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WKB wave functions without matching: A self-consistent procedure
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A method is presented for the construction of Wentzel-Kramers-Brillouin (WKB) wave functions
that avoids explicit consideration of any matching between results pertaining to classically allowed
and forbidden regions. The formalism is based on the maximization of a suitable defined quantal
pseudoentropy, subject to the constraints posed by the expectation values of a reduced number of
operators, which are evaluated according to special WKB techniques. A self-consistent procedure
is developed that simultaneously yields the nodes of the wave function and the information theory

parameters.

PACS number(s): 03.65.Sq, 89.70.+c

I. INTRODUCTION

Semiclassical methods, although already introduced
more than 60 years ago, enjoy still an enormous pop-
ularity [1-4]. Of course, foremost among these methods
is the celebrated Wentzel-Kramers-Brillouin (WKB) one
[5-8] (with more than 100 references in 1994).

The WKB expansion, treated according to the Dun-
ham formalism [9,10], provides one with a practical recipe
for evaluating expectation values with very little effort.
However, if one wishes for WKB wave functions (WF’s),
matters become quite involved, as already noted by Lan-
dau and Lifschitz [11]. A complicated matching proce-
dure must be followed that becomes more cumbersome
than trying to solve Schrédinger’s equation itself.

This matching problem has been attacked in various
ways, but only within “perturbative environments” [12].
Recently, however, an approach has been proposed that
entirely bypasses the matching procedure by recourse to
information theory (IT) [13] concepts.

This IT methodology, however, was restricted only to
symmetric potentials, and, moreover, the different ex-
cited states failed to be mutually orthogonal. In addi-
tion, not all the different excited states were treated on
an equal footing. There was always a “privileged” one.

The goal of the present effort is that of overcoming
these difficulties. As a result, we will be led to an easy-
to-handle IT-based algorithm that preserves all the con-
veniences of the WKB approach, yields good wave func-
tions, and is not marred either by orthogonality problems
or by restrictions on the nature of the potential functions.

The paper is organized as follows. Our formalism is in-
troduced in Sec. II and applied to symmetric and asym-
metric potentials in Sec. III. Finally, some conclusions
are drawn in Sec. IV.
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II. THEORY
A. Introductory remarks

1. Generalities

IT-based approximate wave functions (ITWF’s) have
been extensively discussed in recent years [14-19]. They
provide one with a reasonable alternative to the cel-
ebrated Gutzwiller ansatz in relation to the Hubbard
model of superconductivity [20] and allow for an ex-
tremely simple approximation with reference to the Dicke
model of quantum optics [21]. In the many-body problem
they have been shown to advantageously compete with
those approximate WF’s provided by the Hartree-Fock
[16], the BCS [17], or the random-phase approximation
(RPA) [19] treatments. Some reasons that underlie the
apparently surprising success of these WF’s have been
discussed in [15]. If the state vector |¢) is expanded in
the basis |j) (with coefficients C;), the maximum entropy
recipe assigns to these components C; a typical IT ex-
ponential form [14-19]. The concomitant exponents are
sums of products of Lagrange multipliers (arising out of
the entropy extremalization process) times diagonal ma-
trix elements of the form <][O#]]) The O# belong to
a set of M linearly independent, commuting operators
whose expectation values are assumed to be known.

These M expectation values constitute our input in-
formation, and constrain the extremalization procedure,
in the usual way, via the associated Lagrange multipliers

Ay [14-19].

In the one-dimensional case we deal with a continuous
basis labeled by the coordinate z and with multiplicative
operators (powers of the coordinate). The components
C; become the ordinary wave functions (z) and the
above mentioned diagonal matrix elements are (because
of the multiplicative character of the operators involved)
just appropriate powers of the coordinate, evaluated at
z. Thus, the ITWEF’s are of the general appearance (for
a state with n nodes) [14,15]
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LM
Yn(z) = Pp(zx) exp [—5 Z /\“:c”} = Pp(z)wn(z) , (1)

where P, is an nth-order polynomial and the \’s are the
Lagrange parameters, characteristic of the IT approach
[14-19], that are determined by the input information.

In building up an ITWF one faces the problem of deter-
mining two types of unknown quantities, which an appro-
priately devised IT inference methodology must provide.
We need the values of the polynomial coefficients, on the
one hand, and those of the Lagrange multipliers entering
Wy, on the other one.

