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Recently, it was realized that use of the properties of quantum mechanics might speed up certain computa-

tions dramatically. Interest has since been growing in the area of quantum computation. One of the main

difficulties of quantum computation is that decoherence destroys the information in a superposition of states

contained in a quantum computer, thus making long computations impossible. It is shown how to reduce the

effects of decoherence for information stored in quantum memory, assuming that the decoherence process acts

independently on each of the bits stored in memory. This involves the use of a quantum analog of error-

correcting codes.

PACS number(s): 03.65.Bz, 89.70.+c

I. INTRODUCTION

Recently, interest has been growing in an area called
quantum computation, which involves computers that use the
ability of quantum systems to be in a superposition of many
states. These computations can be modeled formally by de-
fining a quantum Turing machine [1,5], which is able to be in
the superposition of many states. Instead of considering the
computer itself to be in a superposition of states, it is suffi-
cient to assume that the contents of the memory cells are in
a superposition of different states and that the computer per-
forms deterministic unitary transformations on the quantum
states of these memory cells [2]. This model resembles a
quantum circuit [3) more than a quantum Turing machine.
After Schumacher [4], we will call a two-state memory cell
that can be part of such a superposition a quantum bit, or
qubit. Whereas k classical two-state memory cells can take
on 2 states, thereby requiring k bits to describe them, k
quantum bits require 2 —1 complex numbers to completely
represent their state. Even though most of these numbers
must be small, and only the most significant digits of these
numbers are important, there still appears to be too much
information contained in k qubits to represent in a polyno-
mial number of classical bits. Although only k bits of clas-
sical information can be extracted from k qubits, the pres-

Electronic address: shorresearch. att. corn

ence of extra unextractable quantum information is a barrier
to efficient simulation of a quantum computer on a classical
computer.

It now appears that, at least theoretically, quantum com-
putation may be much faster than classical computation for
solving certain problems [5—7], including prime factoriza-
tion. However, it is not yet clear whether quantum computers
are feasible to build. One reason that quantum computers
will be difficult, if not impossible, to build is decoherence. In
the process of decoherence, some qubit or qubits of the com-
putation become entangled with the environment, thus in ef-
fect "collapsing" the state of the quantum computer. The
conventional assumption has been that once one qubit has
decohered, the entire computation of the quantum computer
is corrupted, and the result of the computation will no longer
be correct I 8,9].We believe that this may be too conservative
an assumption. This paper gives a way to use software to
reduce the rate of decoherence in quantum memory. Berthi-
aume, Deutsch, and Jozsa [10] have similarly proposed a
way of partially correcting errors in a quantum computer by
taking many copies of the computation and continually pro-
jecting the computation into the symmetric subspace of these
many copies. The degree to which their method corrects er-
rors will depend on the type of errors that the computers are
likely to make. Unfortunately, a mathematical analysis of the
efficiency of their error-correction scheme has not yet been
accomplished.

Assuming that the decoherence process affects the differ-
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ent qubits in memory independently, we show how to store
an arbitrary state of n qubits using 9n qubits in a
decoherence-resistant way. That is, even if one of the qubits
decoheres, the original superposition can be reconstructed
perfectly. In fact, we map each qubit of the original n qubits
into nine qubits, and our process will reconstruct the original
superposition if at most one qubit decoheres in each of these
groups of nine qubits. We thus show that the identity com-
putation can be performed in a more decoherence resistant
manner than the naive implementation.

The classical analog of our problem is the transmission of
information over a noisy channel; in this situation, error-
correcting codes can be applied so as to recover with high
probability the transmitted information even after corruption
of some percentage of the transmitted bits, where the per-
centage depends on the Shannon entropy of the channel. We
give a quantum analog of the most trivial classical coding
scheme: the repetition code, which provides redundancy by
duplicating each bit several times [11]. This encoding
scheme might be useful when storing qubits in the internal
memory of the quantum computer; so that while qubits are in
storage they avoid (or at least undergo reduced) decoherence,
leaving decoherence to occur mainly in qubits actively in-
volved in the computation.

