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Probe-transmission spectrum of a blue-detuned optical lattice
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The probe-transmission spectrum of a one-dimensional optical lattice is calculated. The optical lattice con-
sists of atoms that are cooled by a pair of counterpropagating, linearly polarized fields, whose frequency co is
detuned to the blue side of an atomic transition. A weak probe 6eld of frequency ~' is assumed to be
propagating in the same direction as one of the cooling fields. It is shown that, owing to the existence of dark
and gray states in the lattice, the probe-transmission spectrum exhibits interesting features that are qualitatively
different from those of a "normal" optical lattice with red-detuned cooling fields. Examples of these features
include subrecoil linewidths and reversed absorption-amplification sidebands. It is sho~n that by monitoring
the magnitudes of resonance signals in the spectrum, one can gain information on the evolution of the dark-
state population in the lattice.

PACS number(s): 32.80.Pj, 42.65.—k

In an optical lattice, an atomic vapor is cooled by a num-

ber of incident fields whose polarization vectors are orthogo-
nal to each other. The vapor atoms can become trapped in the
periodic light-shift potential wells induced by the cooling
fields, and form a spatial lattice distribution. In most of the
experimental realizations of optical lattices [1—5], the cool-
ing field frequency is detuned to the red side of an atomic
transition between the ground and excited states having an-

gular momenta F and F+1, respectively. In such cases, the
positions of the light-shift potential minima correspond to
the antinodes of the field intensity, and the atoms that are
trapped near these potential minima scatter photons from the
cooling field at a rate determined by the optical pumping rateI'. Nonlinear spectroscopy has proved to be an effective
way for investigating the characteristics of these red-detuned
lattices; e.g., oscillation frequencies of the atoms in the po-
tential wells, motional damping constants, paramagnetism,
etc. There have been a series of probe-transmission and four-
wave-mixing experiments in one-dimensional (1D) and mul-
tidimensional lattices [1—4,6,7]. Due to computational limi-
tations, theories of nonlinear spectroscopy in optical lattices
are limited to 1D [8,9] and 2D cases [10] only, and the cal-
culated results are in qualitative agreement with some exist-
ing experiments.

If the atomic vapor density in a red-detuned lattice is suf-
ficiently high, the photon scattering processes will result in a
significant long-range dipole-dipole interaction between the
atoms, which limits the effects of cooling and hinders any
attempt to further increase the vapor density in the optical
lattice. Recently, there has been considerable interest in the
so-called blue-detuned lattices, in which the cooling fields
are detuned to the blue side of an atomic F +F or
F~F 1 transition [11].—In this case, the minima of the
light-induced potential wells correspond to the intensity
nodes of the field, and the atoms that are trapped near these
minima scatter photons at a rate much lower than I".As a
result, the mutual interaction between the atoms is expected
to become weaker as compared to the case of red-detuned
lattices. Furthermore, the atomic momentum distribution
width can become much narrower than the photon recoil
momentum fi, k (subrecoil cooling), owing to the existence of

certain velocity-selective dark or gray states in the lattices, in
which the atoms absorb no light or very little light from the
cooling field [12].

With the ongoing experimental efforts to realize the blue-
detuned lattices, it is interesting to know whether one can
similarly study the properties of these lattices by nonlinear
spectroscopy. In this Rapid Communication, the probe trans-
mission spectrum of a 1D blue-detuned lattice is presented.
The calculated signal exhibits novel features that are not
found in the spectra of red-detuned lattices, and by studying
these features, one can monitor the accumulation of the dark-
state population in the lattice.

One considers the 1D model of a blue-detuned lattice first
proposed by Shahriar et al. and Marte et al. [13,14]. The
atomic level scheme is chosen as a Fg = 1 +F,= 1 transition
with a Bohr frequency coo. The cooling field having a fre-
quency co consists of a pair of counterpropagating, linearly
polarized fields, whose polarization vectors are at an angle
8 with each other. This particular configuration has the fea-
ture of combining both the polarization-gradient cooling and
the velocity-selective coherent population trapping (VSCPT)
mechanisms. In addition to the cooling field, a probe field of
frequency co' can be present, and is assumed to be propagat-
ing along the cooling field direction given by z. The total
field in the lattice can be written as

gE= e '"'[—cos(kz —8/2)+eri+e' ' ' ']a+
+2

+ e ' '[cos(kz+0/2)+elhi e' ' ' ']e +c.c.
2

where 8'= cv' —~ is the probe-pump detuning, a&&1, is the
ratio between the strengths of the probe and cooling fields,
and y~ are the o.—components of the probe field polariza-
tion vector. One assumes a weak field limit defined by

y(& I,5
where y= dS/v26 is the cooling field Rabi frequency, I" is
the atomic excited-state decay rate, and 5= co —~o is the
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p=1/1& [»p]+ [p]„(.. . (3)

cooling field detuning. In this limit, one can adiabatically
eliminate the electronic excited state of the atom. The result-

ing master equation for the atomic ground-state density ma-
trix p is given by

where the Hamiltonian H can be written as

H=H( )+ F[H(')e ' '+H.c.] (4)