In the case of ground-state (g.s.) wave functions,
Jaynes’s original IT methodology [14,15] by itself, with-
out further ado, is able to provide the latter, by recourse
to appropriate input information (expectation values of
M relevant operators Ou) One does not require, of
course, to solve Schrodinger’s equation in order to ob-
tain an approximate g.s. wave function [14-19]. The
main advantage of such an approach lies in the fact that
it enables one to undertake the description of systems
for which important (or even all) details of the pertinent
interactions may be missing (how would one then write
down Schrédinger’s equation?).

2. WKB wave functions without matching

As stated in Sec. I, one wishes to take advantage of
the WKB treatment following Dunham [22,23], which,
although yielding without much work any expectation
value, is not able to provide one with a semiclassical wave
function. Such a goal was certainly achieved in Ref. [13].

The essence of the method introduced in [13] is to em-
ploy WKB expectation values (instead of experimental
ones) as input information. Full advantage is thus taken
of a quite convenient reformulation of the Dunham ap-
proach effected in Refs. [22,23]. This information sup-
ply, by recourse to elementary IT concepts, readily fixes
the A’s in (1). However, somewhat more elaborate con-
siderations are needed in order to fix the coefficients in
P, (z). The resulting approach of Ref. [13], although pro-
viding one with quite reasonable results, exhibits, how-
ever, some drawbacks, as, for instance, lack of orthog-
onality and applicability restricted to even potentials.
These problems can be overcome as indicated below.

B. Present formalism

A definite IT algorithm [to be referred to as the La-
grange multipliers algorithm (LMA)] yields the Lagrange
multipliers [14,15] on the basis of a set of expectation
values (O“) corresponding to some relevant operators
O, u=1,..,M [15]. A standard well-known numerical
method is available [24]. In order to build up our WKB
formalism we will now (i) describe first a self-consistent
approach to determine the zeros of the P,(z) [let us ab-
breviate it as the zeros determination algorithm (ZDA)]
and (ii) discuss afterwards how to combine the LMA with
the ZDA.

(i) We have

n—1
Po(z) ="+ a{a* (2)
a=1

where, of course, the a((x") are unknown quantities. In
order to fix them we shall require strict orthogonality (in
order to improve upon the approach of Ref. [13]). We
face the set of conditions

(¢]I¢k)=0? j=1a'~"N_1, k<.7 3 (3)

which, under the assumption that the w,(z) are known
(by recourse to the LMA), can be regarded as a linear
system in the a&).

(ii) In order to combine our two techniques (LMA and
ZDA) we (a) start with an arbitrary set of P,(z), (b)
determine the w,(z) by recourse to the LMA, on the
basis of some relevant informational input (the (0,)),
and (c) fix the zeros of the P,(z) by solving the linear
system Eq. (3). At this stage one goes back to (a) and
restarts the process until convergence is achieved. This
self-consistent procedure neatly solves our problem.

III. APPLICATIONS
A. The harmonic oscillator

As might be expected, the self-consistent inference pro-
cedure of Sec. II yields the exact WF in the case of the
harmonic oscillator (HO). The only informational input
here required is that of (£#2),, (for each n-phonon state),
computed according to the WKBO prescription [13,23]
(the last zero tells us that we are employing a WKB pre-
scription up to order % [23]).

B. Anharmonic oscillator

As in [13] we shall concentrate efforts upon symmetric
potentials of the type

V(@)= Sa* +a* (4)

which have been the subject of much interesting work (in
several disciplines) [25-28].

We shall take M, the number of relevant input opera-
tors, equal to 2 and consider the expectation values (£2)
and (2*), which are evaluated up to order A (WKBO0) or
up to order A2 (WKB2) [13,23]. With our self-consistent
inference technique we predict then (#2") values with
n=3, 4, and 5.

For the sake of definiteness we adopt the values a =1
and v =2 in (4), so that a clearly nonperturbative situa-
tion is to be confronted. Table I displays the concomitant
results. The inferred results corresponding to odd states
closely resemble the exact (quantal) ones. This is not
the case for the even states (see the first column). Here,
the well-known fact that WKB fares rather poorly for the
ground state [23] is amplified by our self-consistent proce-
dure. In order to overcome this difficulty, recourse can be



TABLE I. Anharmonic quartic oscillator (y=2). The over-
lap deficiency D is evaluated according to different prescrip-
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TABLE III. Anharmonic quartic oscillator (y=20). Addi-
tional details are the same as in Table II.

