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Corrections to the hyperfine splitting and the Lamb shift of order a?(Z«a)® induced by diagrams
with radiative photon insertions in the electron line are calculated in the Fried-Yennie gauge. These
contributions are as large as —7.724(1)a?(Za)®/(7n®)(m./m)*m and —0.6726(4) o®(Za)/(xn®)EF
for the Lamb shift and the hyperfine splitting, respectively. Here m is the electron mass, m, is the
reduced mass, n is the main quantum number, and Er is the Fermi energy of the hyperfine splitting.
Phenomenological implications of these results are discussed with special emphasis on the accuracy
of the theoretical predictions for the Lamb shift and the experimental determination of the Rydberg
constant. A precise value of the Rydberg constant is obtained on the basis of the improved theory

and experimental data.

PACS number(s): 12.20.Ds, 31.30.Jv, 36.10.Dr, 06.20.Jr

Steady and rapid progress in spectroscopic measure-
ments in recent years has led to a dramatic increase in
accuracy of the measurements of the Rydberg constant
[1,2], the ground state 15 Lamb shift in hydrogen and
deuterium [2-4], the classic 28;/;-2P;/; Lamb shift in
hydrogen [5-8], and the muonium hyperfine splitting in
the ground state [9,10] (see Table I). These spectacular
experimental achievements constitute a serious challenge
to the theory and intensive theoretical efforts are neces-
sary to match this experimental accuracy.

Theoretical work on the high-order corrections to the
hyperfine splitting (hfs) and the Lamb shift concentrated
recently on the calculation of nonrecoil contributions of
order a?(Za)®. Their magnitude may run up to several
kilohertz for the hfs in the ground state of muonium, to
several tens of kilohertz for the n = 2 Lamb shift in hy-
drogen, and may be as large as hundreds of kilohertz for
the ground-state Lamb shift in hydrogen. Contributions
of such orders of magnitude are clearly crucial for a com-
parison of the current and pending experimental results
with the theory.

As shown in [11] for the hyperfine splitting and in [12]
for the Lamb shift there are six gauge invariant sets of
diagrams (see Fig. 1), that produce corrections of order
a?(Za)®. All these diagrams may be obtained from the
skeleton diagram, which contains two external photons
attached to the electron line, with the help of different

TABLE I. Experimental results.

Interval AFE (kHz)
hydrogen, 18,2 [3] 8172860(60)
hydrogen, 1S5;,; [2] 8172815(70)
hydrogen, 15;,, (4] 8172844(55)
hydrogen, 251/2-2P1/2 [5] 1057845(9)
hydrogen, 28, /2-2P; / [6,7] 1057857.6(2.1)
hydrogen, 28, /2-2P; /> (8] 1057839(12)

muonium, hfs [9] 4463302.88(16)
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radiative insertions. All contributions induced by the
diagrams in Figs. 1(a)-1(e), containing closed electron
loops, were obtained recently in papers [11,13-15] for the
case of the hyperfine splitting and in papers [12,16-19]
for the case of the Lamb shift. These theoretical results
are now firmly established since all these corrections were
calculated independently by two different groups and the
results of these calculations are in excellent agreement.
We report in this paper on the results of our calcu-
lation of the contributions of order a?(Za)® to the hfs
and the Lamb shift induced by the gauge invariant set of
diagrams in Fig. 1(f). This set includes 19 topologically
different diagrams [20] presented in Fig. 2. The simplest
way to describe these graphs is to realize that they are
obtained from the three graphs for the two-loop elec-
tron self-energy by insertion of two external photons in
all possible ways. Indeed, graphs 2(a)-2(c) are obtained
from the two-loop reducible electron self-energy diagram,
graphs 2(d)-2(k) are the result of all possible insertions
of two external photons in the rainbow self-energy di-
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FIG. 1. Six gauge invariant sets of graphs producing cor-
rections of order a?(Za)®.
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agram, and diagrams 2(1)-2(s) are connected with the
overlapping two-loop self-energy graph. We have calcu-
lated the contributions induced by the diagrams in Figs.
2(a)-2(h) and 2(1) earlier [20,21]. Results of the calcu-
lation of the contributions produced by the remaining
diagrams in Fig. 2 are presented below.

