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Classical theory of I-changing transitions in collisions between Rydberg atoms and ions
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The I-changing transitions in collisions of Rydberg atoms with ions, A(nlo)+8+ —+A(nl)+8+, are con-
sidered within the classical approximation for atomic electron motion. The elliptic orbit of the electron evolves
slowly under the inQuence of the time-dependent electric field exerted by the incident ion. The quantum
electron state is represented by an ensemble of classical trajectories. Within the dipole approximation ex-
tremely simple analytical formulas for the final-state l-distribution function are obtained for a fixed value of the
impact parameter. The inhuence of the non-Coulomb core is taken into account approximately. The results of
our calculations compare favorably with recent experimental data for the Na+(26d, 28d) Rydberg atom. The
method can be extended to the calculation of distributions over various observables other than /.

PACS number(s): 34.50.Pi, 34.60.+z, 34.10.+x

A large variety of inelastic transitions occur in collisions
of Rydberg atoms (nlo) with ions. The l-changing transitions
nlp~nl possess the largest cross sections. The current state
of the theory and the experiment was reviewed in a recent
paper by Sun and MacAdam [1].

All the theoretical studies have used the dipole approxi-
mation for the ion —Rydberg-atom interaction. For the higher
collision velocities the direct dipole transitions b, i=+ 1
dominate. As U decreases, the processes with larger ~hi

~

be-
come more and more significant. For their description some
sort of coupled-channel treatment is required. While the re-
duced collision velocity Un is not large, it is natural to in-
clude in the calculations only the atomic states with the same
principal quantum number n as that in the initial Rydberg
state. However, the number of such states (-n ) is prohibi-
tively large for the numerical calculations (n =784 for
n=28), especially bearing in mind that the transitions are
induced by very-long-range interactions. To tackle the task,
Beigman and Syrkin [2] used a special ad hoc procedure to
reduce the number of coupled equations to n.

We develop an alternative approach based on the analysis
of the slow evolution of the classical trajectory of the Ryd-
berg electron caused by the time-dependent force exerted by
the moving incident ion. Such a theory is expected to be
reasonable if the relative collision velocity Un is not too
high.

Within the dipole approximation for the interaction, the
Rydberg atom is affected by the uniform electric field

E(t). In the frame that rotates with the internuclear axis, the
direction of electric field is fixed, but an additional Coriolis
force emerges. It is equivalent to an effective magnetic (Lar-

mor) field H(t) that is perpendicular to the collision plane.
The strengths of both fields have the same time dependence

[E(t)=ZR(t), H =bvR(t), where R(t) is the internu-
clear vector, b is the impact parameter, Z is the incident ion
charge]. The problem can be solved explicitly both classi-
cally and quantum mechanically for the case of the hydrogen
atom.

The classical problem (with time-independent fields
having arbitrary directions) was considered by Epstein [3]
and Pauli [4] (more precisely, these authors treated the prob-

lem with the old quantum mechanics method which implied
analysis of the slow evolution of classical trajectories). The

electron orbit was characterized by the orbital momentum I

and the Runge-Lenz vector A directed from the atomic
nucleus towards the orbit aphelion. The slow evolution of
trajectories can be described as the uniform precession of the

vectors J,= (i+A) and Jz ———,'(l —A). The axes of pre-

cession are directed along the vectors co&=-,nE+H and

~2= 2nE —H, respectively. The precession frequencies are
equal to co& and co2.

