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Dirac-Fock calculations for the ground states of some small molecules
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We present basis-set Dirac-Fock calculations of the ground states of the H&, HF, HC1, H20, NH3, and
CH4 molecules. Molecular orbitals are constructed by linearly combining four-component spherical spi-
nors centered at the nuclei; the radial dependence of the large component is r "e ~', where n is a non-
negative integer determined by the angular quantum numbers, and /& a, ab, ab, . . . , where a )0 and
b & 1 are real numbers; the small component is generated from the large component using the "strict
kinetic balance" prescription. Our estimates of the ground-state energies of these molecules decrease
monotonically as the size of the basis sets used is enlarged. The nonrelativistic (essentially basis-set
Hartree-Fock) limits of our calculations are obtained by increasing the speed of light by a few orders of
magnitude over its physical value; we are thus able to estimate relativistic corrections in an unambiguous
way within the context of our molecular models.

PACS number(s): 31.30.Jv, 31.10.+z, 31.15.Pf

I. INTRODUCTION

"Fully relativistic" numerical calculations based on the
Dirac kinetic-energy Hamiltonian and four-component
spinor orbitals have been employed with notable success
for several decades in theoretica1 studies of atomic struc-
ture [1]. Although Kim [2] generalized the expansion
method of Roothaan [3] to fully relativistic calculations
for atoms almost 30 years ago, early difficulties [4]
prevented the application of the method with widespread
success until relatively recently. One way of circumvent-
ing difBculties in practical calculations has been to im-
pose the condition of "kinetic balance" [5—7] between the
large- and small-component basis functions.

Gaussian-type atomic orbitals are a felicitous choice
for the construction of models of polyatomic molecules
because of the relative ease with which many-center two-
electron integrals can be computed. Kinetically balanced
Gaussian basis sets have been employed to calculate the
ground-state energies of a number of atoms and ions
[8—12]. Although the stability and convergence proper-
ties of this procedure have not been established in a
rigorous way, numerical evidence suggests that practical
calculations are stable and the accuracy achieved in these
calculations is comparable with that of their numerical
counterparts [13];the search for alternative basis sets, al-
ternative variational principles, or both continues, essen-
tially unabated [14]. Relativistic atomic-structure calcu-
lations using Gaussian basis functions constitute the first
step in the construction of the relativistic generalization
of the linear combination of atomic orbitals —molecular
orbitals (LCAO-MO) method [15].

The first Dirac-Fock basis-set calculations for polya-
tomic molecules extended the kinetic-balance condition
to standard Cartesian Gaussian-type functions in a scalar
basis [16]. More recently, a prescription for constructing
relativistic basis spinors for molecules based on atom-
centered spinor spherical-harmonic Gaussian-type func-

tions with "strict" kinetic balance [6] has been proposed
[17—19]. Several calculations employing spinor
spherical-harmonic Gaussian-type functions have ap-
peared in the recent literature [20,21]. Contracted
Gaussian-type functions have been used to reduce the
computational effort in most of these calculations, which
remain orders of magnitude more demanding of proces-
sor effort and storage than typical relativistic atomic-
structure calculations.

In the present work we employ uncontracted
spherical-spinor Gaussian-type atomic orbitals, which
satisfy the condition of strict kinetic balance. Our for-
malism [19] is a straightforward generalization of kineti-
cally balanced spherical-spinor Gaussian-type atomic or-
bitals to the LCAO-MO method. The exponents for all
symmetries are members of the same geometric sequence
[22,23,9,19] and, since the basis functions are left uncon-
tracted, the augmentation of the basis set to diminish
truncation error is particularly straightforward. Some de-
tails of our formalism are presented in Sec. II. We have
studied a number of closed-shell molecular systems; our
results are given in Sec. III; these results provide numeri-
cal evidence for the upper-bound properties of our esti-
mates of the ground-state energy. A summary of our
work is given in Sec. IV, the Conclusion.

II. DIRAC-FOCK PROCEDURE
FOR MOLECULAR SYSTEMS

A detailed presentation of the theoretical and compu-
tational aspects of our work will appear elsewhere; here
we restrict ourselves to a brief overview. We essentially
adopt the procedure described in [19],except for a choice
of phases to maintain consistency with earlier atomic-
structure calculations [10,11].

