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WEB wave functions without matching: A self-cansistent procedure
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A method is presented for the construction of Wentzel-Kramers-Brillouin (WKB) wave functions
that avoids explicit consideration of any matching between results pertaining to classically allowed
and forbidden regions. The formalism is based on the maximization of a suitable defined quantal
pseudoentropy, subject to the constraints posed by the expectation values of a reduced number of
operators, which are evaluated according to special WKB techniques. A self-consistent procedure
is developed that simultaneously yields the nodes of the wave function and the information theory
parameters.

PACS number(s): 03.65.Sq, 89.70.+c

I. INTRODUCTION II. THEORY'

Semiclassical methods, although already introduced
more than 60 years ago, enjoy still an enormous pop-
ularity [1—4]. Of course, foremost among these methods
is the celebrated Wentzel-Kramers-Brillouin (WKB) one
[5—8] (with more than 100 references in 1994).

The WEB expansion, treated according to the Dun-
ham formalism [9,10],provides one with a practical recipe
for evaluating expectation values with very little effort.
However, if one wishes for WKB urave functions (WF's),
matters become quite involved, as already noted by Lan-
dau and Lifschitz [11]. A complicated matching proce-
dure must be followed that becomes more cumbersome
than trying to solve Schrodinger's equation itself.

This matching problem has been attacked in various
ways, but only within "perturbative environments" [12].
Recently, however, an approach has been proposed that
entirely bypasses the matching procedure by recourse to
information theory (IT) [13] concepts.

This IT methodology, however, was restricted only to
symmetric potentials, and, moreover, the different ex-
cited states failed to be mutually orthogonal. In addi-
tion, not all the different excited states were treated on
an equal footing. There was always a "privileged" one.

The goal of the present effort is that of overcoming
these difBculties. As a result, we will be led to an easy-
to-handle IT-based algorithm that preserves all the con-
veniences of the WEB approach, yields good wave func-
tions, and is not marred either by orthogonality problems
or by restrictions on the nature of the potential functions.

The paper is organized as follows. Our formalism is in-
troduced in Sec. II and applied to symmetric and asym-
metric potentials in Sec. III. Finally, some conclusions
are drawn in Sec. IV.
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A. Introductary remarks

Generalitiee

IT-based approximate wave functions (ITWF's) have
been extensively discussed in recent years [14—19]. They
provide one with a reasonable alternative to the cel-
ebrated Gutzwiller ansatz in relation to the Hubbard
model of superconductivity [20] and allow for an ex-
tremely simple approximation with reference to the Dicke
model of quantum optics [21]. In the many-body problem
they have been shown to advantageously compete with
those approximate WF's provided by the Hartree-Fock
[16], the BCS [17], or the random-phase approximation
(RPA) [19] treatments. Some reasons that underlie the
apparently surprising success of these WF's have been
discussed in [15]. If the state vector ~@) is expanded in
the basis

~j) (with coefBcients Cz), the maximum entropy
recipe assigns to these components C~ a typical IT ex-
ponential farm [14—19]. The concomitant exponents are
sums of products of Lagrange multipliers (arising out of
the entropy extremalization process) times diagonal ma-
trix elements af the form (j~O„~j). The O„belong to
a set of M linearly independent, commuting operators
whose expectation values are assumed to be known.

These M expectation values constitute our input in-
formation, and constrain the extremalization procedure,
in the usual way, via the associated Lagrange multipliers
A„ [14-19].

In the one-dimensional case we deal with a continuous
basis labeled by the coordinate 2; and with multiplicative
operators (powers of the coordinate). The components
C~ become the ordinary wave functions g(x) and the
above mentioned diagonal matrix elements are (because
of the multiplicative character of the operators involved)
just appropriate powers of the coordinate, evaluated at
x. Thus, the ITWF's are of the general appearance (for
a state with n nodes) [14,15]
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@„(z)= P„(x)exp ——) A„z" = P„(z)cu„(z), (1)
p,:1

( )
n + ) (n) cx

(2)

where P is an nth-order polynomial and the A's are the
Lagrange parameters, characteristic of the IT approach
[14—19], that are determined by the input information.

