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Generation of coherent hard-x-ray radiation in crystalline solids by high-intensity
femtosecond laser pulses

Peter Kalman
Department of Experimental Physics, Technical University of Budapest, Budafoki ut. 8 FIIIO, H 1521-Budapest, Hungary

Thomas Brabec
Abteilung fii'r Quantenelektronik und Lasertechnik, Technische Universitiit Wien, GufJhausstrasse 27, A 1040-Wien, Austria

(Received 5 January 1995)

A process for coherent hard-x-ray generation is suggested, which is based on the idea that high-intensity,

ultrashort laser pulses can be coupled into a crystal before the lattice structure is destroyed. In the presence of
the lattice periodicity, additional momentum can be transferred to the electrons that are moving in the strong
light field. This additional momentum supplied by the crystal results in a substantial decrease of the threshold

pump laser intensity required for hard-x-ray generation as compared to free electrons. The lattice is also
utilized to select the frequency of the emitted x rays via Bragg coupling. A numerical estimation for the yield
of the proposed mechanism gives an output power of some 10 W in the range of 1—10 keV of photon energies

by using a state-of-the-art optical pulse with a peak intensity of about 10 W/cm and a pulse duration of
30 fs.

PACS number(s): 42.55.Vc

Continuous effort is being made to develop and improve
coherent x-ray sources [1].However, the generation of co-
herent x-ray radiation with photon energies higher than 1
keV is an unsolved problem to date. The purpose of this
paper is to propose a process for the generation of coherent
hard-x-ray radiation in crystalline solids. It is the following.
A high intensity laser field produces free electrons in a crys-
tal. The free electrons are dressed by the laser field and emit
hard-x-ray photons due to scattering by the crystal lattice.

Free electrons in a strong laser field can generate low-
order harmonics [2], where the order of the highest harmonic
is proportional to the product of two physical quantities: the
change in electronic momentum and the magnitude of the
electric field strength of the laser radiation. The momentum
change of free electrons in a light field is determined by
energy-momentum conservation; e.g., see the intense-field
Compton effect. Therefore, the only possibility to create
x-ray radiation by using free electrons is to increase the laser
intensity. As the required intensities are difficult to realize
experimentally, it is important to address alternative routes to
coherent x-ray generation. The analysis performed here dem-
onstrates that in the presence of a periodic crystal lattice the
laser intensities required for the generation of x-ray radiation
can be significantly reduced.

The presence of the periodic lattice structure is essential
for the following reasons: (i) a large change in electron mo-
mentum can be supplied by electron-lattice scattering; (ii)
the generated x rays are coupled via Bragg reAection so that
the radiation forms a standing-wave pattern perpendicular to
its direction of propagation. For a proper choice of polariza-
tion vector the transmission losses for the standing-wave
x-ray modes can be drastically reduced (Borrmann effect)
[3]

The mechanism proposed here is based on the potential of
a new class of high power femtosecond solid state lasers [4]

supporting pulses with durations of some 10 fs. This pulse-
width is much shorter than the electron-phonon relaxation
time, which is a few hundreds of femtoseconds [5]. There-
fore, in spite of the high intensities, the lattice can be sup-
posed to participate in the laser-induced x-ray generation
process [6].

The theoretical study of this paper reveals the following
main results. For a given pump laser intensity a spectrum of
x-ray frequencies is generated due to scattering by the crystal
lattice. The lower cutoff of the frequency band is determined
by the Bragg condition, whereas the upper cutoff frequency
is determined by the pump-laser intensity due to the thresh-
old condition. Our results show that the momentum ex-
change between the electron and the crystal requires a three-
dimensional lattice and the mechanism does not work for
one-dimensional periodic structures [7]. Formulas for the
cutoff frequencies, the threshold pump laser intensity, and
the x-ray power generated per pump pulse are obtained.

Our analysis starts with the assumption that free electrons
are created in the crystal due to the interaction with the laser
field [8]. The coupling between the free electrons and the
laser field is so strong that it must be treated nonperturba-
tively. Therefore, the calculation is performed in two steps.
First, a Volkov solution is dealt with, which is used to de-
scribe the free electronic states dressed by the laser field.
Note that the wavelength of the x-ray radiation is comparable
to the distance between the lattice sites; hence, the dipole
approximation cannot be employed and the space depen-
dence of the radiation field has to be taken into account. In a
second step, the interaction of the electron with the lattice
and with the x-ray field is taken into account by perturbation
theory, where the dressed free electron solutions are used as
initial and final states.

Free electronic states W dressed by an intense laser field
are described by the Schrodinger equation
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Finally, E~= n)Q~/c is the amplitude of the electric field.
Note that Eq. (2) is an approximation of the relativistic
Volkov solution [9]and contains the space dependence of the
phase of the laser light. The pulse shape dependence in Eq.
(2) has been included by using a slowly varying envelope
approximation [10].The space dependence of the pulse en-
velope is neglected.