An approximate relativistic Hamiltonian —the Dirac-
Coulomb Hamiltonian —for a system of X' electrons and
X" stationary nuclei may be readily constructed by com-
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H =ca.p+(13 1—)c
and Coulomb interaction operators

(2.1)

bining Dirac kinetic-energy operators, for each constitu-
ent electron

The eigenstate of operators that commute with the one-
electron Hamiltonian of an atom (this Harniltonian in-
cludes the electron-nuclear interaction term) are called
atomic orbitals (AOs). A molecular orbital (MQ), ob-
tained by linearly combining AOs, yields the LCAO-MO
expansion

for each pair of point particles. Thus

(2.2)
pl(r)= +XI Q (r ) .

P

(2.7}

N N —1 NII'"'= y HD+
i=1 i =1 j=i+1 i j

(2.3)

Here we have neglected the motional energy of the nu-
clei. This approximation, due to Born and Oppenheimer
[24], is a common starting point for molecule electronic-
structure calculations. The interaction between the nu-
clei contributes an energy of

In practical applications, the summation is over a finite
number of terms; the equality in (2.7} must then be re-
placed by an approximate equality; the resulting expan-
sion will be referred to as the LCAO-MO approximation.
The coordinate r =r —C is the position vector relative
to the center of the AO with index p. The large-
component basis function X (r ) in (2.5) is taken to be of
the form

(2.8)

Nn 1 Nn

(2.4)

here N, (gz ) is a normalization constant defined so that
P

the integral over all space of (2.8) is unity,

w= —(2j+1)(j—l) (2.9)
A wave function for an electron interacting with a set

of nuclei may be constructed by combining "basis func-
tions" centered on each nucleus. The choice of the latter
functions is a compromise between physically reasonable
behavior and computational convenience. In our case the
functions at each center C are four-component spinors

XX(r)
Xg(r)= .Xg giXX r (2.5)

where X and X ' '~' are complex numbers and X (r) is
a two-component function of the coordinates with
respect to the center. The basis functions (2.5) are ap-
proximate atomic wave functions; this choice is drawn
from the physically reasonable assumption that the larg-
est contribution to the energy due to the interaction of an
electron with a given nucleus arises from the electronic
density closest to the nucleus and in this region the form
of the wave function resembles that in a "free" atomic
system. The function (2.5) is an eigenstate of the opera-
tor of total angular momentum j=1+s and of the relativ-
istic operator of inversion P =Pm. , where m. is the familiar
operator of inversion

j Xf(r ) =j (j + 1 )Xitt(r ), j=
—,', —,', —'„. . .

j,XQ(r)=mXQ(r), m = —j, —j+1, . . . ,j—1,j (2.6)

PXQ(r) =( —1)'Xg(r), l =j+—,
' .

We employ Hartree atomic units throughout, unless explicitly
stated otherwise. In this system of units, 4=m'=e =1, where
A= h /2m and h is the Planck constant, m ' is the mass of the
electron, and e is the charge on the proton. It follows that
a=1/c, where a=1/137 is the fine-structure constant and c is
the vacuum speed of light.

is the relativistic angular quantum number, and
Q„(r)=QI~ (r) is a two-component spinor spherical
harmonic

(2.10)

In the above formula C,'~.
b& is a Clebsch-Gordan

coeKcient, YI (r) is a spherical harmonic, and X is a
two-component spin function. In Eq. (2.8),

if x(0
K+1 if v)0 . (2.11)

One small-component function X~(r~ } in (2.5)

Xg(r~)=Np (g~)N„(g~)
n„—1 n„+1

X[(n, +a )r ~ 2g~r~ ~ —]

Xe ~~ Q „(rz)
P P

(2.12)

corresponds to each large-component function (2.8) in
(2.5). The additional normalization factor NP (g ) en-

P
sures that the integral over all space of Xg(r~ ) is unity.