While this work was in progress two other papers were
published where the contributions of the diagrams in Fig.
2 to the hfs [15] and the Lamb shift [22] were calculated.
Our results confirm the results of the previous authors,
but are about two orders of magnitude more precise (see
comments below).

Let us start with a brief description of the main fea-
tures of our approach to the calculations. As shown in
[23] for the hfs and in [12] for the Lamb shift, contribu-
tions to the energy splittings are given by the matrix el-
ements of the diagrams in Fig. 2 calculated between free
electron spinors with all external electron lines on the
mass shell, projected on the respective spin states, and
multiplied by the square at the origin of the Schrédinger-
Coulomb wave function.

The actual calculation of the matrix elements is im-
peded by the ultraviolet and infrared divergences. In-
frared problems are as usual more difficult to deal with
than the ultraviolet ones. It is easy to realize that in
the standard Feynman gauge, all diagrams in Fig. 2 are
infrared divergent and one has to introduce the radiative
photon mass to regularize this divergence. Certainly, the
final result for the sum of all contributions induced by
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FIG. 2. Nineteen topologically different diagrams with two
radiative photon insertions in the electron line.

the diagrams in Fig. 2 is infrared finite and should admit
a smooth limit for the vanishing photon mass. However,
numerical recipes used in the calculations of the contri-
butions to the energy shifts make it impossible to check
analytically the independence of the results from the pho-
ton mass and one has to rely on the extrapolation in the
infrared photon mass. Of course, such an approach is
still feasible, but we have preferred to use the gauge in-
variance of the sum of diagrams in Fig. 2 and perform all
calculations in the Fried-Yennie (FY) gauge [24] for the
radiative photons. All diagrams are infrared finite in this
remarkable gauge and one may perform the on-mass-shell
renormalization without the introduction of the infrared
photon mass (see, e.g., [23]), thus avoiding the problem of
extrapolation to the vanishing photon mass. Of course,
infrared finiteness in the FY gauge is not given for free
and one has to pay special attention to the infrared be-
havior of the integrand functions and perform cancel-
lation of spurious infrared divergences with the help of
integration by parts over the Feynman parameters prior
to momentum integration.

The calculation of the contributions to the energy split-
tings starts with writing down the universal infrared di-
verging skeleton integrals corresponding to the electron
line with two external photons. Each contribution of or-
der a?(Za)® arises from radiative insertions in the skele-
ton graph. Corrections to the hyperfine splitting and the
Lamb shift, produced by the diagrams in Figs. 1 and 2,
are given by the expressions (see, e.g., [23,12])

Za (a2 * dk
AEhfS_sm(;) EFL = nss(k) 1)
and
g () (a7 (mey?
AEL = —16 mn3 (7:') (m) m o k4LL(k)’

()

where k is the magnitude of the three-dimensional mo-
mentum of the external photons measured in the electron
mass units, m, = m/(1 + m/M) is the reduced mass of
the electron-muon (or electron-proton) system, and E is
the Fermi energy of the hyperfine splitting. The functions
L(k) are connected with the numerator structure and the
spin projection of each particular graph and describe ra-
diative corrections to the skeleton diagram. They are
normalized on the skeleton numerator contributions.

It should be mentioned that some of the diagrams un-
der consideration also contain contributions of the pre-
vious order in Za. The physical nature of these contri-
butions is especially transparent in the case of the hfs.
They correspond to anomalous magnetic moment, their
true order in Za« is lower than their apparent order, and
they should be subtracted from the electron factor prior
to the calculation of the contributions to the hfs. An
analogous situation holds also in the case of the Lamb
shift. The only difference is that this time not only the
Pauli form factor but also the slope of the Dirac form fac-
tor of the electron is capable of producing a lower-order
contribution to the splitting of the energy levels (see,
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e.g., [12,16,17]). Technically, cases of lower-order contri-
butions both to the hfs and to the Lamb shift are quite
similar. Lower-order terms are produced by the constant
terms in the low-frequency asymptotic expansion of the
electron factor in the case of the hyperfine splitting and
by the terms proportional to the exchanged momentum
squared in the low-frequency asymptotic expansion of the
electron factor in the case of the Lamb shift.