tions. The inferred expectation values of (z®), (z®), and (') D z8 28 10
are compared to the quantal results. IW denotes an inferred n=0
wave function. Notice that the Comtet et al. approach [29] is Comtet 1.6 % 10—° 0.01271 0.00719 0.00493
not employed here for the g.s. Quantal 0.01274  0.00726  0.00504
D z° z® z1° n=1

n=0 IWKBO 2.0x 107*  0.05758  0.03921  0.03156
IWKBO 5.6 x 1072 0.04464 0.02385 0.01405 IWKB2 4.0 x 107* 0.05991 0.04213 0.03527
IWKB2 2.0 x 1072 0.06642 0.04640 0.03653  Quantal 0.05724 0.03787 0.02939
Quantal 0.11094 0.13180 0.19147 n=2

n=1 IWKBO0 2.0 x 1075 0.14145 0.10984 0.09566
IWKBO 5.0 x 10”5 0.51231 0.71541 1.17633 IWKB2 3.0 x10°° 0.14332 0.11237 0.09901
IWKB2 2.0 x 10~* 0.53672 0.78028 1.34803  Quantal 0.14359  0.11303 0.10024
Quantal 0.51749 0.71824 1.17198 n=3

n=2 IWKBO 1.4 x 107* 0.27327 0.25248 0.25496
IWKBO0 8.0 x 1074 1.29585 2.07635 3.70943 IWKB2 1.7 x 10~* 0.27501 0.25520 0.25905
IWKB2 2.0 x 1072 1.30678 2.09257  3.72677  Quantal 0.27475 0.25438  0.25738
Quantal 1.32971 2.20263 4.11752 n=4

n=3 IWKBO 8.0 x 107¢ 0.44785 0.47507 0.53941
IWKBO 5.0 x 1075 2.56224 4.98466 10.6009 IWKB2 6.0 x 107° 0.44949 0.47788 0.54401
IWKB2 8.0 x 107° 2.58043 5.04674 10.8030  Quantal 0.44991 0.47932 0.54752
Quantal 2.57901 5.03806 10.7678

n=4
IWKBO 4.1 x1072 4.06387 8.57062 19.1120
IWKB2 2.0 X 10—2 4.13361 8.90435 20.3636 provement with respect to the ﬁgures of Table I is easily
Quantal 4.26193 9.60159 23.2107 appreciated (for even states). Indeed, comparison of the

made to an idea introduced (within a different context)
by Comtet, Bandrauk, and Campbell [29]. They suggest
replacing, just for the ground state, the WKB g.s. by
a variational one. The idea of Comtet et al. translates
here into considering (for n= 0) A; and A4 as variational
parameters, chosen so as to minimize (H)g .. We insist:
this is done just for the zero-phonon g.s. (not for excited
states). The results are displayed in Table II. A clear im-

TABLE II. Anharmonic quartic oscillator (y=2). In this
case the Comtet et al. approach [29] is employed for the g.s.
Additional details are the same as in Table I.

6

8

10

D T T T
n=0
Comtet 1.0 x 107 0.11067 0.13059 0.18749
Quantal 0.11094 0.13180 0.19147
n=1
IWKBO 5.0 x 1072 0.51231 0.71541 1.17633
IWKB2 2.0 x 107* 0.53672 0.78028 1.34803
Quantal 0.51749 0.71824 1.17198
n=2
IWKBO0 2.0 x 1078 1.30874 2.13694 3.92003
IWKB2 3.0 x107® 1.32809 2.19335 4.07921
Quantal 1.32971 2.20263 4.11752
n=3
IWKBO 5.0 x 107° 2.56224 4.98466 10.6009
IWKB2 8.0 x 107° 2.58043 5.04674 10.8030
Quantal 2.57901 5.03806 10.7678
n=4
IWKBO0 8.0 x 107¢ 4.24158 9.51324 22.8570
IWKB2 5.0 x 10~¢ 4.25831 9.57512 23.0747
Quantal 4.26193 9.60159 23.2107

concomitant overlap deficiencies D

D=1- |<¢exactl¢inferred>l ) (5)

which is quickly effected by glancing at the first columns
of Table I and Table II, respectively, clearly illustrates the
fact that the “Comtet idea” [29] allows for a big improve-
ment of the concomitant “even” results (the results cor-
responding to odd states remain unchanged). We adopt
then, throughout, the Comtet et al. approach [29]. Ta-
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FIG. 1. Densities p(z) = |4|?, for the quartic oscillator
with y=2, corresponding to the fourth excited state. The solid
line represents the quantal (exact) result. The dotted-dashed
and the dashed lines correspond to the inferred results from
WKBO0 and WKB2 expectation values, respectively, which co-
incide with the exact result. For comparison the WKBO (dot-
ted line) and the WKB2 (dashed-dotted-dotted line) results
corresponding to Ref. [13] are also superimposed.
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FIG. 2. Densities, for the quartic oscillator with y=20, cor-
responding to the fourth excited state. The solid line repre-
sents the quantal (exact) result. The dotted-dashed and the
dashed lines correspond to the inferred results from WKBO0
and WKB2 expectation values, respectively, which coincide
with the exact result.

ble III exhibits results similar to those of Table II, but
evaluated for a much larger anharmonicity (y = 20).