The electron-lattice interaction potential can be written as

~x x

FIG. 1. Depiction of two graphs of x-ray generation in a crystal
lattice. The double line with indices i, 1, f indicates the initial,
intermediate, and final Volkov states of the electron. The dashed and

the curved lines denote lattice potential and the x-ray radiation,
respectively.

We assume a model lattice that consists of Coulomb po-
tentials in an fcc lattice with lattice distance d, unit cell
volume V, =d . For this model the Fourier coefficients

are V(g)=4vre /(g V,). The reciprocal lattice vector is

denoted by g=goG, where G denotes a vector with integer
components, and go=2m/d is the magnitude of the smallest
reciprocal lattice vector.

The interaction between the dressed electron and
the x-ray radiation is described by the operator

Q=(ieA/mc)V A +e /(mc)A& A, where the vector po-

tential of the x-ray field is denoted by A . The first term of
Q does not depend on the laser intensity and hence can be
neglected in high intensity light-matter interactions. The re-
maining term is

(4)

1
i(cot —k r) —i[u(t) - ksinrIIt]

+v
(2)

Here, V, r, t, co, and k denote the normalization volume,
space-coordinate, time-coordinate, electron angular fre-
quency, and electron wave vector, respectively. The param-

eter P=(cu~t k~ r) is—the phase of the laser field, where

co~ and k~ are the laser angular frequency and the laser wave
vector. The refractive index of the material at the laser fre-

quency is n, so that Ik~I = n)~n/c. The coupling of the elec-
tron to the laser radiation is determined by

u(t) =e~uoexp( t /v ). Here, r is the w—idth of the laser
pulse, which is assumed to be Gaussian. The coupling

strength at the pulse center is un= eE~/(mes ) and e~ de-
notes the laser polarization, which is assumed to be linear.

where A, e,m, c denote the vector potential of the laser

(pump) field, the electron charge, the electron mass, and the
light velocity, respectively. The solution of Eq. (1) is the
nonrelativistic Volkov state [9]

2mlic e E~(t)
V~x 2mcco

Here, the vector potential A is given in a quantized form;
the operator a~ accounts for the creation of an x-ray photon

with angular frequency co, wave vector k, and state of
polarization e . The sum over x denotes summation with

respect to k and e . As the refractive index at the x-ray
frequency is approximately unity, the magnitude of the wave

vector is ~k,
~

= cu„/c.
The two lowest-order graphs describing our x-ray genera-

tion process are depicted in Fig. 1, from which the scattering
matrix element S& can be determined by using the following
definitions. The double line in Fig. 1 denotes the Volkov
solution, Eq. (2), and i, 1,f refer to initial, intermediate, and
final electron states with angular frequency cu; & I and wave

vector k; & f, respectively. The dashed and curved lines indi-
cate the lattice potential and the x-ray radiation. The number
eigenstates of the x-ray photon are denoted by IO) and I1).
Then, from Fig. 1 and Eqs. (2)—(5) we have

—1 V
S~= 2 s dt2, dt& d r&d r2d k&Wt;(1)%'f&(2)[V(1)(1IQ(2)IO)+V(2)(1IQ(1)IO)].

2fi. 2m. (6)
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des„dA, 2m d GM ~G~
(7)

Here the parameter r, =e /mc is the classical electron ra-

dius, M denotes the order of the high harmonic, I~ is the

laser peak intensity, and u is the unit vector in the direction

of k . The spectral characteristic of the x-ray signal is deter-
mined by the Fourier integral

For the sake of brevity, we have introduced the following

notation: 'Pi;='Pi 'I;, 'I/t=%'/ 4'i, (1)=(r, ,&,), and

(2) =(rz, tz). For the evaluation of Eq. (6) the Jacobi-Anger
formula [11] is used to reexpress the Volkov solution as a
sum over high harmonics of the laser field. The integrations
in Eq. (6) are performed in a closed form using the following
assumptions: ~ &&co&, ~,=0, and the slowly varying pulse
approximation rcuz&&1, which allows the evaluation of the
t, integral [12].Note that co;=0 is equivalent to the assump-
tion that a free electron originates with zero velocity. This
assumption has proven to be very successful in describing
high harmonic generation in gases [13].