These lower-order contributions are connected with in-
tegration over external photon momenta of characteristic
atomic order mZa and the approximation based on the
skeleton integrals in Egs. (1) and (2) is inadequate for
their calculation. In the skeleton integral approach these
previous-order contributions emerge as the infrared di-
vergences induced by the low-frequency terms in the elec-
tron factors. We subtract leading low-frequency terms in
the low-frequency asymptotic expansions of the electron
factors, when necessary, and thus get rid of the previous-
order contributions.

The results of our calculations of the contributions to
the hfs and the Lamb shift produced by different dia-
grams in the FY gauge are presented in Table II.! For
the total correction of order a?(Za)® to the hfs and the
Lamb shift produced by all diagrams in Fig. 2 we obtain

o?(Za)

AEGD = —o0. 6726 (4) 5

Er (3)
and

a?(Za)® /m.\3
AED = —7.724 (1) % (H) m.  (4)
As already mentioned above, the contributions of the
diagrams in Fig. 2 to the hfs and to the Lamb shift were
originally calculated in [15] and [22], respectively. The
authors of these works used a completely different ap-
proach to calculations; in particular, they worked in the
Feynman gauge and hence all contributions of individual
diagrams in these works are infrared divergent. These di-
vergences are regulated with the help of an auxiliary in-
frared photon mass. The numbers cited in [15,22] emerge
as a finite sum of large spurious contributions produced
by individual diagrams. Despite the great differences in
the approaches used in the present work and in [15,22],
numerical factors in Egs. (3) and (4) are compatible
with —0.63(4) in [15] and with —7.61(16) in [22], respec-
tively. Our numbers are about two orders of magnitude
more precise and further improvement of accuracy may
be achieved. The reason for this increased accuracy is
the use of the FY gauge, where one can avoid spurious
infrared divergences. The price we had paid for this ad-
vantage is the more tiresome analytic work needed to
cancel all would-be infrared divergences before integra-
tion.
Numerically the correction to muonium hfs in the
ground state produced by the diagrams in Fig. 2 is equal
to

1A detailed account of our calculations will be presented in
a separate publication.

TABLE II. Corrections to the hfs and the Lamb shift.

Diagram hfs Lamb shift
3

(—Ti‘f‘*)EF) [—“’iﬁs)‘ (%s) m]
a 9/4 0
b —6.65997(1) 2.9551(1)
¢ 3.93208(1) —2.2231(1)
d -3.903368(79) —5.238023(56)
e 4.566710(24) 5.056278(81)
f —3.404163(22) —1.016145(21)
g 2.684706(26) —0.1460233(52)
h 33/16 153/80
i 0.054645(46) —5.51683(34)
j —7.14937(16) —7.76815(17)
k 1.465834(20) 1.959589(33)
1 —1.983298(95) 1.74815(38)
m 3.16956(16) 1.87540(17)
n —3.59566(14) ~1.30584(18)
0 1.804775(46) —12.06751(47)
p 3.50608(16) 6.13776(25)
q —0.80380(15) —7.52453(34)
r 1.05298(18) 14.36733(44)
s 0.277203(27) —0.930268(72)
total —0.6726(4) —7.724(1)

AEY) = _0.3710(2) kHz (5)
hfs = :

and the total contribution of order a?(Za)EF is given by
AEGS™) = 0. 4256(2) kHz. (6)

Taking into account other theoretical contributions to
the hfs and especially some small contributions obtained
recently (see, e.g., reviews in [15,25]) and using for the
calculation the value of the fine structure constant as
obtained in [26], one may obtain the theoretical value for
the muonium hfs in the ground state

AEys = 4463302.55(0.18)(0.18)(1.33) kHz,  (7)

where the first error in parentheses reflects the uncer-
tainty of the fine structure constant itself and the second
is induced by the uncertainty of the contribution of order
a(Za)2Ep. The third, and by far the largest contribu-
tion to the error in the theoretical value of the hfs, is
defined by the experimental error in measuring electron-
muon mass ratio m/M.