Figures 1 and 2 depict the densities p(z) = |¥(z)|? for
the fourth excited state corresponding to, respectively,
v=2 and v = 20. Exact and inferred densities resemble
each other in quite a close fashion. In Fig. 1 we also
depict, for the sake of comparison, the results obtained
with the method of Ref. [13]. The superiority of the
present approach is easily appreciated. Notice that our
WEF’s are everywhere defined, even beyond the turning
points.

TABLE IV. Morse potential (A=40). Overlap deficiency
D and expectation values of several powers of the coordinate
are compared to the exact ones. IW denotes an inferred wave
function.

D xs 2:ll]
n=20
Comtet 3.0x 1077 0.00415 0.00352
Quantal 0.00423 0.00367
n=1
IWKBO 9.4 x 1073 0.04840 0.03683
IWKB2 3.0 x 107¢ 0.11628 0.14888
Quantal 0.11946 0.15800
n=22
IWKBO0 5.7 x 1073 1.01683 1.53438
IWKB2 1.0 x 1075 1.55663 3.07494
Quantal 1.58547 3.20980
n=3
IWKBO 4.7 x 1073 10.8954 28.6256
IWKB2 3.6 x 107° 13.9716 42.3157
Quantal 14.2098 44.0644
n=4
IWKBO 4.0 x 1073 83.3114 341.658
IWKB2 1.2x107* 102.904 476.675
Quantal 104.886 499.095

1.0 T T 2 T

¢42 (x)

FIG. 3. Densities, for the Morse potential with A=40. Ad-
ditional details are the same as in Fig. 2.

C. Morse potential

As a typical example of an asymmetric potential we
shall employ the celebrated Morse one, used in modeling
the interaction potential of diatomic molecules [30,31].
We have

V(z) = A[1 — exp(—2)]” , (6)

and we take A = 40.

We construct our informational input with the first
four moments (z") (n=1,...,4) and display the main re-
sults in Table IV, where inferred (predicted) (z®) and
(z1°) moments are compared to the exact ones.

The corresponding densities are depicted in Fig. 3. No-
tice that in the case of the Morse potential recourse to a
WKB2 input noticeably improves upon a WKBO one.

IV. CONCLUSIONS

We have here developed a self-consistent algorithm,
based upon information theory that is able to yield WKB
wave functions on the basis of a few easily evaluated ex-
pectation values. These “input” expectation values are
obtained within the WKB framework, by following the
recipes described by Krivine et al. [23], and allow for the
incorporation of A2 effects (WKB2) (in addition to the
textbook, customary % ones). The g.s. input is obtained
following the ideas of Ref. [29].

Our procedure yields wave functions whose validity is
not (at all) restricted to the classical, permitted regions,
which constitutes its main advantage with relation to the
orthodox WKB treatment. No problems of any sort arise
at the turning points. No messy matchings of any kind
are required and the resulting wave functions are indeed
of a rather good quality.

The methodology introduced in the present effort ex-
hibits clear-cut advantages over that of Ref. [13]. This
claim can be justified on the following grounds.

(i) The present is a global inference procedure. The
totality of the states to be described is inferred as a sin-



gle entity. The approach of Ref. [13] follows, instead, a
“state-by-state” inference philosophy.

(ii) The techniques of Ref. [13] are unable to deal with
asymmetric potentials. Only even ones can be tackled.
Our present treatment does not suffer from limitations of
this sort (as illustrated here by the Morse example).

(iii) In Ref. [13] recourse is made to the Gram-Schmidt
(GS) orthogonalization method. It is well known that
the GS algorithm often presents one with a number of
difficulties from the numerical standpoint. Moreover, it
forces one to select a “privileged” state as the “starting”
one. We entirely bypass here the GS procedure. Instead,
we face a simple linear system. As a consequence, there
are no privileged states.

(iv) The present results are of better quality than those
provided by the methodology of Ref. [13] (see Fig. 1).
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(v) The approach here described is in a better position
(see Fig. 3 and Table IV) than the one of Ref. [13] to
take advantage of the superiority of the expansion up to
h? (WKB2) over the textbook one (order &, WKBO).
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