The zeroth-order Hamiltonian, H~ ~, describes the motion of
the atoms in the light-induced potential wells. It is given by
[14]

H =p /2M + U0[cos (kz+ 0/2) l+)(+ l+ cos (kz —0/2)
l

—)( —l+ cos(kz+ 0/2)cos(kz —6/2)(l+)( —l+ l

—)(+ l)], (5)

where the potential depth U0= hy /(I /4+ 6 ), and
l

~ ) denote the magnetic sublevels lmg= ~ 1). The modification to the

Hamiltonian due to the addition of the weak probe field, H~'~, is given by

Up
[ r/ cos(kz+ &/2) l+)(+ l

—g+cos(kz —0/2)
l

—)(—
l

—r/+cos(kz+ tW2) l+)( —l+ rg cos(« &/2)
l

—)(—+ l]e'"'
2

+H.c.

)('Bf e EP z elP zB (7)

where the optical pumping rate I ' = I'y /(I' /4+ b, ). The
operators A and 8 in Eq. (7) can be similarly expressed as

A=A +a[A e ' '+H.c.]

a =a")+~[a")e-'"+H.c.],Q-Q Q

where A~ ~ and BQ~ represent modifications to the optical
pumping rates in the presence of the probe field. The detailed
expressions for A and BQ will be presented elsewhere. The
functions N&(p ) in Eq. (7) are the probability distribution
functions for the emission of a spontaneous photon with a
polarization component Q and a momentum fip' in the z
direction [9].

The atomic density matrix p can be similarly written as

p= p + e[p ' e ' '+ H.c.] (9)

and the probe transmission coefficient is given in terms of
p('& as

1
5(8) = Im . Tr[p(')( r/*cos(kz+ 9/2) l+)(+ liI' 2—6

—pecos(kz —8/2)
l

—)(—l+ xg* cos(kz —8/2) l+)

x&- I- v*cos(kz+ g/2)l —)(+ l)e '"], (1O)

The relaxation of the density matrix p due to optical pump-
ing, [p„,&, ], is given by

I'
[p]„t..= — [A p+—pA]+ I"„dp' X &Q(p')

ing the secular limit b, /I'&) 1, one can neglect the coherences
between the Bloch states of different band indices n. In
this case, the only nonvanishing terms of the density
matrix p~ ~ are the populations of the Bloch states,
m„=(n, qlp( )ln, q), and Eq. (3) in the absence of the
probe field reduces to a set of rate equations for m„~ [14].It
is assumed that the strength of the probe field is sufficiently
weak that its effect on cooling is negligible. Starting from an
arbitrary distribution of m„q at t = 0, one can integrate these
rate equations to obtain the value of p (t). As described in
Ref. [14], the initial period of cooling is dominated by the
more efficient polarization-gradient mechanism, and the rate
for the evolution of the density matrix p~ ~ is on the order of
a fraction of 1 '. After a cooling time of order I 't= 100, the
atomic density matrix reaches a quasistationary value with
respect to polarization-gradient cooling. The population-
trapping mechanism then slowly reduces the atomic momen-
tum distribution width to below A, k. The evolution of the
density matrix during this subrecoil cooling period is now
characterized by a rate yappy which is three orders of
magnitude smaller than I'. One assumes that the probing
periods are sufficiently short that the changes in the zeroth-
order density matrix p~ ~ during these periods can be ne-
glected, but are sufficiently long for the probe-induced co-
herences to reach their steady-state values. This requirement
can be satisfied since, as indicated below, the relaxation rates
of the probe-induced coherences are on the order of a few
percent of I"'.

The equation for the first-order density matrix, p& &, can
be obtained upon substitution of p( )(t) into Eq. (3) as

1(1) ([H(0) (1)]+[H(1) (0)]) [A(0) (1)+ (1)A(0)
lA

where the trace is over the atomic internal and motional
states. From here on, it is assumed that the angle 9= +/4,
which gives rise to optimal cooling effects.