The agreement between theory and experiment is ex-
cellent. We will not dwell on the hfs problem anymore
here since the phenomenological situation and the influ-
ence of the result in Eq. (3) on the value of the electron-
muon mass ratio and the fine structure constant was dis-
cussed in great detail recently [15,25].

The case of the Lamb shift deserves more comments.
Numerically the corrections to the 1S5 and 25 Lamb shifts
produced by the diagrams in Fig. 2 are equal to
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AE((15) = —334.21(4) kHz, (8)

AEM) (28) = —41.776(5) kHz,

while respective total contributions of order o?(Za)%m
are given by

AEM(18) = —296.90(4) kHz, (9)

AEI(-Jla—If)(ZS) - —37.112(5) kHz.

Let us discuss the sign and the scale of the correction in
Eq. (8). The sign may be determined by considering the
electron factor, as defined in Eq. (2). The low-frequency
asymptotic behavior of the electron factor is described
by the expression (see, e.g., [17])

L(k) =~ [-2F;(0) — 1 F>(0)] k* = —0.7046225k?, (10)

where Fy(k?) and F,(k2) are the two-loop contributions
to the ordinary Dirac and Pauli form factors of the elec-
tron [the contribution of the graphs with vacuum polar-
ization insertions in the photon line is omitted in Eq.
(10)], respectively. We use in Eq. (10) the well-known
values for the slope of the Dirac form factor and of the
Pauli form factor at zero [27,28]. As explained above,
one has to subtract from the electron factor this leading
low-frequency term, which produces the contribution to
the Lamb shift of previous order in Za.

It is well known from the general principles that the
unsubtracted electron factor has at most logarithmic be-
havior at infinity. Hence the high momentum behavior
of the subtracted electron factor is completely defined by
the subtraction term in Eq. (10). Then it is clear from
Eq. (2), where the subtracted electron factor plays the
role of the integrand, that the contribution to the Lamb
shift induced by the graphs in Fig. 2 has the negative sign.
One may even make an estimate of this contribution from
the known asymptotic behavior of the integrand, but we
choose a less technical path in the discussion of the mag-
nitude of this contribution.

It may seem at first sight that the magnitude of the
corrections induced by the diagrams in Fig. 1(f) as pre-
sented in Eq. (8) are too large. We would like to empha-
size that, quite oppositely, this correction has exactly the
scale one had to envisage before calculations. Let us dis-
cuss this point in slightly more detail. It is helpful to
recollect that the main contribution to the Lamb shift is
a radiative correction itself and so it is misleading to nor-
malize all contributions to the Lamb shift with the help of
this leading-order contribution. In this respect the case
of the Lamb shift differs drastically from the case of the
hfs, where the leading Fermi contribution is not the ra-
diative correction but the classic effect of the interaction
of two magnetic moments and sets the natural scale for
all radiative corrections. The main contribution to the
Lamb shift has the form 4m(Za)*/n3 times the slope of
the Dirac form factor, where the slope is, roughly speak-
ing, (a/7)(1/3)In(Za)~2. The skeleton factor that sets

the scale for the different contributions to the Lamb shift
is 4m(Za)*/n® and to make an estimate of any correc-
tion to the Lamb shift one has to extract this skeleton
factor. All other entries in the leading-order contribution
to the Lamb shift are produced by the radiative correc-
tion, and it is necessary to take into account that the
number that should be of order one, as predicted by the
common wisdom for radiative corrections, is the factor
1/3 before the logarithm, which remains after extraction
of the factor /7, characteristic for the one-loop radiative
corrections. The other subtlety to be taken into account
in estimating the orders of magnitude of different cor-
rections is that, unlike the case of radiative corrections
to the scattering amplitudes, in the bound state problem
not every factor a is accompanied by an extra factor =«
in the denominator. This is a well known feature of the
Coulomb problem.

Let us consider as an exercise in the art of making
educated estimates the correction of order a(Za)%m cal-
culated analytically a long time ago [29,30]. According
to the considerations above, the scale of this correction
should be set by the factor 4a(Za)®/n3m and the only
problem of the theory is to calculate the number of order
one before this factor. The analytic calculation [29,30]
produces this factor in the form 1+ 5% — 1In2 ~ 0.739,
in excellent agreement with our qualitative considera-
tions. Now it is easy to realize that the natural scale
for the correction of order a?(Za)® is set by the fac-
tor 4a2(Za)®/(wn®)m. The coefficient before this factor,
obtained above and in [22], is about —1.9 and there is
nothing unusual in its magnitude for a numerical factor
corresponding to a radiative correction.