The functions (2.8) and (2.12) satisfy the condition of
"strict kinetic balance" [6]

Xg(r~ ) ~ (o.p)X~(r~ ), (2.13)

where e are the Pauli spin matrices. Application of
(2.13) to a large- component function with 1s,&z symme-
try (our prototype ~ & 0 function) generates one function
with 2p, &z symmetry; however, application of (2.13) to a
large-component function with 2p»z symmetry (a) 0)
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generates aPxed linear combination of two functions with
Is, &z and 3s, &2 symmetry, respectively [Eq. (2.12)]. The
latter combination is in one-to-one correspondence with
the 2p & &2 large-component function. In "extended"
kinetic balance, the 1s»2 and 3s»2 functions are in-
dependently varied [25].

A single Slater determinant of order N' of molecular
orbitals is an approximate wave function for an N'-
electron closed-shell molecular system. In the Dirac-Fock
method, an energy functional is constructed from the ex-
pectation value of the Hamiltonian (2.3) with respect to
such an approximate wave function and is augmented
with terms that ensure the orthonormality of the MOs
(2.5). The extremum of this functional with respect to
variations in the coeS.cients X is obtained from the solu-
tion of the Dirac-Fock-Roothaan equation

FXr srSX

Equation (2.14) is a matrix equation; here

(2.14)

y PP+ JPP ~PP cII'Q —K'Q

cll~' —V~' V« 2c'S«—+J« K.«—
is the relativistic Fock matrix,

T

SPP 0
SQQ (2.16)

is the relativistic overlap matrix, and

XPr

(2.17)

The various submatrices are essentially as described in
Ref. [19].

The familiar nonrelativistic formalism is obtained in
the limit c~ Oo. Correct nonrelativistic limits of relativ-
istic molecular-structure calculations will be obtained
only if the basis set has been properly selected. In the
context of atomic structure, the quantum number l is a
"good" quantum number in this limit; relativistic orbitals
with different values of the quantum number j but the
same value of the quantum number l are degenerate in
the nonrelativistic limit. In LCAO-MO calculations, it is
therefore necessary to choose identical basis sets for the
"spin-orbit components" of each "atomic" basis set.
Further, in comparing nonrelativistic limits to the results
of a calculation that is nonrelativistic from the outset,
care must be taken to ensure that the nonrelativistic mod-
el is compatible: in the present case, the nonrelativistic
model must be based on spherical Gaussian functions.

The radial dependences of the kinetically balanced
Gaussian functions (2.8) and (2.12) are partially governed
by the exponents g'~. These are taken to be contiguous
members of a geometric sequence

from the "even-tempered" [22] and "geometric" [23]
prescriptions and have played an important role in the as-
sessment of the reliability of relativistic atomic-structure
calculations [9—11]. The basis set for all centers with
atomic number Z is identical. Basis functions with all
possible values of the quantum number m are generated
for a given value of the quantum number j.

III. CALCULATIONS
FOR POLYATOMIC MOLECULES

We have applied our method and our R.ELMGL comput-
er program package to the calculation of the ground-state
energies of several neutral molecular systems. In all our
calculations classified as relativistic, the speed of light has
been taken to be 137.035 989 5 a.u. [26); the Bohr radius
has been taken to be 0.529177249 A [26]. One- and
two-electron integrals of absolute magnitude less than
10 ' are disregarded; a self-consistent-field (SCF) calcu-
lation is considered converged when density-matrix ele-
ments from successive iterations differ by less than one
part in 10' . Due to the one-to-one correspondence be-
tween large- and small-component basis functions [Eqs.
(2.8) and (2.12)], the generalized eigenvalue problem
(2.14) is always of even order. The eigenvalue spectrum
may therefore be separated exactly into a lower half and
an upper half when the eigenvalues are arranged in as-
cending order. All eigenvalues in the lower half of the
spectrum lie below —2c . All eigenvalues in the upper
half lie above —2c . The eigenvectors corresponding to
the lowest X' eigenvalues in the latter half of the spec-
trum contribute to the density matrix; this ensures that
an implicit "no-pair" formulation of relativistic electron
theory is used [27].