In building up an ITWF one faces the problem of deter-
mining two types of unknown quantities, which an appro-
priately devised. IT inference methodology must provide.
We need the values of the polynomial coefficients, on the
one hand, and those of the Lagrange multipliers entering

, on the other one.
In the case of ground-state (g.s.) wave functions,

Jaynes's original IT methodology [14,15] by itself, with-
out further ado, is able to provide the latter, by recourse
to appropriate input information (expectation values of
M relevant operators 0„). One does not require, of
course, to solve Schrodinger s equation in order to ob-
tain an approximate g.s. wave function [14—19]. The
main advantage of such an approach lies in the fact that
it enables one to undertake the description of systems
for which important (or even all) details of the pertinent
interactions may be missing (how would one then write
down Schrodinger's equation'?).

where, of course, the a are unknown quantities. In
order to fix them we shall require strict orthogonality (in
order to improve upon the approach of Ref. [13]). We
face the set of conditions

(3)

which, under the assumption that the u„( z) are known
(by recourse to the LMA), can be regarded as a linear

system zn the a (n)

(ii) In order to combine our two techniques (LMA and
ZDA) we (a) start with an arbitrary set of P (x), (b)
determine the ur„(z) by recourse to the LMA, on the
basis of some relevant informational input (the (0„)),
and (c) fix the zeros of the P (x) by solving the linear
system Eq. (3). At this stage one goes back to (a) and
restarts the process until convergence is achieved. This
self-consistent procedure neatly solves our problem.

III. APPLICATIONS

2. WKB uraee functions urithout matching

As stated in Sec. I, one wishes to take advantage of
the WKB treatment following Dunham [22,23], which,
although yielding without much work any expectation
value, is not able to provide one with a semiclassical wave
function. Such a goal was certainly achieved in Ref. [13].

The essence of the method introduced in [13] is to em-
ploy WKB expectation values (instead of experimental
ones) as input information. Full advantage is thus taken
of a quite convenient reformulation of the Dunham ap-
proach effected in Refs. [22,23]. This information sup-
ply, by recourse to elementary IT concepts, readily fixes
the A's in (1). However, somewhat more elaborate con-
siderations are needed in order to fix the coefFicients in
P„(x). The resulting approach of Ref. [13],although pro-
viding one with quite reasonable results, exhibits, how-
ever, some drawbacks, as, for instance, lack of orthog-
onality and applicability restricted to even potentials.
These problems can be overcome as indicated below.

B. Present formalism

A definite IT algorithm [to be referred to as the La-
grange multipliers algorithm (LMA)] yields the Lagrange
multipliers [14,15] on the basis of a set of expectation
values (0~) corresponding to some relevant operators
0~, p = 1, ..., M [15]. A standard well-known numerical
method is available [24]. In order to build up our WKB
formalism we will now (i) describe first a self-consistent
approach to determine the zeros of the P (x) [let us ab-
breviate it as the zeros determination algorithm (ZDA)]
and (ii) discuss afterwards how to combine the LMA with
the ZI3A.

(i) We have

A. The harxnonic oscillator

As might be expected, the self-consistent inference pro-
cedure of Sec. II yields the exact WF in the case of the
harmonic oscillator (HO). The only informational input
here required is that of (x ) (for each n-phonon state),
computed according to the WKBO prescription [13,23]
(the last zero tells us that we are employing a WKB pre-
scription up to order h [23]).

B. Anharxnonic oscillator

As in [13] we shall concentrate efforts upon symmetric
potentials of the type

V(z) = —x'+ pz
2 (4)

which have been the subject of much interesting work (in
several disciplines) [25—28].

We shall take M, the number of relevant input opera-
tors, equal to 2 and consider the expectation values (z )
and (z4), which are evaluated up to order h (WKBO) or
up to order h (WKB2) [13,23]. With our self-consistent
inference technique we predict then (z ) values with
n=3, 4, and 5.

For the sake of definiteness we adopt the values o. =1
and p =2 in (4), so that a clearly nonperturbative situa-
tion is to be confronted. Table I displays the concomitant
results. The inferred results corresponding to odd states
closely resemble the exact (quantal) ones. This is not
the case for the even states (see the first column). Here,
the well-known fact that WKB fares rather poorly for the
ground state [23] is amplified by our self-consistent proce-
dure. In order to overcome this difIiculty, recourse can be



. A SELF- ~ ~ ~WK.& WWAVE FUNCTIONS WITH 951

uartic oscillator

a roach [29] iswave function. o ic
1 ed here for the g.s.