Consider now the current status of the Lamb shift
theory. Theoretical predictions presented below are ob-
tained with the help of the expressions for the Lamb
shift contributions as collected in the reviews [31,32],
amended, besides corrections obtained above and in [22],
with some other recent results presented in Table III.
Note that the correction of order a?(Za)® in this table is
again of reasonable magnitude since its scale is set by the
factor 40(Za)®/(n?n3)m, as one may easily check with

TABLE III. Contributions to the Lamb shift.
Level AFE

nSis®  —&CEW I (Za] (2 )Pm

nSl/zb (4ln2 — %)(ﬁ%%m

nSiat (3 - B3 (2 )'m

nP% {55 + 15 — a7 t 5z — 0l3E + 53m

4
e G+ o1og Sy

472 2 1 4
Y FVESC S 2 a(Za)
4 15(mu) * f2m2, + 31 GevZ| =°
v

nSl/ze

®Reference [34]
PReference [40].
“Reference [41]
dReference [42].
¢This work.
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the help of the arguments used above in the discussion of
the contribution of order a?(Za)®. On the background
of this factor the numerical factor 2/27 before the cube
of the logarithm is quite moderate.

The last line in Table III contains a recoil correction
corresponding to the insertions in the Coulomb photon
of the muon or hadron vacuum polarization operators.2
The respective contribution for the muon insertion con-
tains an evident extra electron-muon mass ratio squared
suppression factor relative to the leading vacuum polar-
ization contribution. We estimated the hadron contribu-
tion approximating the spectral function below 1 GeV
according to the vector dominance model and above 1
GeV we simply used the asymptotic quark value for the
spectral function.?

We use in the calculation of the theoretical values
for the Lamb shift values [33] for the self-energy con-
tributions to the coefficient Cgo for the 1S and 2S5
states and [34] to the function Gsg for the 2P;/, state
and [35] for the 4S,,, state. ~We also use values
[35] Gvp(1S1/2) = —0.6187, Gvp(25;/2) = —0.8089,
Gvp(2P; ;) = —0.0640, and Gvp(45;/;) = —0.8066 for
the Uehling part of the vacuum polarization contribu-
tion. These numbers are the sum of contributions of or-
der a(Za)® and of additional terms of higher order in
Za.

From the theoretical point of view the accuracy of the
calculations is limited by the magnitude of the yet un-
calculated contributions to the Lamb shift. First, there
is an unknown correction of order a3(Za)*, which is in-
duced by the three-loop slope of the Dirac form factor of
the electron and by the three-loop electron vacuum po-
larization. A natural scale for this correction is set by
the factor 4a®(Za)*/(n3*n3)m and we envisage the con-
tributions about 17 kHz for the 1.5 state and 2 kHz for
the 25 state.

Next come uncalculated corrections of order a?(Za)®.
A contribution of this order is a polynomial in In(Za)~2,
starting with the cube of the logarithm. The factor before
the cube of the logarithm was calculated in [34] and the
contribution of the square of the logarithm terms to the
difference Er(15) — 8E1(2S) was obtained in [7]. How-
ever, the calculation of respective contributions to the
separate energy levels is still missing. In these conditions
it is fair to take the square of the logarithm contribution
to the interval E7(15) — 8EL(2S) as an estimate of the
scale of all yet uncalculated corrections of this order. We
thus assume that uncertainties induced by the yet un-
calculated contributions of order a?(Za)® constitute 15
kHz and 2 kHz for the 1S and 2S states, respectively.

The scale of the self-energy correction of order a(Za)”
is set by the factor 4a(Za)”/n%. This contribution is
a linear polynomial in In(Za)~2. We are aware of two
recent attempts to make an estimate of this contribution
[36,7], but, unfortunately, its final magnitude seems to be

2S. Karshenboim has also considered these contributions [S.
Karshenboim, J. Phys. B 28, L77 (1995)].
3The derivation of this result will be published elsewhere.

still unavailable.* Relying on the scale factor above and
the estimates in [36,7], we assume that the corrections of
order a(Za)" are as large as 17 kHz and 2 kHz to the 15
and 2S5 states, respectively.

