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Threshold ionization dynamics of the hydrogen atom in crossed electric and magnetic fields
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In crossed electric and magnetic fields the hydrogen atom undergoes a transition to chaotic scattering
associated with a critical point in the Hamiltonian How. The stability of the critical point is determined and

leads to an accurate prediction of the transition to scattering that is independent of the magnetic-field strength.

Nevertheless, observed variations in the apparent ionization threshold with magnetic-field strength are ex-
plained.

PACS number(s): 32.60.+i, 05.45.+b, 31.50.+w, 32.30.Jc

In a landmark series of experiments, Raithel, Fauth, and
Walther [1] have identified a class of quasi-Landau (QL)
resonances in the spectra of rubidium Rydberg atoms in
crossed electric and magnetic fields (EXB). Similar to the

original QL resonances observed by Garton and Tomkins [2],
this set of resonances is associated with a rather small num-

ber of planar periodic orbits. In a different energy and field

regime, Welge and co-workers [3] reported the first experi-
ments on the hydrogen atom in crossed fields, also finding
periodic orbits, as well as long-lived states lying far above
the Stark saddle point. These they attributed to nonchaotic
dynamics. Raithel and Walther [4] have further shown that
the ionization threshold essentially follows classical scaling
behavior over a wide range of field values, and pointed out
that a maximum and minimum occur in the ionization thresh-
old with varying magnetic field. In the same system, Main
and Wunner [5] have demonstrated theoretically that, above
threshold, the dynamics is scattering and chaotic [6]. These
experimental and theoretical findings have far reaching im-

plications for quantum physics [7] because of the insight
they provide into the fundamental connection between clas-
sical and quantum mechanics [1,3,4,6,8].

In this Rapid Communication we provide a classical
mechanism that explains and consolidates these interrelated
findings for energies below, at, and above threshold. The
atom is shown to undergo a transition to chaotic scattering
related to the existence of a critical point in the Hamiltonian
Aow. This arises because of a velocity-dependent, Coriolis-
like force in Newton's equations of motion. Velocity-
dependent forces are common in many areas of physics, al-
though the nonlinear dynamics of these systems is poorly
understood. In addition, crossed fields arise in many diverse
situations, including molecular problems, excitonic systems,
plasmas, and neutron stars. The hydrogenic EXB problem
therefore constitutes an experimentally accessible paradigm
for a wide range of problems in atomic and molecular phys-
ics, solid state physics, nuclear physics, astrophysics, and
celestial mechanics [6,9,10].

In scaled variables and cylindrical coordinates (p, z, @)
the EXB Hamiltonian is [1]

P~~ 1 P~ p'
XI~= 8'= — P +P, + 2

——+ + ——ep cosP,
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where the scaled electric field e=EB ', and the scaled
energy F= WB '; W and B are the unscaled energy and

magnetic field, respectively, and r = gp + z . At this point it
is worth making a few general comments about the planar
limit of Eq. (1), i.e., z = P, =O: in the Zeeman limit (e=O)
the system is integrable, as it is in the opposite, Stark limit
when B= 0 and P &= l, is conserved. %'hen the two fields are
applied simultaneously both Eq. (1) and its planar limit are
nonintegrable, although adiabatic invariants may exist
[10,11].

It is often implied that the Stark saddle-point (SSP) crite-
rion provides only a rough guide as to when direct ionization
becomes energetically possible (e.g. , e) 1.5) [3,4]. This is
because the SSP is based on an analysis of the potential
energy in the B=O limit. As B is increased from zero the
SSP criterion is, therefore, expected to deteriorate as a pre-
dictor of the ionization threshold. Nevertheless, the experi-
mental ionization threshold was found to scale classically in
Ref. [4].This suggests that the transition from bound to scat-
tering behavior might be related to the critical points of the
Hamiltonian Aow. In order to examine this possibility we
determined the critical points of the Aow generated by, M2.

A remarkable result emerges from this analysis: there is a
single critical point (for @40) that lies in the plane g=O
and occurs when P, =O, p= I/Pe, @=0, P =0, P&=l,
= —p /2. The stability of the planar Aow was determined by
computing the eigenvalues of the matrix L= JD H at the
critical points [here, Hamilton's equations of motion are
given by $=JDH; DH is the derivative of H, g=(q;, p;),
and J is the symplectic form matrix [12]]. The four eigen-
values occur in pairs along the real and imaginary axes (i.e. ,

~Xi, ~ i)t2 with )i. , 2 real) indicating that the motion at the
saddle point is unstable. The critical point occurs at

e„;,=(Z/2), which coincides precisely with the "approxi-
mate" SSP criterion, P~'= —2+@. Thus, the SSP criterion
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FIG. 1. Poincare surface of section with 4= —1.52, a=0.40. 0.3

should hold for any value of e irrespective of the absolute
size of the magnetic field B. This finding is true only in the
infinite nuclear mass approximation and results from a can-
cellation of terms in the derivative 8 . Situations might ex-
ist in other F. &&8 Rydberg problems, e.g. , in exciton models,
where the coefficients of these terms do not lead to such a
cancellation [10], and the critical point analysis may be ex-
pected to reveal further complexity. This is best analyzed
using the concept of a zero velocity surface [13]as has been
done recently in the related problem of a hydrogen atom
subjected to a circularly polarized microwave field [14].We
note that this result agrees with the analysis of Clark et al.
[15,16] who further found that the Stark saddle point could
not be stabilized by addition of a magnetic field.