For the rest of the analysis we choose an fcc lattice with
basis vectors aligned along the x, y, and z directions,

k„J z, k~~~y, and e~~~e„~~z; see Fig. 2. The last assumption
fulfills the Borrmann condition for minimum propagation
losses; i.e., the state of polarization of the x-ray radiation is
parallel to the atomic plane responsible for Bragg coupling
[3]

Because of the coherence of the process the total scatter-

ing matrix element is S&=S~n, , where n, is the number of
electrons in the interaction volume. Integrating ~S&~ over the
phase space of the electron in the final state and multiplying
by the phase-space element of the outgoing x-ray photon
determines the number of x-ray photons dN„/(dQ„des„)
generated per solid space angle dQ and frequency interval
de, . Introducing P =N, fini /r, which is the average x-ray
power generated per pump pulse in the interaction volume,
and performing the integration, we obtain

2' gp COp A'OG

f( ) 2 2 2 22m'„+fig()(G„+G +G, )
'

Then, the vector Go for which f has a maximum is deter-

mined by solving V Gf=0. This yields G„o=G~o = 0 and

G,o= $2mto„/(figo). The threshold condition f(Go) = 1
from which the threshold intensity is obtained as

I,g
= 1.24 X 10

COp cm

At a given pump intensity I above the threshold a spectrum
of x-ray frequencies is generated. Equation (10) can be used
to obtain the upper cutoff frequency co„,„ofthe spectrum.
The lower cutoff frequency co„;„ is determined by the
Bragg condition. As stated above, a considerable x-ray signal
can only be obtained when the transmission losses are re-
duced by Bragg coupling. The Bragg condition for a recip-

rocal lattice vector g is given by

glc
sin8=

2 coax

where 8 is the Bragg angle; see Fig. 2. The Bragg condition

at 8= m/2 with the smallest possible vector ~g~
= 2go defines

~x,min ~go
For the numerical evaluation we choose crystalline LiF

with d =0.403 nm, laser wavelength k~= 800 nm, and pulse-
width ~=30 fs. For these parameters the lower cutoff photon
energy is 3.08 keV and the threshold intensity
I,„=2.45X10' W/cm . The power dP„of the generated
x-ray radiation is evaluated at the lower cutoff frequency
(8 = m/2) for a peak pump intensity I=7X10' W/cm .
The rest of the parameters required for the evaluation of Eq.
(7) are rdcu„= 30, dQ =10, and n, =4 6X10t,. which
corresponds to one free electron per unit cell and an interac-
tion volume 10X 10X3 p,m . Then, dP„= 1.08X 10 X,
where X denotes the sum in Eq. (7); numerical computation
gives X =7X 10 and finally we get dP = 80 W.

J —oo
dtJ~(gouoG e~e ' )e'", (8)

where e= r( co~+ co, —M co~) is the spectral parameter and

J~ is the Bessel function of order M. The parameter

co/;=(fiGgo) /(2m) denotes the change in electron fre-
quency between initial and final states, and is determined by
the relation for momentum conservation [14].From to~ we

find that e is a function of M and G. Therefore, the summa-

tion in Eq. (7) is confined to values M and G for which e lies
within the bandwidth of IM.

Significant generation of x-ray radiation can only be
expected when the argument of the Bessel function for
t = 0 in Eq. (8) is comparable to its order, i.e.,
f(G)=goaoG, /M~1, where G=(G„,G~, G,). This rela-
tion leads to a threshold condition for the generation of x-ray
radiation, as follows. As the bandwidth of I~ is small com-
pared with ~ we can use e= 0 to obtain a relation between

M and G that gives

kx k„,

X

FIG. 2. A vector diagram for Bragg coupling of the generated

x-ray fields with wave vectors k„& and k„„; the Bragg vector is

denoted by g. x and y are crystallographic directions of an fcc
lattice. The Bragg condition determines the angle of propagation
8 that depends on the x-ray frequency co . The states of polariza-

tion of the laser (e~) and the x-ray radiation (e ) are both perpen-

dicular to the plane of the figure. k~ denotes the direction of propa-
gation of the laser light.
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It is informative to compare our numerical result with
the characteristics of synchrotron radiation facilities. Our
relative bandwidth and intensity are 2X 10 and 270
MW/cm, respectively. The photon number in one pulse
is 4870, which corresponds to a brilliance in a pulse of
4.8X10 photon/(s mrad mm ), but the brilliance is usu-
ally defined by taking the time average of the pulse train. If
we assume a laser repetition rate of 10 and a relative band-
width of 10 generally used for synchrotron radiation
sources we obtain a brilliance of 7.2X 10' photon/
(s mrad mm ). This is comparable to the brilliance of
synchrotrons, which is in the range of 10'3—10i photon/
(s mrad mm ) [15).

Concluding, based on the experimental progress in ul-
trafast laser technology, coherent x-ray radiation is expected
to be generated by ultrashort intense laser beams in crystal-
line solids. The central concept of the suggested mechanism
is that laser radiation of high intensity can be coupled to a

crystal before the periodic lattice structure is destroyed. In
the presence of a periodic lattice, additional momentum is
transferred to the electrons dressed by the laser field. This
reduces substantially the threshold intensity required for hard
x-ray generation as compared to free electrons. The lattice is
also utilized to select the frequency of the emitted x rays via
Bragg coupling. Our analysis indicates that at pump intensi-
ties = 10'e—10i W/cmz coherent x-ray radiation with a pho-
ton energy in the keV range and with a power of some 10 W
can be expected.
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