All other theoretical contributions to the Lamb shift
are smaller than those just discussed. Hence we assume
that the theoretical uncertainty of the expression for the
Lamb shift is about 28 kHz for the 1S state and about 4
kHz for the 2S state.

The other limit on the accuracy of the theoretical cal-
culation of the Lamb shift is set by the accuracy of the
measurements of the proton rms charge radius. As is well
known, there are two contradictory experimental results
for this radius [37,38] and at least one of these experimen-
tal results should be in error. The accuracy of the proton
rms charge radius claimed by the authors of [37,38] pro-
duces an uncertainty of about 32 kHz for the 15 state
and about 4 kHz for the 2S state.

Let us compare theoretical and experimental data for
the classic 25;/5-2P;/; Lamb shift. The most precise
experimental data, as well as the results of our theoret-
ical calculations, are presented in Table IV. Theoretical
results for the energy shifts in Table IV contain errors
in the parentheses where the first error is determined
by the yet uncalculated contributions to the Lamb shift,
discussed above, and the second reflects the experimen-
tal uncertainty in the measurement of the proton rms
charge radius. We have used the experimental result [6]
taking into account recent theoretical correction discov-
ered in [7]. Note, however, that this correction does not
effect any of our conclusions. There are two immediate
conclusions from the data in Table IV. First, as already
mentioned in [22], the results from the proton rms radius
measurement in [37] should be in error since the respec-
tive value of the proton charge radius is clearly incon-
sistent with all results of the Lamb shift measurements.
Second, we have to reject either the result of the most
precise measurement of the 25, /,-2P;/, splitting or the
experimental value of the proton charge radius as mea-
sured in [38] since the Lamb shift value in [6] contradicts
theoretical value calculated by employing the rms radius
in [38] by more than five standard deviations. The results
of two other measurements of the classic Lamb shift are
compatible with the theory, so we will accept below the
value of the proton charge radius as obtained in [38]. Be-
low we will return to the numbers in the three last lines
in Table IV.

We do not include theoretical predictions for the deu-
terium Lamb shift in Table IV since, taking into ac-
count current discrepancies in the determination of the
deuteron charge radius and solid status of the Lamb shift
theory, it seems preferable to use the deuteron Lamb shift
data for extracting the value of this charge radius rather
than for the comparison of the Lamb shift theory and
experiment.

“P. Mohr is now working on the extraction of this correc-
tion from his respective high Za results [P. Mohr (private
communication)].
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TABLE IV. 2S,/2-2P;/; Lamb shift.

AE (kHz)

1057845(9)*
1057857.6(2.1)°
1057839(12)°
1057810(4)(4)¢
1057829(4)(4)°
1057854(16)¢
1057835(15)¢
1057847(13)P

®Experimental result, Ref. [5].

PExperimental result, Refs. [6,7].

“Experimental result, Ref. [8].

9Theory, this work, and r, = 0.805(11) fm, Ref. [37].
°Theory, this work, and r, = 0.862(12) fm, Ref. [38].
fSelf-consistent 15, Ref. [3].

ESelf-consistent 15, Refs. [2,1].

hGelf-consistent 15, Ref. [4].

Next we turn to the discussion of the 15 Lamb shift.
Unfortunately, its extraction from the experimental data
is less straightforward. The experimentalists managed
to separate measurement of the 1.5 Lamb shift from the
measurement of the Rydberg constant by comparing the
frequencies of two transitions with different main quan-
tum numbers and excluding the large level separation
depending on the Rydberg constant. In this manner cer-
tain combinations of 15, 25, and higher level Lamb shifts
are experimentally obtained. It is pretty easy to compare
these experimental data in [1-4] with the theory above
and after trivial calculations we find excellent agreement
between the theory and experiment. We will not discuss
these results here.