To investigate our findings numerically, we specialized to
the planar system for which Hamilton's equations of motion
are most easily integrated in regularizing parabolic coordi-
nates (u, u) with x=(u —u )/2, y= uu [17].The governing
Hamiltonian becomes
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(P„'+P,)+ —,'(u'+ v') —,(u4 —u )
0 ' 2

1
+ &(u +v )(uP, —vP„)+ 4(u +u )

(2)

where A= v —2K The dynamics were examined by com-
puting Poincare surfaces of section defined by u=0 and se-
lecting the branch of P, that corresponds to taking the posi-
tive branch of the square root. The motion was studied at
fixed awhile varying e, although one could, alternatively, fix
e and vary K

Figure 1 is a compilation of surfaces of section for a ran-
domly picked set of trajectories with e= 0.4 and
8'= —1.52. For this value of e the dynamics is regular and
consists of two islands at whose centers are located stable
fixed points. In the limit e=O the islands are symmetric
about the origin and reflect orbits whose angular momenta
are in opposite senses with regard to their rotation about the
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FIG. 2. Enlargements of Poincare surfaces of section with
c~ = —1.52 and (a) e = 0.5765, (b) e = 0.577 598, and (c)
e= 0.5785.
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origin [10].The left- (right-) hand island corresponds to posi-
tive (negative) values of l, . The fixed points then correspond
to stable, high-angular-momentum, circular periodic orbits.

As e is increased beyond 0.4 the right-hand (l,(0) island
suddenly gives birth to a chaotic region that surrounds the
original fixed point. Figure 2 is a series of enlargements of
the chaotic region for values of e bracketing the transition
that occurs at a=0.5776. The label C on Fig. 2(a) indicates
the position of one of the principal periodic orbits contribut-
ing to the spectra in Refs. [1,18). Over an extremely small
range of e the dynamics first becomes chaotic and is accom-
panied by a marked proliferation of periodic orbits. In Fig.
2(b) the periodic orbit labeled Pl is on the verge of experi-
encing a tangent bifurcation —the eigenvalues (k ) of the
Jacobian for the two-dimensional symplectic map collide at
k = 1 and then split off along the positive real axis [19,20].
After the system has passed through this bifurcation the cha-
otic region disappears by turning into a scattering regime
visible as a "hole" in Fig. 2(c) in which few or no points
appear —eventually the region disappears completely, even
the large island on the eastern edge of the region in Fig. 2(c)
disappears, leaving only an expanding hole as e is increased
further.

Many of the periodic orbits visible in Fig. 2(a) resemble
the C-type orbits of Ref. [1] that were shown to contribute
strongly to spectra; i.e., they undergo close encounters with
the nucleus [21].Our calculations suggest that for the param-
eter values reported in Ref. [1], i.e., e= 0.68 and
c~ = —1.50—0.034 N, N = 0, 1,2, . . . ,6, a proliferation of
periodic orbits, followed by a transition to chaotic motion
and scattering will occur for N„;,=4. Of course, the experi-
ments relate to Rb, while the calculations are for the H atom,
so conclusions must be drawn cautiously. However, careful
examination of the Fourier spectra in Ref. [1]indeed reveals
that a transient regime exists in which the number of QL
resonances increases while, at the same time, the spectra be-
come noticeably grassier, suggesting that the dynamics is at
least partially chaotic. This transition occurs in precisely the
range (N-3 —4) predicted by Hamiltonian stability theory.
Interestingly, the spectrum in Ref. [1] with N=O is well
above the ionization threshold, but appears regular. Effec-
tively, many of the periodic orbits and the chaotic region
itself have been obliterated since they can now escape over
the saddle; thus any experiment that is sensitive to bound
dynamics will result in extremely regular-looking spectra
that are dominated by the small number of periodic orbits
that manage to survive the sudden disappearance of the cha-

otic region. This is in complete agreement with the experi-
mental findings of Wiebusch et al. [3] that long-lived, non-
chaotic states exist far above the Stark saddle point.

Of course, strictly speaking, this is not an authentic scat-
tering system because there is no Aux of electrons coming in
from infinity. Initially, the electron is located close to the
nucleus and, upon excitation, the system is, perhaps, best
thought of as a half-collision. We computed the time delay
(residence time in the chaotic region) as a function of the
initial coordinate U, restricting initial conditions to the sur-

face of section as defined earlier, and find that the time delay
function is self-similar [6,22,23]. This is consistent with the
simulations of Main and Wunner [5]. The present analysis
shows clearly that the observed self-similarity is a direct re-
sult of the system reaching a critical point when already
chaotic orbits are suddenly destabilized; compare Figs. 2(b)
and 2(c).

It remains to explain the observation in Ref. [4] that
the ionization threshold is a maximum, I, , when
e = 0.058, F= —0.45; and a minimum, I;„, when
a=0.19, F= —0.74. The critical-point analysis leads us to
argue that the classical ionization threshold should be inde-
pendent of the individual values of e and K In the classical
simulations and in the experiment reported in Ref. [4] the
ionization threshold is defined with reference to the fraction
of atoms (e.g. , 50%) that ionize. Not all trajectories, how-
ever, have access to the ionization channel. Many orbits,
even above threshold, are separated from the chaotic region
boundary of scattering orbits by intact Kolmogorov-Arnold-
Moser (KAM) tori as shown in Fig. 2(c). The mixed nature
of phase space thus suggests that the observed ionization
threshold will depend strongly on the relative size of the
boundary as compared to the rest of phase space. Computa-
tion of surfaces of section corresponding to I „and I
reveals that, in both cases the scattering boundary exists; i.e.,
the system is above the ionization threshold. However, the
volume of phase space for which scattering is possible is
substantially smaller at I „ than at I;„. Note that at
I;„, e is =140% of the threshold value, while at I „, e
is only =114% of threshold. This leads to the observed dif-
ference in the apparent ionization thresholds, i.e., the ioniza-
tion probabilities differ but the ionization threshold is the
same.
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