Although in the collision problem the electric and mag-
netic field strengths are nonstationary, they have the same
(up to the constant factors) time dependence. As a result, the
precession is uniform in the effective time, which is the angle

4 of rotation of the internuclear vector R(t):

(p, is the reduced mass of the colliding particles, L = p, bU).
The frequencies of the precession in the 4 variable coincide,

~3znpl'
2L (2)

The quantum treatment for the excited hydrogen atom in
crossed electric and magnetic fields was presented by
Demkov et al. [5]. The general solution of the l-changing
collision problem for the quantum electron was given by
Demkov et al. [6], Ostrovsky and Solovyov [7], and Ost-
rovsky [8], respectively, for classical, semiclassical, and
quantum descriptions of the motion of atomic nuclei This.
solution is expressed via finite sums containing Wigner func-
tions and Clebsch-Gordan coefficients, although it does not
provide a clear idea of the process. We treat the electron
motion within the framework of classical mechanics. Ac-
cording to the correspondence principle, the results obtained
are to be related directly to the classical limit of the quantum
solution.

Note that this development is rigorous only in the case of
the hydrogen atom (or hydrogenlike ion) with the energy
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levels degenerate in the orbital quantum number l. Its appli-
cation to the Rydberg atoms with non-Coulomb core needs
some additional analysis (see below).

We represent the quantum electron state by an ensemble
of classical trajectories. Below we consider the Rydberg
atom being initially in an s state. In this case (lp=0) the
elliptical classical electron orbit is squeezed into the interval

of line that is directed along the vector Ao. The initial quan-
tum s state is represented by an ensemble of such trajecto-
ries, randomly oriented in space. The geometrical picture of
uniform precession leads to explicit algebraic expressions for
the final values of l and A via the initial values lo and Ao.

We choose the spherical coordinate system with the axis
directed along the effective magnetic field, i.e., perpendicular
to the collision plane. Then the initial (i.e., prior to the col-

lision) orientation of the classical (i.e., of the vector Ap)
(lp=0) orbit is specified by the spherical angles 8, y. The

geometrical calculations outlined above provide the follow-
ing expression for the final (postcollision) value of the elec-
tron orbital momentum:

l—=G(8, q&), [G(8, (p)] =e [1—sin icos (q+f)],
(3)

where

e =2siny (sin(A/2)~ icos y sin (0/2)+cos (0/2),
(4)

3nZ cot(Q/2)
tany= pep@ —1=, tan(=

cosy ' 2bU ' cosy

Here 0 is just the angle of precession described above;
54' is the angle of internuclear axis rotation in the course of
the collision (64 = m. for the rectilinear trajectory).

For each value of the impact parameter b, the formulas
(3) map the initial ensemble of the classical trajectories on
the final values of the reduced orbital momentum e=l/n.
Averaging over the ensemble (i.e., integration over 8, q&)

results in the l distribution generated by the collision with
given b. The distribution function over the reduced orbital
momentum is defined as follows:

t 2m

f(e; b, v) = sin8 d8 dy B(e G(8, q&)). —
p Jo

The total differential cross section of the orbital momentum
transfer reads

da. (e)
2m f(e; b, u) b db,de J

which can be compared with the experiment.
The integration (6) can be carried out in a closed form:

f(c. b U)=
2 (e(e~)» f(e b»U)=0(E)E~)

This distribution has a remarkably simple analytical form
with the single parameter e (b,v), which means the electron
maximal orbital momentum generated in the collision with
given b and U. [Formula (8) is a generalization of the distri-
bution function obtained by Kazansky [9] for the case of
pure Stark effect. ] The region e&e is forbidden for the
classical population. Note the weak (square root) singularity
of the distribution functions for e= e . In the quantum cal-
culations such singularities are typically replaced by Airy-
type patterns. The singularities are to be smoothed out by the
integration in Eq.(7) over b, which will simplify the quan-
tum mechanical intricacies.

It is quite natural that only low values of l are generated
in the remote and fast collisions (e -2y for y(&1). Per-
haps, more unexpected is the fact that for close encounters
the high-l generation is also suppressed classically for dy-
namic reasons. In geometrical terms this stems from the fact
that when y approaches ~m, the precession angle 0 in-
creases to infinity. Since the expression (4) contains only
trigonometric functions of 0, it behaves quasiperiodically as
the reduced impact parameter x= bU/n decreases. This leads
to suppression of the large-l generation to the extent depend-
ing on the value of sinQ.