Unbiased extraction of the 1.5 Lamb shift from the ex-
perimental data is still a problem. It is impossible to
avoid using to this end the experimental value of the
2S Lamb shift and the emerging value of the 1.5 Lamb
shift thus depends on the experimental result for the
28,/2-2P, ; splitting. Higher level Lamb shifts, which
also enter the problem, may be calculated with sufficient
accuracy. The standard approach accepted by all ex-
perimental groups consists in adopting one or the other
281/2-2P; /; experimental result and thus extracting the
value of the 1S Lamb shift. All values in Table I for
the 15 Lamb shift are obtained in this manner with the
help of experimental values in [5] or in [8] for the classic
Lamb shift. These values should be compared with our
theoretical prediction

AEL(1S) = 8172729(28)(32) kHz, (11)

where again the first error is determined by the yet uncal-
culated contributions to the Lamb shift and the second
reflects the experimental uncertainty in the measurement
of the proton rms charge radius.

The results of all experiments mentioned in Table I are
pretty consistent and their agreement with the theoreti-
cal value in Eq. (11) is satisfactory but not spectacular.
It is necessary to recollect at this point that the exper-
imental values in the table depend on the experimental

value of the 257 /5-2P; /; Lamb shift adopted in their ex-
traction and the change of the 1.5 Lamb shift value under
transition from one experimental 2S5 /3-2P; /, Lamb shift
value to another may be significant.

It would be helpful to find a way to extract the value
of the 1S Lamb shift from the experimental data unam-
biguously without reference to the 25;/,-2P; ), experi-
mental results, which, while being compatible with the
theory, seem to be somewhat larger than the theoreti-
cal prediction. A natural way to reach this goal is to
use the theoretical relation between the 1.5 and 25 Lamb
shifts. A good deal of theoretical contributions to the
Lamb shift scale as n3 and hence vanish in the difference
8E1(2S) — Er(1S). In particular, all main sources of the
theoretical uncertainty, namely, the proton charge radius
contribution and almost all yet uncalculated corrections
to the Lamb shift mentioned above vanish. A signifi-
cant contribution to this difference may be produced only
by the term of the form a?(Za)®In?(Za)~2, which was
calculated recently [7]. This term produces correction
about 14 kHz and the accuracy of the difference under
consideration is determined by the yet uncalculated sin-
gle logarithmic contribution of the same order. Such a
term would not change the square of the logarithm term
by more than 50% and hence the uncertainty of the dif-

ference under consideration is about 7 kHz. Hence we
obtain the relation
8EL(2S) — EL(1S) = A, (12)

where A = 187234(7) kHz. The importance of this rela-
tion for the Lamb shift problem was emphasized in [7].

Now one may obtain self-consistent values for the 15
Lamb shift directly from the experimental data in Refs.
[3,4,2] with the help of the relations

BL(18) = 5(

32 5
~?EL(451/2) + §A, (13)

Fis—25 —4F2s-4s,,,)

8
EL(1S) = §(Fls—25 - 4F2S—-4P1/2)

32 5
——3—EL(4P1/2) +34, (14)

40 16
EL(1S) = E(Fm—zs - gFZS—BDS/z)

128 21
_ D —A. 15
9 EL(8Ds5)2) + 19 (15)

Numerical results are presented in Table V. These results
have somewhat larger errors than the respective results
in Table I; however, they do not depend on the experi-
mental value of the 25;/5-2P; ), Lamb shift and on the
value of the proton charge radius. The accuracy of the
self-consistent numbers in Table V is mainly determined
by the accuracy of the frequency measurements in [3,2,4].
A factor 4-5 reduction of the experimental errors would
lead to a self-consistent determination of the 1S Lamb



960 MICHAEL 1. EIDES AND VALERY A. SHELYUTO 52

TABLE V. 1S Lamb shift.