Equation (3) can be solved in the eigenstate basis of the
zeroth-order Hamiltonian H( ), i.e., the Bloch states ln, q),
where n is the band index, and qe[ —k, k) is the Bloch
index. To zeroth order in the probe field strength, and assum-

+A( )p(o)+ p(o)A( )]+I dp g ~ (p )Q

X[(g(0))t —ip'z (1) rp'zg( )

+ (~(1))t —ip'z (0) ip'zg(0)]

The steady-state probe-induced coherences p( )(n, n ', q)
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I„„q(B)= '

~ 2, (12)
(~—~... ,,)'+ r„,„,,

where the line shape parameters (A„„Iq, ca„„q,y„„q)
can be obtained for the discrete values of the Bloch index

q s by solving the density matrix from Eq. (11). When
the discretization interval Aq is sufficiently small, these
parameters vary linearly between two discrete Bloch indices

q; and q;+i for a given pair of (n, n'). As a result, one
can obtain the values of the parameters

(A„„q,cu„„q,y„„q) for q;(q(q;+t by a linear inter-
Polation from the values of (A„„q,tu„„q,7„„q) and

(A„„q,cu„„q,y„„i q ). The overall Raman signal

in the limit of Aq —+0 is then obtained as a normalized sum
of these calculated and interpolated Lorentzians. The number
of added Lorentzians N;„, between two adjacent discrete
Bloch indices q; and q;+ &

should be sufficient such that the
overall line shape does not depend on N;„, .

Figure 1 shows the calculated probe spectra in the limit of
Aq~0, at times given by I"t = 500, 2000, and 4000, respec-
tively. A number of narrow Raman peaks, whose widths are
much smaller than wk, can be seen in Fig. 1, and the Bloch
states participating in the Raman transitions that contribute
to the narrow peaks are identified in Fig. 1(a). There also
exists a narrow central Rayleigh signal at 8'=0, which ex-
hibits a Lorentzian-type dispersion profile. The positions of
sidebands due to transitions between the states ~1,0) and

~2,0) are reversed, in the sense that probe absorption occurs
for 8~0 and amplification for 8'~0. One also notices from
Fig. 1 that there exists an asymmetry in the amplitudes of the
signals for 8'~0 and 6'~0. The magnitude of the absorption
signal at 8')0 is much greater than that of the amplification
signal at 6~0, and such a difference becomes greater as the
cooling time t increases.

The observed features in Fig. 1 are closely related to the
existence of dark and gray states in the lattice. For the cool-
ing configuration considered here, there exists an exact dark
state i1,—k) whose decay rate is exactly zero [14].Eventually
all the atomic population will accumulate in this state as the
cooling time t~~. Besides this dark state, there also exist
some nearly dark or gray states whose decay rates are ex-
ceedingly small. In particular, the excited Bloch state i2, 0)
is a gray state, and population inversion between the states i1
, 0) and ~2, 0) can exist for a finite cooling time. Figure 2
shows the eigenenergies E„of the lowest motional bands
together with the population distribution among the discrete

Bloch states at various cooling times t. Population inversion
between the Bloch states near q = 0 in the first and second
energy bands can be seen in Fig. 2, and Raman transitions
between these states with population inversion lead to ab-

sorption peaks at 8'&0 and amplification peaks at 8)0 in

Fig. 1.
The observed spectral asymmetry in Fig. 1 can also be

explained based on the existence of dark or gray states. To be
specific, let us look at the Raman transitions between a
ground state i1, q) and the excited states ~n, q) with n

4 1. Suppose that i 1, q) is a dark or gray state with respect
to the cooling field, whose population is greater than those of
the excited states. In the case of 8'=so' —co&0, a Raman
transition from i1, q) to in, q) involves the absorption of a
cooling field photon and the emission of a probe field pho-
ton. Since i1, q) is a dark or gray state, the probability for
atoms in this state to absorb a photon from the cooling field
is zero or quite small. As a result, the magnitude of the Ra-
man signal becomes suppressed in this case. On the other
hand, it is still possible for the atoms in i1, q) to absorb
photons from the probe field, and in the case of 8&0, the
processes of absorbing probe field photons and emitting
cooling field photons lead to the absorption Raman signal in

Fig. 1.
As the cooling time t increases, more and more atoms will

be accumulated in the dark state ~1,—/t), and the amplitude
of Raman peaks associated with this dark state increases,
while other Raman peaks decrease in magnitude, as is evi-
dent from Fig. 1.The strength of the central Rayleigh signal
also decreases as the cooling time increases, since the atoms
in the dark state do not contribute to this signal. Therefore,
by monitoring the amplitudes of the Raman and Rayleigh
signals, one can obtain information on the accumulation of
the dark-state population in the lattice.

In this paper, the probe-transmission spectrum of a 1D
blue-detuned lattice is calculated. The main features of the
probe transmission spectrum shown above, including narrow
line widths, reversed amplification-absorption features, and
the signal asymmetry for 8'(0 and 8')0 are characteristic of
the blue-detuned lattices where dark or gray states can exist.
One expects similar features to be found in the cases of 2D
or 3D lattices.
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