8E,, and finally for ¢=0 the maximum field ampli-
tude is E=1.6E .

The discussion of the results will be separated into two
main parts, one devoted to the tunneling regime and the other
to the stabilization regime. Each part will be preceded by a
brief introduction of its associated dynamics.

The tunneling regime is conventionally characterized by
the Keldysh parameter being smaller than unity, i.e.,
VU 2U,<1 (here U, refers to the ionization potential and
U,=E*/4w” is the ponderomotive potential). Physically this
means that the laser field can be considered as a quasistatic
field (high-intensity, low-frequency) that lowers the atomic
potential so that the electron is able to tunnel out. The sub-
sequent evolution in the continuum of the wave packet that
has tunneled out can then be described almost “classically”
since the interaction with the electric field would dominate
and the influence of the Coulomb potential could therefore
be neglected. Harmonic generation is understood in this con-
text as due to the rescattering of the electron being driven
back by the field to the nucleus and emitting a photon. This
view is supported, among other facts, by the success of the
classical model in explaining the origin of the harmonic cut-
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FIG. 1. Comparisons between one- (filled symbols) and two-
color (open symbols) harmonic spectra in hydrogen in the tunneling
regime. Filled circles correspond to E,=0.05 a.u.; filled squares to
E,=0.10 au. Two colors E,=E;,=0.05 a.u. and ¢=0 (open
circles), and ¢= /2 (open squares). The inset window shows the
corresponding ionization yields.

off [11,12]. In the two-color tunneling regime we expect the
ionization yield to be dependent not only on the maximum
field strength of the combined fields but also on the relative
phase ¢, since the potential barrier is significantly modified
by this relative phase. In order to study the effect of the
two-color interference, we calculate ionization yields and the
harmonic spectra for one single color at different intensities
and compare them with the two-color results.

We first present results for a hydrogen atom irradiated by
the combination of the Nd:YAG (neodymium-doped yttrium
aluminum garnet) laser frequency (A=1064 nm) and its
third harmonic (A3=354 nm) at E, =FE;,=0.05 au.
(I=8.3%X10"® W/cm?). For the sake of comparison we also
include the ionization produced by the fundamental laser
alone at E, and at twice the electric field amplitude
E=2E, (I=3.5X10" W/cm?). In the latter case we have
already surpassed the saturation intensity for this frequency
and pulse shape. [The saturation intensity is conventionally
understood as the intensity (for a given wavelength and pulse
shape) at which a sample of atoms is mostly ionized.] Since
surpassing the saturation intensity diminishes the efficiency
of generating harmonics, one should be careful in comparing
the effects of one and two colors at these high intensities. In
Fig. 1 we show the harmonic spectra in the tunneling regime
for one- and two-color cases (the corresponding ionization
yields are shown in the inset). All the spectra have been
normalized to the first harmonic so that a better comparison
of conversion efficiencies can be made (since the first har-
monic is proportional to the term Esinwt). For clarity, only
the harmonic peak intensities at the frequencies encountered
are plotted. We use a dotted line to join the first harmonics
with the cutoff region where the harmonics are clearly pro-
duced again [13].

The two-color harmonic spectra show formally the same
pattern as their one-color partner: a plateau of harmonics and
an abrupt cutoff, where the intensity of the harmonics drops
off rapidly. However, a closer inspection reveals significant
differences. First of all, the plateau structure extends to
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FIG. 2. Comparisons between one- (filled symbols) and two-
color (open symbols) harmonic spectra in hydrogen (w=0.042
a.u.). Filled circles correspond to E,=0.09 a.u. Open triangles cor-
respond to two colors E,=FE;,=0.05 a.u. and ¢=m (open tri-
angles). The inset shows the corresponding ionization yields.

higher orders than the fundamental alone at E=F,, al-
though the overall plateau structure appears less clearly de-
fined. The most striking difference, however, is the different
conversion efficiency in both cases. Generally speaking, the
conversion efficiency is much better for the two-color case,
regardless of the relative phase. This is especially true for
low-energy harmonics, those with energies below U;+U,,,
which are enhanced by almost four orders of magnitude
compared to the one-color case at E=E,. Furthermore, if
we compare conversion efficiencies between two colors
(E,=E;,) and the fundamental alone at E=2FE ,, we still
find harmonics with intensities approximately two orders of
magnitude larger in the bichromatic case. Since the residual
ionization for two colors is smaller than the one produced by
the strong field (E=2E ), as is clearly shown in Fig. 1, the
conversion efficiency increase seems to be partially related to
the interference between the two colors. To reinforce this
idea we compare the harmonics generated by one color and
two colors, when both cases produce the same ionization
yield. This is accomplished, for example, with a single laser
operating at E,=0.09 au. (I=2.8X10"* W/cm?) and the
two-color lasers at E,=E3,=0.05 a.u. and ¢ = . For both
cases the residual ionization at the end of the pulse is prac-
tically the same but the enhancement of the harmonics is
drastically different, as can be seen in Fig. 2. These results
suggest that the enhancement of the harmonic generation is
produced by the interference between both colors, and it is
independent, to some extent, of the amount of ionization.
Two different reasons could, a priori, cause this enhance-
ment. The first one is related to the transverse spreading of
the wave packet on its way back to the nucleus [14]. The
spreading of the free wave packet is intensity independent
but wavelength dependent. The longer the wave packet takes
to return to the nucleus the larger the spreading and therefore
the weaker the interaction with the nucleus. However, the
second color impinges fast oscillations on the quiver motion
of the free electron that oscillates at w, slowing down the
velocity of the electron. Since the spreading of the wave
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packet is proportional to time, this enhancement seems not to
be related to this. A semiclassical reason could perhaps ac-
count for the enhancement. We know that harmonics are pro-
duced in transitions involving the ground state [15], and that
implies that harmonics should be produced dominantly by
the part of the wave packet closest to the nucleus. Diminish-
ing the velocity of the particle when it “‘crosses” the nucleus
increases the interaction time and therefore the cross section
of scattering. The higher-order harmonics, which correspond
to electrons returning with high velocities, would be less
affected by the retardation produced by the second color and
the enhancement would become smaller.