The summation over impact parameter b in (7) needs
some care. For small impact parameters the dipole approxi-
mation fails. The analysis of classical Rydberg electron tra-
jectories beyond this approximation was given by Kazansky
[10].It suggests that the dipole approximation is applicable,
provided the impact parameter appreciably exceeds the di-
mension of the electron orbit (2n ). As a lower limit of the
integration, we choose (somewhat arbitrarily) this value
twice: b;„=4n . Our test calculations have demonstrated
that the variation of b;„practically does not affect the re-
sults.

The integral (7) tends to infinity for l~0 due to the con-
tribution of the large impact parameters b. Actually a finite
effective upper limit for b exists because of the level split-
ting within the n manifold. For the hydrogen atom (and hy-
drogenlike ions) this is the fine structure splitting (cf. calcu-
lations by Chibisov [11) for n=2). For nonhydrogenic
Rydberg atoms the splitting induced by the atomic core is
much larger.

Our calculations below address the experiment [1]
with Rydberg Na(nd) atoms. The s and p states of the so-
dium atom have large quantum defects. Therefore they are
effectively excluded from the hydrogenlike n manifold
where efficient I mixing occurs. The d leve1s have a small
quantum defect [1]: Bd=0.0135. As an incident ion ap-
proaches the Rydberg atom, the Coulomb degenerate mani-
fold of the states with l~3 experiences the linear Stark ef-
fect, whereas the d level is only weakly (quadratically)
perturbed by the ion field. Transitions from the d state to the
higher l states become efficient when the outermost level in
the Stark-split manifold [b,E=3Zn /(2R )] crosses the d
level. When the field strength further increases (i.e., the ion
approaches the atom), the d state becomes strongly mixed
with the bulk (1~3) of the hydrogenlike manifold. This es-
timate gives the maximal value of the internuclear separa-
tion: R,„=$3n Z/28d (below we assume that the charge of
the incident ion is Z = 1). The simplest way to introduce the
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FIG. 1. Fractional populations for the l mixing in the excited
sodium atom as a function of the reduced collision velocity Un for
various values of the orbital momentum transfer Al. Open symbols,
experimental data by Sun and MacAdam [1];closed symbols, quan-
tum model by Beigman and Syrkin [2]. Circles, Na(28d)
~Na(28f) transition; solid curve, present theory for 51=1; tri-

angles, Na(28d) ~Na(28g, h) transitions; dotted curve, present
theory, sum for Al=2 and b, 1=3; diamonds, Na(28d)~Na(281),
1~6; dashed curve, present theory, sum for 27~hl~4.

population of the initial Io state (in the present case,
l0=0). Hence the sum over all fractional populations (1
4 lo) is equal to 1.

The application of the present theory to the collisions of
Na(nd)(n=28) with the ion is based on the fact that the
corresponding classical electron orbit has very high eccen-
tricity (since in = 2(~n). It can be approximately replaced by
the straight-line orbit for s states. As discussed above, s and

p states of Na(n I) are effectively excluded from the
I-mixing process. The distribution over I for the quasihydro-
genic atom (with lo=0) is presumed to be the same as the
distribution over the orbital momentum transfer b, l in the
sodium atom. Hence in Fig. 1 the experimental data [1] for
the fractional population fq& of f states [transition Na
(28d) —+Na(28f), b, l=1] are compared with the present
quasihydrogenic results for l=1; the population of Na g
states (Al = 2) corresponds to our result for I = 2, and so on.

The evolution (with vn) of the fractional populations for
the lowest values of l is shown in Fig. 1, in comparison with
recent experimental [1] and theoretical [2] results. Our
theory agrees with experiment in the qualitative behavior of
the distributions. For the lower l state the quantitative agree-
ment is pretty good. For the fractional population of the
states with 1~6 the differences are somewhat larger. The
results represented in Fig. 2 demonstrate that the correspon-
dence between the present theory and the experimental data
is even better for n=26. The present calculations are very
simple and applicable for low relative velocites Un where
calculations by other methods are difficult.