As mentioned previously, atomic nuclei are assumed to
be point sources in our calculations. "Point nuclei" are
almost invariably used in nonrelativistic molecular elec-
tronic structure calculations. Models that account for
nuclear extent, referred to here as "finite nuclei, " are fre-
quently, but not invariably, used in relativistic calcula-
tions. Energy differences due to different nuclear models
are expected to be a few microhartrees in C and N, a few
tens of microhartrees in 0 and F, and a few hundreds of
microhartrees in Cl. In the calculations presented in
Tables I—VI below, these differences are small compared
with other effects that lead to the various predictions of
molecular energies.

The nonrelativistic limit may be simulated in a relativ-
istic program by increasing the speed of light from its
measured value. The factor 10 is found to be adequate.

The two-electron Hz molecule is the first many-
electron system we discuss. Our results are presented in
Table I. The small discrepancies between our nonrela-
tivistic limits and the results of Wells and Wilson [29] are

a, ab, ab, ab, . . . . (2.18)

For a given species (Z, A), the set of exponents for a sym-
metry with a higher j or l quantum number is a subset of
the exponents for a symmetry with lower values of these
quantum numbers. Such basis functions have evolved

2A systematic procedure for obtaining nonrelativistic limits
has been described in Table III in Ref. [11]. Also see Ref. [28].
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c =137.035989 5 23$
23s /9p'
23s /9p /4d'
23s /9p /4d /2f '
23s /9p /4d /4f '
finite element

—1.128 555 704 3
—1.133 586 1874
—1.133 642 857 1
—1.133 643 502 3
—1.133643 833 4
—1.133 643 97008(1)

c~10 c 23$
23s /9p'
23s /9p /4d'
23s /9p /4d /2f '
23s /9p /4d /4f '

—1.128 542 170 3
—1.133 571 8144
—1.133 628 459 9
—1 ~ 133629 1046
—1.133 629 435 4

Nonrelativistic 23$'
23s /9p'
23s /9p /4d'
23s /9p /4d /2f '
23s /9p /4d /4f '
finite element

—1.128 542 094
—1.133 571 746
—1.133 628 387
—1.133 629 033
—1.133629 363
—1.133629 571 7(2)

RELMOL calculation: exponents from Wells and Wilson [29].
"Reference [30].
'Reference [29].

probably due to different choices of thresholds: the es-
timated accuracy of the integral lists of Wells and Wilson
is 10 '; the latter authors elected to terminate their SCF
calculations when an absolute accuracy of 10 was
achieved in the elements of the density matrix. The most
accurate calculations to date are the finite-element com-
putations of Yang, Heinemann, and Kolb [30].

Two linear molecules with more than two electrons
have been studied using RELMOL; these are the closed-
shell HC1 and HF systems; our results are tabulated and
compared with other calculations in Tables II and III.
Accurate nonrelativistic calculations for HC1 have long
been available [34]; these have been computed using
Slater-type orbitals, which are very effective in studies of
linear molecules. The first relativistic calculations to be
performed on HCl are those due to Laaksonen, Grant,
and Wilson [28], who also studied nonrelativistic limits;
we have used larger basis sets than the latter authors, for

TABLE I. Total energies (in hartrees) for the ground state of
the H2 molecule. The nuclei have been assumed to be stationary
point particles separated by 1.4az.

Calculation

which reason our nonrelativistic limits are in better
agreement with the numerical estimates of Laaksonen,
Grant, and Wilson [28], the Slater basis-set predictions of
McLean and Yoshimine [34], and the Gaussian basis-set
calculations of Wilson and Silver [31]. Our calculations
for the ground-state energy of the HF system appear to
be more accurate than our calculations for the ground
state of HC1: our nonrelativistic limits differ by less than
2 mhartree from the finite-difFerence estimates of Laak-
sonen, Pyykko, and Sundholm [32] and are comparable in
accuracy with the Gaussian basis set calculations of Wil-
son and Silver [31].

Some relativistic and nonrelativistic calculations for
the water molecule are presented in Table IV. Although
there are small differences from the geometry and the nu-
clear model employed by other authors [18,35,36], the
principal source of the disagreement between our calcula-
tions and others is, of course, the difference in the basis
set. Our nonrelativistic limits —obtained by increasing
the speed of light by a factor of 10 —are seen to differ
from the predictions of Ref. [35] by about 11 mhartree.