The cutoff in the harmonics can be understood by apply-
ing the classical two-step model to the two-color case. From
this classical model the predicted cutoff energies agree rea-
sonably well with the quantum results: 4.8U, for ¢=0,
5.1U, for ¢=/2, and 4.1 for ¢=m (U, refers to the pon-
deromotive potential of the fundamental). The classical
model also predicts a uniform enhancement in conversion
efficiency along the whole range of allowed returning kinetic
energies. However, this enhancement comes from the fact
that the instantaneous electric field strength of the combined
fields increases. This dependence on the instantaneous elec-
tric field arises from the definition of the classical collision
probability [16]. We define the collision probability as the
allowed returning trajectories weighted by the corresponding
dc ionization rate, I'(z)<[4U;/&(t)]e”#3¢®, correspond-
ing to the instantaneous electric field, £(z), at which the
electron escapes through or over the barrier [17].

We have repeated our calculations for higher field inten-
sities, and the results are in agreement with what we have
already presented. However, the improvement in the conver-
sion efficiency is obviously reduced if we are above the satu-
ration intensity or over barrier ionization. Finally, for lower
ratios between the two fields E ,/E;,>1 the enhancement in
the harmonics is also smaller.

Next, we analyze the effect of the bichromatic field in the
adiabatic stabilization regime. By stabilization regime we
mean [18,19] that the ionization is suppressed for increasing
laser intensities; in other words the ionization rate becomes a
decreasing function of the laser intensity. The presence of a
two-color laser field does not modify significantly the range
of intensities at which stabilization appears, although it
modifies the residual ionization. In principle one should ex-
pect larger stabilization in a two-color excitation because of
the larger time-dependent field strength compared to one-
color excitation. Nevertheless, the survival of the atom to the
turn-on is far more important than the peak laser intensity
itself in the stabilization regime. This survival condition is
usually achieved in numerical simulations by using a very
short and fast turn-on of the radiation, which is then held
constant in amplitude. For the cases presented here, however,
we study the full pulse response (32 sin? pulse profile) with
a laser peak amplitude of E,=18.4 au. (J=12Xx10"
W/cm?) and frequency w=1 a.u. The residual ionization at
the end of the pulse is around 40%. (The temporal step nec-
essary to obtain numerical convergence for such superstrong
fields is around 2'* steps per optical cycle.) Calculations for
lower field intensities (E<E,) but otherwise identical pa-
rameters (frequency and pulse shape) result in larger residual
ionizations, so we are indeed in the stabilization regime. An-
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FIG. 3. Harmonic generation in the stabilization regime for one
and two colors at =1 a.u. (a) One color at E ,= 18.4 a.u., (b) two
colors at E,=E;,=18.4 au. and ¢=0, and (c) two colors at
E,=E;,=184 au. and ¢p= .

other manifestation of the stabilization in these superstrong
fields is the localization of the electron wave packet in space
[19,20]. The electron density probability tends to be a peaked
structure (two or more peaks) along the polarization axis that
simply moves back and forth following the laser oscillations
without spreading in time [20]. The time-averaged electron
density occupies a range of roughly 2 ao=2E/w? with a cen-
tral peak at the origin and some weaker peaks around «y.
The structure of the stabilized wave packet depends on the
pulse shape that creates it [21], and therefore should also
depend on the phase difference between the two fields for the
bichromatic case. In Fig. 3 we show the harmonic spectra
corresponding to (a) one color at E,=18.4 a.u, (b) two col-
ors at E,=FE;,=18.4 and ¢=0, and (c) two colors at
E_ =E;,=18.4 and ¢=m. We observe that very few har-
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monics (up to the fifth order) are generated in one color and
two colors for a relative phase of ¢ = 7r; however, the har-
monic generation is extended to the 15—17th order when the
relative phase between the fields is set equal to zero. The
explanation of the large differences in the harmonic spectra
arises from the differences in shape of the stabilized wave
packet [6]. A richer structure on the stabilized wave packet is
obtained for a phase difference ¢=0. The stabilized wave
packet moves backward and forward along the classical ex-
cursion ag, ‘“‘crossing’ the nucleus in its excursion. The
richer the structure the larger the interaction with the
nucleus, and therefore the better the harmonic generation.
As a conclusion to this Rapid Communication we sum-
marize our results. We have demonstrated that two com-
mensurate frequencies (1:3) interacting simultaneously
with an atom modify substantially the generated harmonic
spectra in the high-intensity domain. For instance, in the
tunneling regime the two-color excitation extends and
enhances the intensity of the produced harmonics. This
enhancement is particularly clear for harmonics below
U;+ U, . In the stabilization regime the harmonic generation
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depends strongly on the relative phase between the two
fields. The next step will be to apply two-color excitation to
ions.

After submitting this paper we have learned about the
work done by Eichmann eral. [22] on polarization-
dependent high-order two-color mixing. Their results using
two commensurate frequencies (1:2) at the same intensity
and linear polarization also show the enhancement of har-
monics in the two-color case compared to the one single
color. The enhancement in our case is significantly stronger,
probably caused by our choice of frequencies (1:3), which
generates only odd harmonics.
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