The important point to be stressed is that our approach is
the classical analog of the quantum close-coupling calcula-
tions within the given n manifold. Indeed, the present theory
considers slow evolution of the classical electron trajectory,
so that the electron principle quantum number (the classical

core effect in the calculation is provided by choosing of the

upper limit of integration (7) as b,„=R
We have calculated first the integrated l distributions for

the quasihydrogenic atom,

0.8—

oi(I)
Jo

do(e)
8E'

dE
= 2m Js,„

bdb e

0.4—

for various values of the reduced velocity Un. The distribu-
tions are shifted to higher values of I as Un decreases. For
vn 1the dep-endence of ol(l) on Un is quite weak.

The cross sections for the transition into quantum electron
states with the integer orbital momentum l are obtained using
the binning procedure. We employ the prescription of Becker
and MacKellar [12],taking o.(l) = oi(l+ 1)—cri(l) To com-.
pare the present model with the experimental data, we calcu-
late the velocity dependence of the fractional population

f&(U) of the given final I state (I+ lo). These quantities are
introduced [1] as the ratios f&=o.(l)/X& ~&

o.(l') between

the cross section o.(I) of the transition to the state with the
given I and the integral cross section X& ~&

o.(l') for de-
0
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FIG. 2. The same as in Fig. 1, but for the 26d initial state of the
sodium Rydberg atom. The symbols correspond to the experimental
data of Sun and MacAdam [1].Open circles, Na(26d)~Na(26f)
transition; solid curve, present theory for b l = 1; triangles,
Na(26d)~Na(26g) transition; dotted curve, present theory for
6 l =2; closed diamonds, Na(26d) —+ Na(26h) transition; dash-

dotted curve, present theory for b, 1= 3; diamands, Na(26d)
~Na(26l), l~ 6; dashed curve, present theory, sum for
25~ El~4.
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adiabatic invariant) is conserved. This implies that the per-
turbation varies slowly with time. The confinement of the
quantum close-coupling scheme to the fixed-n manifold ac-
tually has the same meaning, although the real calculations
were camed out [2] and compared with experiment [1] for
the relative collision velocities Un, which are not very small
(the most significant experimental data were obtained in the
interval 0.4~vn~0. 9). Introducing the cutoff internuclear
distance 8, also has its analogy in the quantum calcula-
tions, where the energy splitting between Na d levels and the
hydrogenlike (1~3) manifold was introduced in the equa-
tions of close-coupling scheme, while the s and p states were
omitted.

Moreover, in one respect the present theory seems to be
superior to the version of the quantum close-coupling
scheme used by Beigman and Syrkin [2]. Indeed, these au-

thors had simplified drastically the exact quantum equations
using an ad hoc procedure ("averaging of the close-coupling
equations over the magnetic quantum number m").

The present scheme may be applied to the calculation of
the distribution over various characteristics of the atom; for
example, over the multipole moments of the electron cloud
in the Rydberg atom generated by the collision, or over the
parabolic quantum numbers (which can be used for the clas-
sification of the Na** states with m)3). The classical ap-

proach may be generalized to the case lo@0 and to the
Rydberg atoms with initial orbital polarization.

The information on the distributions over m and parabolic
quantum numbers (which cannot be obtained within the
Beigman-Syrkin scheme [2]) seems to be extremely impor-
tant for interpretation of the experimental observations. Ac-
tually in the current experiments [1,13] the identification of
the final Rydberg states is based on the selective field ioniza-
tion technique and some additional assumptions, such as a
uniform distribution over m sublevels (for the given /). The
present approach in principle is capable of providing the
missing information, although additional work is necessary.

%e also anticipate that the classical model may be useful
as a constituent part of the description of the other collision
processes with the Rydberg atoms (e.g., the charge exchange
with the orbitally polarized atoms [13,14]).
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