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Coster-Kronig yields of the 54Xe 1.subshells measured through synchrotron photoionization
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The method of selective photoionization of individual subshells by monochromatized synchrotron ra-
diation has been employed to measure all Coster-Kronig yields of the 54Xe L subshells. The energy of
the primary radiation was set at about 50 energy points in the range of the L edges. At each setting, the
induced Xe L fluorescence and the induced Ar K Auorescence (used for normalization purposes) were
recorded simultaneously by a Si(Li) detector. Both Xe and Ar were in the gaseous state. The recorded
fluorescence spectra were carefully analyzed with proper modeling of the line tailing due to the intrinsic
line profile and the detector line shape. The Coster-Kronig yields were derived by fitting the measured
fluorescence intensities versus primary energy with the photoelectric cross sections. The derived yields
are sensitive to the precise dependence of the cross sections on primary energy. Evaluations have been
performed assuming a smooth power-law dependence and employing corrections for electron-correlation
effects, which were estimated from comparative calculations in the independent-particle approximation
and linear-response approximation models. Still, the uncertainties of the correlation effects constitute
the main contribution to the uncertainties of the derived Coster-Kronig yields. The finally adopted
values are f&z =0.12+0 03, f„. =0.23+0.04, and f23 =0.14+0.02.

PACS number(s): 32.30.Rj, 32.80.Fb, 32.70.Jz, 32.80.Hd

I. INTRODUCTION

A vacancy in an atomic inner shell rapidly decays
through a cascade of transitions, most of which are radia-
tionless. Fastest among these processes are the Coster-
Kronig transitions, i.e., radiationless transitions from a
deeper subshell to a less tightly bound subshell of the
same shell.

Coster-Kronig transitions are of relevance both in fun-
damental atomic physics and in experimental applica-
tions. The large transition rates may stretch perturbation
approaches to their limits, and the onset of allowed tran-
sition channels is very sensitive to the dynamical response
of the residual electrons. Quantitative analytical work re-
quires accurate knowledge of Coster-Kronig yields, since
these transitions redistribute vacancies within one shell,
and thus directly affect the intensities of emission lines.

Comprehensive theoretical calculations of radiative
and radiationless inner-shell decay rates are available
[1,2]. In the case of radiationless transitions with small
excess energies, calculated yields bear substantial uncer-
tainty due to the problem of predicting the exact atomic
number at which the onset of an allowed decay channel
occurs [3].

Various experimental methods have been applied to
measure the decay yields [4]. Most of these methods rely

on the availability of proper radioactive nuclides and
suffer from various experimental problems. Experimental
data still are scarce [5]. There are some accurate and re-
liable measurements on medium- and high-Z atoms [6].
A powerful method for measuring the Coster-Kronig
yield f23 (as well as the Auorescence yields co2 and co3) is
the Ku-L a coincidence method. This method has
reached a state of maturity at which systematic errors
have been carefully analyzed. Recent progress comprises
multiparameter data acquisition [7] and advanced model-
ing of detector tailing in the fluorescence analysis [8].
Unfortunately, the Ka-La method cannot be applied to
investigate the decay of the L

&
subshell (e.g. , the Coster-

Kronig yields f,2 and f,3) because there is no strong
K-L

&
radiative transition.

About a decade ago, a novel method of measuring all
yields was introduced which relies on subshell-selective
photoionization [9]. In this method, monochromatized
synchroton radiation is tuned over the L subshell absorp-
tion edges and ionizes only the L3, both the L3 and Lz,
or all three L subshells. By recording the induced x-ray
Auorescence or the Auger emission one can determine all
Coster-Kronig yields. In particular, fluorescence mea-
surements give good results [10—12], whereas the Auger-
emission experiments suffer both from the inherent com-
plexity of the Auger spectrum as well as the small signal
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strength obtained with present second-generation syn-
chrotron sources [13—15]. Normalization of the fluores-
cence intensity to the varying primary intensity can reli-
ably be performed by recording simultaneously the K
Auorescence of a properly chosen element.

Applying this method, it has been found that the pho-
toelectric cross sections of the L subshells exhibit a more
complex dependence on photon energy than predicted
from standard single-electron calculations [16]. This
behavior is due to electron-correlation efFects and has to
be taken into account in order to derive reliable Coster-
Kronig yields.