AE (kHz)
8172915(129)°
8172763(117)P
8172858(107)°
'8172729(28)(32)¢

2Self-consistent value, Ref. [3].
Self-consistent value, Refs. [2,1].
“Self-consistent value, Ref. [4].
9Theory, this work.

shift with the same accuracy as for the values cited in
Table I. One may even invert the usual approach to
the 25;/3-2P; /2 and 1.5 Lamb shift values and extract
values of the 25-2P Lamb shift from the respective self-
consistent 1S values (see three last lines in Table IV).
These values of the 25 /5-2P; /, Lamb shift are consistent
with the results of the direct measurements of the 2.5y /5-
2P, /; Lamb shift but have somewhat larger error bars.
However, self-consistent values of the 257 /5,-2P; /2 Lamb
shift would become quite competitive with the results of
the direct measurements after the 4-5 times reduction
of the current experimental errors in the frequency mea-
surements is achieved.

The reduction of the errors of the values of the 15
and 25 /5-2P; /; Lamb shifts opens ways to a more pre-
cise determination of the Rydberg constant. We would
like to mention two alternative directions in the deter-
mination of the Rydberg constant value besides the one
adopted now (see, e.g., [1,2]). First, one can use the self-
consistent value of the 15 Lamb shift and the respective
251/2-2P; /> Lamb shift to get the value of the Rydberg
constant. Today such an approach leads to a loss of accu-
racy in comparison with the current experimental value
of the Rydberg constant (see Table VI, where the first
error in the self-consistent values of the Rydberg con-
stant is determined by the accuracy of the self-consistent
Lamb shift values, the second is determined by the ac-
curacy of the frequency measurement, and the third is
determined by the accuracy of the electron-proton mass
ratio [39]), but greater accuracy may be achieved in the
future. An important advantage of such an approach is

TABLE VI. Rydberg constant.

R (cm™1)

109737.3156841(42)°
109737.3156834(24)°
109737.3156868(58)(20)(12)°
109737.3156811(52)(14)(12)¢
109737.3156797(12)(20)(14)(12)°
109737.3156802(05)(14)(06)(12)¢

*Experimental value, Ref. [1].
PExperimental value, Ref. [2].
“Self-consistent value, Refs. [1,3].
9Self-consistent value, Refs. [2,1].
®Theory, this work, and Ref. [1].
fTheory, this work, and Ref. [2].

that the value obtained in this way is independent of the
direct experimental results on the 257 /5-2P; /, Lamb shift
and of the value of the proton charge radius. The second
approach is simply to reject the experimental data on
the Lamb shifts and to directly use for the determination
of the Rydberg constant the data on the frequencies of
transitions between the levels with different main quan-
tum numbers. Such an approach becomes feasible now
since the accuracy of the theoretical expression for such
transitions is defined by the theoretical error of the ex-
pression for the 15 (or 25) Lamb shift, which is about
28 kHz (and even smaller for the 25 Lamb shift), as dis-
cussed above, and is thus smaller than the experimental
error of the frequency determination. Respective values
of the Rydberg constant are again presented in Table VI,
where the first error is determined by the accuracy of
the theoretical expression, the second is defined by the
experimental error of the frequency measurement, the
third is determined by the experimental error in the de-
termination of the proton charge radius, and the fourth is
determined by the accuracy of the electron-proton mass
ratio. The values of the Rydberg constant in the last two
lines in Table VI derived from independent experimental
data [2,1] are pretty consistent. These values are slightly
more accurate than the ones obtained by other methods
and are among the most precise contemporary values of
this constant. A natural drawback of this approach is,
of course, the dependence of the obtained value of the
Rydberg constant on the proton charge radius.

In conclusion, we would like to emphasize that the high
accuracy of the Lamb shift theory opens perspectives in
the determination of the Rydberg constant and of the
Lamb shift in the 1.5 and 25 states. Five directions of ex-
perimental investigations, namely, more precise measure-
ment of the transitions between levels with different main
quantum numbers, more precise measurements of the 1.5
and 25 Lamb shifts, a more precise measurement of the
electron-proton mass ratio, and a direct measurement of
the proton charge radius, seem especially promising. It is
very important that all these experiments are mutually
complementary since they may lead to the values of the
Rydberg constant of comparable accuracy based on the
different kinds of experimental data. On the theoretical
side, the calculation of the still unknown corrections to
the energy levels discussed above, with the goal of the
reduction of the theoretical error in the determination of
the 15 Lamb shift to the level of 1 kHz (and, respectively,
of the 25 Lamb shift to several tenths of a kHz), seems
to be both necessary and feasible.
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