II. QUANTUM COMPUTATION

In our model of quantum computation (the gate array
model) we assume that we have s qubits. These qubits start
in some specified initial configuration, which we may take to
be Io,o,o, . . . ,0). They are then acted on by a sequence of
the following operations, which manipulate the state of these
s qubits in the corresponding 2 -dimensional Hilbert space.

(1) Measurement. One qubit is measured in some basis,
and the result is recorded classically. This corresponds to a
projection operation in the Hilbert space.

(2) Entanglement. Two qubits are entangled according to
some four-by-four unitary matrix. The corresponding Hilbert
space operation describing the entire s qubits is the tensor
product of this four by four unitary matrix with the 2' by
2' identity matrix. Entanglements of three or more qubits
can always be accomplished by a sequence of two-bit en-
tanglements [12].

The sequence of operations can be arbitrary, and there is
no reason to assume that it does not depend on the input to
the computer. However, in comparing quantum computation
with classical computation, in order to prevent the program-
mer from "cheating" by using the sequence of operations to
give the computer information which might otherwise be im-
possible or difficult to compute, we require that this se-
quence of operations be generated by a classical computer in
polynomial time (in computer science terminology, this
keeps the class of problems solvable by a quantum computer
uniform). The result of the computation is extracted from the
computer by measuring the values of the qubits.

We must also initialize the computer by putting its
memory in some known state. This could be done by postu-
lating a separate operation, initialize, which sets a qubit to a
predetermined value. However, we can also initialize a qubit
by first measuring it and then performing a rotation to put it
in the proper state [rotations are a special case of operation

(2), even though there is no actual entanglement of different
qubits taking place].

III. ENCODING

Our encoding is as follows. Suppose we have k qubits that
we wish to store. We have our quantum computer encode
each of these qubits into nine qubits as follows:

(looo&+ I»»)(loo»+ l»»)(1000&+ I »»)
2 2

1
(looo&-

I
» 1&)(looo&- I

1 1 1&)(looo&-
I
1 1 1&).

Consider what happens when the nine qubits containing
the encoding are read. We will actually read them in a quan-
tum fashion using an ancilla, i.e., by entangling them with
other qubits [as in process (2) above] and then measuring
some of these other qubits, and not by measuring them di-
rectly [as in process (1)].However, for explanatory purposes,
it is best to first consider what happens if the qubits are
measured using a Bell basis. This same basis will later be
used to "read" them by entangling them with qubits that will
then be measured.

Suppose that no decoherence has occurred, and that the
first three qubits are in state Iooo)+

I
111). This means that

the other two sets are also in state Iooo)+
I
111).Similarly, if

the first three are in state
I
000) —

I
111), the other two triplets

must also be in this state. Thus, even if one qubit has deco-
hered, when we measure the nine qubits (measuring each
triple in the Bell basis Iooo)~

I
ill), lool)~lllo), lolo)

~
I
101),

I
100)~

I
011)) we can deduce what the measurement

should have been by taking the majority of the three triples,
and thus we can tell whether the encoded bit was 0 or a 1.
This, however, does not let us restore the first qubit to any
superposition or entanglement that it may have been in, be-
cause by measuring the nine qubits, we are in effect project-
ing all the qubits onto a subspace. This process also projects
the original encoded bit onto a subspace, and so does not let
us recover a superposition of an encoded 0 and an encoded 1.

To preserve the state of superposition of the encoded qu-

bit, what we do in effect is to measure the decoherence with-

out measuring the state of the qubits. This allows us in effect
to reverse the decoherence. To explain in detail, we must first
examine the decoherence process more fully. The critical as-
sumption here is that decoherence only affects one qubit of
our superposition, while the other qubits remain unchanged.
It is not clear how reasonable this assumption is physically,
but it corresponds to the assumption in classical information
theory of the independence of noise.