Comprehensive experimental data of Coster-Kronig
yields are available for high-Z elements, whereas the situ-
ation is still unsettled in the case of medium-Z and
small-Z elements [6]. In the present paper we report on a
recent measurement of the Coster-Kronig yields of Xe.
Some aspects of the applied method and the experiment
are not discussed here since they have already been ad-
dressed in an earlier comprehensive paper [12].
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II. EXPERIMENTAL DETAILS

The measurements were performed at the x-ray beam
line of the ELSA storage ring at the Physikalisches Insti-
tut, Universitat Bonn, Germany. The primary radiation
was monochromatized by a double-crystal monochroma-
tor. In contrast to previous work, a gaseous sample was
used. For this purpose, a gas chamber of length 134 mm
equipped with thin windows (10-pm polyethylene tere-
phthalat, called hostaphane) was inserted into the pri-
mary beam. The chamber was first evacuated, then filled
with 20 mbar Ar and finally 20 mbar Xe were added.
The pressures were measured with a capacitance dia-
phragm gauge. After filling, the chamber was valved off,
leading to a constant amount of gas during the measure-
ments. The induced fiuorescence passed through another
thin window of the chamber and was detected at right an-
gles to the primary beam. The detector model was PGT
Type 321 with a specified resolution of 160 eV full width
at half maximum (FWHM) at 5.9 keV.

The Auorescence intensity obtained was large. In order
to avoid significant pileup efFects in the detector, the
counting rate was kept below 1000 s ' by using narrow
slits for the incoming radiation. The recording time of a
single Auorescence spectrum was 10—15 min. The area of
the Xe Le line typically contained 10 total counts, pro-
viding good statistics. All together, 51 usable spectra
were recorded at difFerent primary energies in the range
of the Xe I- edges (Fig. 1).

The energy of the primary radiation is known from the
monochromator setting. It can be independently checked
from the measured fluorescence spectra which exhibit a
small line of coherently scattered primary photons (see
Fig. 1). In fitting the spectra (see below), the energy scale
is calibrated using tabulated Xe emission energies. The
fitted position of the scattered photons line then gives the
primary energy. Agreement between selected and fitted
energies was within +9 eV, i.e., very good, except for a
few apparent errors.
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FIG. 1. Ar K and Xe L fluorescence spectra excited by pri-
mary photons at various energies. Experimental data are
represented by the noisy curves. Fitted spectra are represented
by the smooth curves. A11 spectra show the Ar I( fluorescence.
(a) Additionally Xe L3 fluorescence excited, (b) Xe L3 and L2
fluorescence excited, (c) Xe L3, L2, and L

&
fluorescence excited.

III. LINE FITTING
OF FLUORESCENCE SPECTRA

The measured spectra consist of the Ar E and Xe L
lines as well as coherently scattered primary radiation.
The strongest lines are resolved, but there are numerous
additional lines (Table I). In order to perform a physical-
ly meaningful fit, all lines have to be considered. This
was achieved by fitting the stronger lines individually
(relative intensities given as "1.0000" in Table I), and by
"locking" a weaker line to a stronger line that originates
from the same subshell and lies close in energy (i.e., a
preceding line in Table I). The energies of all lines were
taken from a tabulation (except for the primary radiation)
[17]. The relative intensity of a weak line (i.e., its intensi-
ty related to that of the corresponding strong line) was
taken from theoretical calculations [1,18] and corrected
for the detector efficiency.

Great efFort was spent on the fitting of the recorded
Auorescence spectra. The actual shape of a recorded line
is a convolution of a Lorentzian profile (due to the life-
time of the involved states) and a gaussian profile with
additional low-energy tail (due to the detector charac-
teristics). The widths of individual states were taken
from the literature [19]. Although in the present case the
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TABLE I. Compilationtion of lines and p
spectra (see text).

e int

Linewidth R le ative
(eV) intensity

Energy
0 eV)LineTransition

2.957
3.190
3.637
4.110
4.097
4.719
4.574
4.764
3.958
4.418
5.037
4.894
5.084
4.512
4.452
4.770
5.307
5.250
5.275
5.384
5.440

variable

1.0000
1.0000
1.0000
1.0000
0.1130
1.0000
0.0520
0.0085
1.0000
1.0000
1.0000
0.0390
0.0060
1.0000
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1.0000
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0.1700
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TABLE III. Obtained Coster-Kronig yields.

fir
fi3
fu

Fit without
correlation

0.169
0.316
0.174

Present work
Fit with

correlation

0.095
0.185
0.115

Adopted
value

0.12+0.03
0.23+0.04
0.14+0.02

Ref. [32]
Ka-I-a

coincidence

0. 148+0.029

Ref. [5]
semiempirical

0. 19+0.04
0.28+0.04
0.154+0.03

Ref. [3]
Relativistic

theory

0.196
0.328
0.174

proximation; their size can be obtained by comparing cal-
culations omitting the correlations [independent particle
approximation (IPA)] and including the correlations
[linear response approximation (LRA)] [29—31]. These
effects can also be directly seen in experimental x-ray
mass attenuation scans (Ref. [16] for heavier elements,
our own unpublished results for 5&Sb).