The ammonia molecule has also been studied. Our re-
sults are given in Table V. Our nonrelativistic limits—
again obtained by increasing the speed of light by a fac-
tor of 10 —are seen to differ by roughly 12 mhartree
from the estimates of Hariharan and Pople [37]. Once
again, the primary source of error is basis-set truncation.

Finally, the results of several calculations for the
ground state of the methane molecule are collected in
Table VI. Our calculations are quite inaccurate for the
purposes of total-energy estimation as is evident from a
comparison with the nonrelativistic estimate of Har-
iharan and Pople [37]. (Nonrelativistic limits from
RELMOL are obtained by increasing the speed of light by a
factor of 10 .) Nonetheless, our nonrelativistic limits ap-
pear to be the most accurate for the purpose of determin-
ing the relativistic correction to the total energy: our
basis set is larger than that of Aerts and Nieuwpoort [25],
and Dyall et al [20] do not estimate relativistic correc-
tions. Our estimate of the relativistic correction,—0.015908 hartree, is in good agreement with the per-
turbation theoretic estimate of Almlof and Faegri [38]:—0.0147 hartree at R =2.0466ao, where ao denotes the
Bohr radius. As mentioned in Sec. II, we have used un-
contracted basis sets. All other relativistic calculations
for the methane molecule in Table VI make use of con-
tracted basis sets. Contraction of Gaussian-type basis

TABLE II. Total energies {in hartrees) for the ground state of the HF molecule. Nuclei are assumed
to be stationary point particles. The internuclear separation is 1.7328ao in all calculations. In the foot-
note, the notation d: 2—5, for instance, means that the exponents for the d and d symmetries are

g2, . . . , gz, where g;=ab'

Calculation

c = 137.035 989 5
c—+10 c
Nonrelativistic

F 22s/16p/4d/1 f; H 1 ls/4p/ld'
F 22s/16p/4d/1 f; H 1 ls/4p/ld'
Wilson and Silver [31]
Laaksonen, Pyykko, and Sundholm [32]

—100.161 647 794
—100.069 744 366
—100.069 30
—100.070 82

RELMOL calculation: a =0.176789366295209 and b =2.11709546490502. For F, s: 1 —22 [33],p:
1-16,d: 2—5, and f:3—3; for H, s: 1 —11,p: 2—5, and d: 3—3.
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TABLE III. Total energies (in hartrees) for the ground state of the HCl molecule. Nuclei are as-
sumed to be stationary point particles. The internuclear separation R is measured in Bohr radii. The
notation used in the footnotes to the present table is explained in the caption of Table II.

Calculation

c =137.035 9895
c~10 c
c =137.037 3
c =10
c =10
Nonrelativistic

c =137.0359895
c~10 c
Nonrelativistic

R =2.40
Cl: 22s/16p/4d/14f; H: 1 ls/4p/ld'
Cl 22s/16p/4d/1 f H 1ls/4p/ld'
Cl: 10s/6p; H: 7s/4p
Cl: 10s/6p; H: 7s/4p
Cl: 10s/6p; H: 7s/4p
Laaksonen, Grant, and Wilson [28]

R =2.4087
Cl: 22s/16p/4d/1 f; H: 1 ls/4p/ld'
Cl: 22s/16p/4d/1 f' H: 1 ls/4p/ld'
McLean and Yoshimine [34]
Wilson and Silver [31]

—461.567 080 695
—460.110918296
—461.525 38
—460.060 81
—460.060 54
—460.11305

—461.567 037 586
—460.110876 180
—460.11185
—460.11091

'REI.Mat. calculation: a =0.133470351130481and b =2.17583916581064. For Cl, s: 1—22 [33],p:
1 —16, d: 2-5, and f: 3—3;forH, s:1—11;p: 2—S, andd: 3—3.
"Reference [28].

TABLE IV. Total energies (in hartrees) for the ground state of the HzO molecule. The notation used
in the footnotes to the present table is explained in the caption of Table II.