8 10

not employe e

x'6

n=0
0.04464
0.06642
0.11094
n=1

0.51231
0.53672
0.51749
n= 2

1.29585
1.30678
1.32971
A=3

2.56224
2.58043
2.57901
n=4

4.06387
4.13361
4.26193

—25.6 x 10
—22.0 x 10

0.01405
0.03653
0.19147

IWKBO
IWKB2
Quantal

0.02385
0.04640
0.13180

IWKBO
IWKB2
Quantal

0.71541
0.78028
0.71824

5.0 x 10
2.0 x 10

1.17633
1.34803
1.17198

IWKBO
IWKB2
Quantal

8.0 x 10
—320 x 10

2.07635
2.09257
2.20263

3.70943
3.72677
4.11752

IWKBO
IWKB2
Quantal

50x10
—58.0 x 10

4.98466
5.04674
5.03806

10.6009
10.8030
10.7678

IWKBO
IWKB2
Quantal

41x10
2.0 x 10

19.1120
20.3636
23.2107

8.57062
8.90435
9.60159

states). hhe res

r ic
' = . I thisrtic oscillator (p==2). nnharmonic quar ic

ed for the g.s.) ~

th
10

Additional details are e a

D
n= 0

0.11067 0.13059Comtet
0.11094 0.13180Quantal
A=1

~ 51231 0.715410.IWKBO
0.53672 0.780IWKB2
0.51749 0.71824Quantal
A=2
30874 2.136941 ~IWKBO

1.32809 2.193IWKB2
1.32971 2.20263Quantal
n= 3
56224 4.984662 ~IWKBO

2.58043 5.046IWKB2
2.57901Quantal
n=4
24158 9.51324

124.25831 9.575
4.26193 9.60159

0.18749
0.19147

1.0 x 10

—55.0 x 10
2.0 x 10

1.17633
1.34803
1.17198

—52.0 x 10
30x10

3.92003
4.07921
4.11752

10.6009
10.8030
10.7678

5.0 x 10
8.0 x 10

22.8570
23.0747
23.2107

8.0 x 10
—65.0 x 10

IWKBO
IWKB2
Quantal

d (
'

difFerent context)d within a z er
st11[ ]. Th

national one. e z

n d g(f ron=0 ga
, . %'e insist:

here j.nto connsi erin
to minimize

ted
rameters, c

onon g.s. n
param

I A 11 d' I bl Iults are esp ay

tic oscillator (7==20). Addi-nharmonic quar icTABLE III. Anhar
tional e ai st '1 are the sa

6 x x"D
n=O

0.01271 0.00719Comtet
0.01274 0.00726Quantal
A=1

5758 0.039210.05
0.04213

IWKBO
0.05991IWKB2
0.05724 0.037.03787Quantal
n=2

0.10984
IWKB2 3.0 x 10 0.
Quantal

A=3
27327 0.2524810 0.2I

x 10 0.IWKB2 1.7
Quantal

n=4
10 0.44785 0.47507

0.4499

—61.6 x 10 0.00493
0.00504

2.0 x 10
—44.0 x 10

0.03156
0.03527
0.02939

0.09566
0.09901
0.10024

0.25496
0.25905
0.25738

IWKBO
IWKB2
Quantal

0.53941
0.54401
0.54752

0.8

0.6

0.4

0.2

0 1
0.0 —2

X

for the quartic ooscillator
te The solid

Th d ttdd hd
ith =2, correspon

ct result. T e othe uantal (exac
f ed results from

re resents t e qu
d to the inferre r

line r p

t' ly which co-
and the dashe ines

B2 expectation values, t yrespective y,
F

its
inci e w

h d do d do d 1WKB2 (dashe - o
f 13]

d li e) and the W
1 superimposed.corresponding to Re.

e6 ureso af T ble I is easilyp o g
). I d d,ted for even states .

d 6 Dconc omomitant overlap e c'

] (4'exact ] @inferred

t the 6rst columnsM
1 1 1

.
11

lancing a
he

he "Comtet ideafact that t e
t " ven" resu ts

then, throughout, the om



AND A. PUENTEM CASAS, A. PLASTINO, 52952

1.0 ~ ~1.0 ~ I

0.8p.8

0.6p6
Ol

Q 4Q.4

0.8

0.0—1.5 -0.5 0.5 1.5

rt jc oscilj ator w Ywith =20, cor-FIG 2. Densities, o
' t te. The solid line repre-

as e
pective gand WKB2 expectation va u

with the exact result.