Detailed comparative IPA-LRA calculations of sub-
shell cross sections are available for 47Ag and 62Sm (Fig.
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FICx. 4. Photoelectric cross section of the individual L sub-
shells calculated with omission {IPA, independent-particle ap-
proximation) and inclusion (LRA, linear-response approxima-
tion) of electron correlations. Top: 47Ag; bottom: 52Sm.

4). Since ~4Xe has nearly the mean atomic number of
these two elements, we estimated the inhuence of correla-
tion effects on the photoelectric cross sections by interpo-
lation. If cross-section data from the vicinities of the
edges are omitted, it is reasonable to make a linear ap-
proximation for each range between two particular edges.
Furthermore, the relative in6uence is assumed to be equal
for each individual L subshell as is approximately pre-
dicted by theory. Thus, by comparing the IPA and LRA
calculations, the following changes in the photoelectric
cross sections due to correlation effects were estimated:
—6.6% at L3 edge (4.782 keV), —5.6% at L2 edge
(5.104 keV), —0.9% at L, edge (5.453 keV), and +2.4%
at 6.100 keV.

As the best estimates of the actual photoelectric cross
sections, the values calculated with the previous power-
law ansatz with corrections for the electron-correlation
effects were adopted. Taking these cross sections, new
fits to the experimental intensity data were performed.
The results are displayed at the bottom of Fig. 3.

The agreement between fitted results and experimental
data improved compared with the previous fit (Fig. 3
top), both in the ranges between the L3 and Lz edges and
between the L2 and L, edges. However, agreement be-
came somewhat worse above the L, edge where the ex-
perimental data exhibit a smaller slope than the assumed
cross sections.

In order to check the reliability of the data fitting, ad-
ditional fits using the second strongest L3 and L2 lines in-
stead of the strongest lines were performed using LPz and

Ly &
instead of La and LP&, respectively, in Eqs. (1) and

(2). The Coster-Kronig yields obtained are very similar;
their weighted averages are given in the second and third
columns of Table III (labeled "without correlation" and
"with correlations" ).

As can be seen from Fig. 3, the two fits including or
omitting the electron-correlation effects both give a rath-
er reasonable description of the experimental data. How-
ever, the inclusion of correlation effects results in sub-
stantially smaller jumps at the edges and thus substantial-
ly smaller Coster-Kronig yields. The most crucial point
for the derived yields is the energy dependence (slope) of
the cross sections in the range between the L2 and L,
subshells. The first fit (with small slope) must be regarded
as unrealistic since it simply ignores the established
correlation effects. The second fit (with large slope) in-
cludes these effects, but the assumed size of the correla-
tion effects depends on the arbitrary interpolation of
somewhat unreliable calculations. Figure 3 indicates that
these effects are slightly overestimated (at least above the
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FIG. 5. Coster-Kronig yields vs atomic number. Dots are
experimental results by the synchrotron photoionization
method (present work indicated by arrows). Squares are experi-
mental results by the Eo,-l.cz coincidence method. Crosses are
theoretical results [3]. Curve is a semiempirical fit [5].

The method of subshell-selective photoionization has
been applied to measure all L subshell Coster-Kronig
yields of Xe; the induced L Quorescence has been record-
ed at various primary energies. The present measure-
ment is an explorative extension of previous comprehen-
sive measurements towards elements with lower atomic
numbers. It turns out that these elements are accessible
by the method, but great care has to be taken in utilizing
the proper photoelectric cross sections. The cross sec-
tions exhibit characteristic features in the range of the L
edges caused by electron correlations which are almost
negligible for heavy elements but increase with decreas-
ing Z and become substantial for medium-Z elements. In
the present work, the uncertainties in the photoelectric
cross sections are the main source of uncertainty for the
derived Coster-Kronig yields.

The Coster-Kronig yields of 54Xe obtained here can be
compared with other experimental and theoretical values
(Fig. 5). They fit well the general trend of previous mea-
surements for other elements using the same method.
There is one measurement of the fz3 yield of s4Xe by the
Ka I.a coi-ncidence method [32]. The f23 yield of the
present work is compatible with but slightly smaller than
that obtained by the coincidence method. This behavior
has been observed previously for heavier elements. All
Coster-Kronig yields obtained in the present work are
smaller than theoretical predictions and the semiempiri-
cal curve (which for medium-Z elements is mainly based
on theory). Again, such a deviation is in accord with pre-
vious experimental work.

I., edge). Dedicated x-ray mass attenuation studies
might determine the exact size of these e6'ects. As final
results of the Coster-Kronig yields a weighted average ( —,

'

first fit, ii second fit) was adopted (fourth column of Table
III; Fig. 5).
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