Calculation

O: 4s/2p; H: 2s'
0 28s/18p/8d/3f; H: 18s/8p/3d
Q: 11s/7p/1d; H: 6s/1p
0: 12s/8p/3d; H: 6s/3p'

UR

—75.168 41S

—76.109453'
—76.110988 887 0

UNR

—75.120 506
—76.067 417
—76.054 402
—76.0S5 826 S33 8

'Reference [18];H—0, 0.96 A; H—0—H, 104.5 '.
bReference [3S];equlibirum geometry; point nuclei.
'Reference [36];H—0, 0.939020 A (1.77449ao); H—0—H, 107.68", finite nuclei.
Reference [36];H—0, 0.939051 A (1.774 55ao); H—0—H, 107.75; finite nuclei.
RELMoL calcuation: H—0, 0.958 A; H—0—H, 104.45; point nuclei; a =0.231424578 379716 and
b=2.77571208625840. For 0, s: 1 —12 [33],p: 1 —8, and d: 2—4; for H, s: 1 —6 and p: 2 —4.

TABLE V. Total energies (in hartrees) for the ground state of the NH3 molecule. Nuclei are as-
sumed to be stationary point particles. The notation used in the footnotes to the present table is ex-
plained in the caption of Table II.

Calculation

HF limit'
N: 12s/8p /2d; H: 6s/1p

UNR

—56.225
—56.212 958 187 5

'Reference [37];N—H, 1.913ao.
RELMOL calculation: N—H, 1.008 A = 1.905ao,' a =0. 175 805 843 340 089

b =2.783 763 706 577 34. For N, s: 1 —12 [33],p: 1 —8, and d: 2—3; for H, s: 1—6 and p: 2-2.
and
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U.RCalculation

TABLE VI. Total energies (in hartrees) for the ground state of the CH4 molecule. Nuclei are sta-
tionary. The notation used in the footnotes to the present table is explained in the caption of Table II.

UNR

HF limit'
C: 12s/7p —+8s/4p; H: 6s —+4s
C: 11s/6p/2d ~5s/4p/2d; H: Ss/1p ~3s/1p'
C: 10s/7p/2d; H: 5s/2p

—40.207 87
—40.228 306
—40.225 444 149 1

—40.225
—40.191 88

—40.209 535 717 5

'Reference [37];C—H, 2.050ao, point nuclei.
"Reference [25]; C—H, 2.061 73ao; point nuclei.
'Reference [20]; C—H, 2.0446ao; finite nuclei.
RELMOI, calculation: C—H, 1.091 A =2.061 67ao,' point nucleus; a =0.150448 678 144 222 and

b =3.075 349 900 990 60. For C, s: 1 —10 [33],p: 1-7, and d: 2 —3; for H, s: 1 —5 and p: 2—3.

functions has often been used to reduce their number and
hence the number of two-electron integrals. We refer the
reader elsewhere [39] for a recent examination of issues
related to the use of contracted basis sets in relativistic
calculations.

IV. CONCLUSION

We have described a Dirac-Fock procedure for closed-
shell molecular systems or one-electron molecular ions;
nuclei have been modeled as point particles; no account is
taken of nuclear motion. The Dirac-Fock procedure has
been implemented in a suite of programs. A number of
molecular systems have been studied and provide evi-
dence of the correctness of the procedure and its im-
plementation.

We provide numerical evidence that adherence to strict
kinetic balance at each center in a LCAO-MO approach
based on spinor-spherical harmonic Gaussian-type basis
functions is suIt][cient to ensure the upper-bound property
of practical relativistic molecular electronic-structure cal-
culations and that the fILexibility inherent in geometric
basis sets may be easily exploited to obtain accurate rela-
tivistic molecular energies. Relativistic models yield
their nonrelativistic counterparts when the speed of light
is increased to suKciently large values. The approach is
shown to be valid in a variety of geometries.

Although we have only treated molecules with light
atoms, our test calculations provide evidence of the feasi-
bility of performing relativistic calculations to any
desired degree of accuracy for systems containing heavy
atoms, provided adequate programming and computa-
tional resources are available. Revisions of our pro-
grams, based on the use of point group as well as time-
reversal symmetry and the recursive generation of in-
tegrals, are in preparation. The exploitation of symmetry
greatly facilitates the use of the larger basis sets required
in reliable molecular electronic-structure calculations.
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