By quantum mechanics, decoherence must be a unitary
process that entangles a qubit with the environment. We can
describe this process by describing what happens to two ba-
sis states of the qubit undergoing decoherence, Io) and

I 1).
Considering the environment as well, these must be taken to
orthogonal states, but if the environment is neglected, they
can get taken to any combination of states.

Let us describe more precisely what happens to the qubit
that decoheres. We assume that this is the first qubit in the
encoding, but the procedure works equally well if any of the
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other eight qubits is the one that decoheres. Because ~0) and

~1) form a basis for the first qubit, we need only consider
what happens to these two states. In general, the decoherence
process must be

I eo)10)~ I
a o) I 0) +

I
a t ) I

1 )

leo) I
I )~ lax) I0) + l as) I

I ).
(3.2)

where ~ao), a~), a2), and ~as) are states of the environ-
ment (not generally orthogonal or normalized). Let us now
see what happens to an encoded 0, that is, to the superposi-
tion (I/+2)(~000) +

~
111)).After decoherence, it goes to the

superposition

(I&P2) [(lao) I
o)+ l at) I ») I«)+ (la2) Io)+ la3) I ») I »)1

(3 3)

We now write this in terms of a Bell basis, obtaining
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Similarly, the vector ~000) —~111) goes to

1
(lao)+ las))(1000) I

1 I 1))
2 2

1
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2 2
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The important thing to note is that the state of the environ-
ment is the same for corresponding vectors from the deco-
herence of the two quantum states encoding 0 and encoding
1. Further, we know what the original state of the encoded
vector was by looking at the other two triples. Thus, we can
restore the original state of the encoded vector and also keep
the evolution unitary by creating a few ancillary qubits
which te11 which qubit decohered and whether the sign on
the Bell superposition changed. By measuring these ancillary
qubits, we can restore the original state. %'e still maintain

any existing superposition of basis Bell states because the
coefficients are the same whether the original vector deco-
hered from the state ~000)+

~
111) or ~000) —~111). By mea-

suring the ancillary qubits that tell which qubit was deco-
hered, we in effect restore the original state.

We now describe this restoration process more fully. This
restoration consists first of a unitary transformation which
we can regard as being performed by a quantum computer,
and then a measurement of some of the qubits of the out-
come. What the computer first does is compare all three
triples in the Bell basis. If these triples are the same, it out-
puts (in the ancillary qubits) "no decoherence, " and leaves
the encoded qubits alone. If these triplets are not the same, it
outputs which triple is different, and how it is different. The
computer must then restore the encoded qubits to their origi-
nal state. For example, in Eqs. (3.4) and (3.5), the output
corresponding to the second line would mean "~rong sign, "
and the output corresponding to the third line would mean
"first qubit wrong, but right sign. " These outputs are ex-
pressed by some quantum state of the ancilla, which then is
measured. Because the coefficients on the corresponding
vectors in Eqs. (3 4) and (3.5) are the same, the superposition
of states after the measurement and the subsequent correc-
tions will be the same as the original superposition of states
before the decoherence. Further, the correction of errors is
now a unitary transformation because we are not just correct-
ing the error, but also "measuring" the error, in that we
measure what and where the error was, so we do not have to
combine two quantum states into one.

If more than one qubit of a nine-tuple decoheres, the en-
coding scheme does not work. However, the probability that
this happens is proportional to the square of the probability
that one qubit decoheres. That is, if each qubit decoheres
with a probability p, then the probability that k qubits do not
decohere is probability (1 —p) . In our scheme, we replace
each qubit by nine. The probability that at least two qubits in

any particular nine-tuple decohere is 1 —(1+Sp)
&&(I —p) =36p, and the probability that our 9k qubits can
be decoded to give the original quantum state is approxi-
mately (1—36@ ) . Thus, for a probability of decoherence
less than —,'„we have an improved storage method for
quantum-coherent states of large numbers of qubits. Since p
generally increases with storage time the watchdog effect
could be used to store quantum information over long peri-
ods by using the decoherence restoration scheme to fre-
quently reset the quantum state. If the decoherence time for a
qubit is td, the above analysis implies that use of the watch-

dog effect will be advantageous if the quantum state is reset
at time intervals t„&& 3{)td.