0.0 —1

;al with A=40. Ad-potentia wiFIG- 3. Densities, o
2.d tional details are the me as in»g.

C. Morse potentia l

results similar to those of Table I,I but

e
t and in erre

I F' 1 l
ke of compari

[ s]. Th
d Nt' tht

Ref. 1
ch is easily appreciate . o

'
pp

de6ne, evenWF's are everywhere d
points.

8

n= 0
0.00415
0.00423
n=1

0.04840
0.11628
0.11946
n= 2

1.01683
1.55663
1.58547
n=3

10.8954
13.9?16
14.2098
n=4

83.3114
102.904
104.886

Comtet
Quantal

0.00352
0.00367

3.0 x 10

IWKBO
IWKB2
Quantal

9.4 x 10
30x10

0.03683
0 ~ 14888
0.15800

IWKBO
IWKB2
Quantal

5.7 x 10
1.0 x 10

1.53438
3.07494
3.20980

IWKBO
IWKB2
Quantal

4.7 x 10
3.6 x 10

28.6256
42.3157
44.0644

IWKBO
IWKB2
Quantal

4.0 x 10
1.2x10 4

341.658
476.675
499.095

ote ' —O~. Overlap deficiencyotential A=4T
f tjleral owers o eD and expectatio n values of sev p

. I denotes an inferre waved to the exact ones. Iare compare o

10

function.

x

le of an asymmetric p otential weAs a typical examp e o
one used in modeling0

o o ~ [o
s a e celebrated Morse one, use

31.otential of diatomic mthe interaction poten
'

We have
-2

V(T) = A 1 —exp( —x) (6)

t with 'h' f
an we

formationa inpu w'

dd l thx n=, ...,4 an isp
f d( d td)(s) dle IV, where in erre p

d hP
d F Ndensities are epic eThe corresponding e

he Morse po en iat t' l recourse to a
WKB2 input noticeably improves upon a

IV. CONCLUSIONS

lo ed a se -conszsl — istent algorithm,We have here develop
bl to ield WKB
'l l tdwave function

h " " pectation va uetation values. hhese "inpu exp
h. WKB &---, ,k b following the

bed b Krivine et a. , anp d y
incorporation oof 5 eKects

h .s. input is obtain.s. '
nedtextbook, customary bones. egs. '

f llowing the ideaso '
s of Ref. [29].0 0

lds wave functions wt whose validity isOur procedure yie s
l ermitted regions,t at all) restrrcted to the classica, pe

ith relation to thes main advantage mi reZO zch' h constitutes its main
tment. No pro ems of any sort arise

d d the resulting wave unc iare require an

d d' th t K t
r-cut advantages over that o e .hibits clear-cu a

he following grounds.claim can be jbe 'ustified on t e o o
6 l

' f rence procedure.e. The
di 'f d

is a oa ine
totality o e sf th states to be describe is in



52 WKB WAVE FUNCTIONS WITHOUT MATCHING: A SELF- 953

gle entity. The approach of Ref. [13] follows, instead, a
"state-by-state" inference philosophy.

(ii) The techniques of Ref. [13] are unable to deal with
asymmetric potentials. Only even ones can be tackled.
Our present treatment does not sufFer &om limitations of
this sort (as illustrated here by the Morse example).

(iii) In Ref. [13]recourse is made to the Gram-Schmidt
(GS) orthogonalization method. It is well known that
the GS algorithm often presents one with a number of
difhculties &om the numerical standpoint. Moreover, it
forces one to select a privileged» state as the "starting"
one. We entirely bypass here the GS procedure. Instead,
we face a simple linear system. As a consequence, there
are no privileged states.

(iv) The present results are of better quality than those
provided by the methodology of Ref. [13] (see Fig. 1).

(v) The approach here described is in a better position
(see Fig. 3 and Table IV) than the one of Ref. [13] to
take advantage of the superiority of the expansion up to

(WKB2) over the textbook one (order h, , WKBO).
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