It seems that we are getting something for nothing, in that
we are restoring the state of the superposition to the exact
original predecoherence state, even though some of the in-

formation was destroyed. The reason we can do this is that
we expand one qubit to nine encoded qubits, providing some
sort of redundancy. Our encoding scheme stores information
in the entanglement between qubits, so that no information is
stored in any one specific qubit; i.e., measuring any one of
the qubits gives no information about the encoded state. Es-
sentially, what we are doing is putting all of the information
in the signal into dimensions of the signal space that are
unlikely to be affected by decoherence. We can then measure
the effect of the decoherence in the other dimensions of this

space, which contain no information about our signal, and
use this measurement to restore the original signal.
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There is a cost for using this scheme. First, the number of
qubits is expanded from k to 9k. Second, the machinery that
implements the unitary transformations will not be exact.
Thus, getting rid of the decoherence will introduce a small
extra amount of error. This may cause problems if we wish to
store quantum information for long periods of time by re-
peatedly using this decoherence reduction technique. If our
unitary transformations were perfect, we could keep the in-
formation for large times using the watchdog effect by re-
peatedly measuring the state to eliminate the decoherence.
However, each time we get rid of the decoherence (or even
check whether there was decoherence) we introduce a small
extra amount of error. We must therefore choose the rate at
which we measure the state so as to balance the error intro-
duced by decoherence with the error introduced by the res-
toration of decoherence.

The assumption that the qubits decohere independently is
crucial. This is not completely unreasonable physically, and
may in many cases be a good approximation of reality, but
the effects of changing this assumption on the accuracy of
the encoding must be investigated. This assumption corre-
sponds to independence of errors between different bits in
classical information theory; even though this does not al-
ways hold in practice for classical channels, classical error-
correcting codes can still be made to work very well. This is
done by exploiting the fact that errors in bits far enough apart
from each other are, in fact, nearly independent. It is not
clear what the corresponding property would be in a quan-
tum channel, or whether it would hold in practice.

There are clearly improvements that can be made to the
above scheme. What this scheme does is use the three-

repetition code twice: once in an outer layer (repeating the
triplet of qubits three times) and once in an inner layer (using
~000)~ ~111) for each triplet). In classical information theory,
repetition codes are extremely inefficient. The outer layer of
our quantum code can be replaced by a classical error-
correcting code to produce a more efficient scheme; this re-
duces the cost of encoding k qubits from 9k qubits to a
function that approaches 3 k qubits asymptotically as k
grows. The inner layer of our quantum code, however, needs
to have more properties than a classical error-correcting code
because it needs to be able to correct errors coherently. While
longer repetition codes can be used for this inner layer, it is
not immediately clear how to improve on repetition codes for
this mechanism, but I believe it should be possible.

This scheme is a step toward the quantum analog of chan-
nel coding in classical information theory. Whereas the quan-
tum analog of Shannon's source coding theorem is already
known [4,13], it is not even clear how a noisy quantum chan-
nel should properly be defined. Other steps in this direction
have also recently been taken in [14,15], which deal with
transmitting classical information over a quantum channel,
and in [16],which deals with transmitting quantum informa-
tion over a quantum channel, given an auxiliary two-way
classical channel. The ultimate goal would be to define the
quantum analog of the Shannon capacity for a quantum
channel, and find encoding schemes which approach this ca-
pacity. An intermediate goal would be to find schemes for
faithfully encoding k qubits that use k+ ek qubits, where e
approaches 0 as the channel's error rate goes to 0, as in
classical information theory.
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