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Ermakov systems, exact solution, and geometrical angles and phases
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Ermakov systems are pairs of coupled, time-dependent nonlinear dynamical equations possessing a
joint constant of motion. We show how to derive the Ermakov system from nonharmonic oscillators.
We present a detailed study of Ermakov systems from a classical and quantum point of view. Finally the
nonadiabatic Hannay's angle and Berry's phase for the system are calculated along with its adiabatic
limit.
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I. INTRODUCTION

where q and p are the canonical coordinates, X(t), Y(t),
and Z(t) are an arbitrary function of time, and l is an ar-
bitrary constant which could be zero. Second, we want
to calculate the nonadiabatic Hannay's angle and Berry's
phase, and their adiabatic limit [19—26].

This paper is organized as follows. In Sec. II we derive
the invariant and the Ermakov systems. In Sec. III, we
shall find the exact solution and a nonadiabatic Hannay's
angle for classical Ermakov systems. We obtain the exact
solution and a nonadiabatic Berry's phase for the Er-
makov Schrodinger equation in Sec. IV. In the conclud-
ing section we discuss the nature of the superposition law
and we end with the adiabatic limit of the results ob-
tained in Secs. III and IV.

II. DERIVATION OF THE ERMAKOV SYSTEM

For the Hamiltonian

H =gh„(t) T„(p,q) (2.1)

a dynamical Lie algebra of phase-space functions T„ is
constructed which is closed with respect to the Poisson
bracket

{T„,T ] =gC„" T„. (2.2)

The study of time-dependent oscillator systems has at-
tracted considerable interest in the literature, both in
classical [1—8] and quantum [9—19] mechanics. The ori-
gin of this development was no doubt the discovery of an
exact invariant by Lewis [2] which was previously known
as an approximate adiabatic invariant [1]. The existence
of invariants for nonharmonic systems [3—5] was demon-
strated by Ray and Reid [6], who derived a family of in-
variants for a special class of systems with nonlinear
equations of motion.

The purpose of this paper is twofold. First we want to
derive the invariant and the Ermakov systems described
by the Hamiltonian

H= —Z(t)p +2Y(t)pq+X(t)q +1 2 Z(t)l'
2 2

Now the invariant dI/dt =0 is written as a member of
the dynamical algebra

I=gl(,„(t)T„ (2.3)

and by means of dI/B)t = {I,H] and comparison of the
coefficients of a system of first-order linear differential
equations for the unknown A,„ in (2.3) is obtained

A„+g g C„" h (,) A,„=O,
n n

(2.4)

where the structure constants C„" of the I.ie algebra are
defined in (2.2).

For the anharmonic oscillator (1.1), this approach
leads to a finite algebra containing only T',

,'[p +l /q —],T2=pq, and T3=—,'q with the
Poisson brackets {T', , T2] = —2T', , {T2, T3 ] —2', and

T3 TI I T2 i.e., the algebra {T),T2, T3 ] is identical to
the oscillator algebra {T', , T2, T3]. The differential
equation (2.4) reads in this case

l(, (
=2(A, ( Y—ZA q),

A2=2(A, ,X—Z)(.3),
A,3=2(A,2X —YA.3),

(2.5)

which can be simplified by setting A,
&
=p where p is the

solution of the auxiliary equation

2 2+2 P PP1 2p
2 Z

p'& —pp
p, Z

2I 2
q'+ p, (2.7)

The equation of motion for q that follows from H (1.1) is

Z . 2 Z Z
dt Zp

——p+ (XZ —Y )+—Y —Y p=, (2.6)Z p

2=(p Y , pp)/Z—, and

1 1+ p'F —pp

p Z

The invariant can be written in the form
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Z Z . Z l
dt Zq

——q+ (XZ —Y )+—Y—Y q=
Z q

(2.8)
where

(I,'8, t) =H(q(I, 8, A(t)),p(I, 8, A(t)), t)

The forin of (2.6) and (2.8) is easily recognized as an Er-
makov pair with the Ermakov invariant (2.7). The sys-
tem (2.6)—(2.8) is an Ermakov system.

III. EXACT SOLUTIQN QF THE CLASSICAL
ERMAKQV SYSTEM

The existence of the invariant I(p, q, A, (t))
[A, = (A.„A,2, k3) ] implies that, in principle, through a
time-dependent canonical transformation we can choose
I to be the new momentum. " This, in fact, is achieved
by the time-dependent generating function of the canoni-
cal transformation for q,p to 8,I [20,26]:

S( qI, A(t))= f dq'p(q', I,A(t)), p=, 8=
Bq

(3.1)

Following [25] we write the rate of change of angle of a
phase point as the sum of contributions from its motion
in phase space and from the changing coordinates (I,8):

8 B&(I 8 A)+ B8
(3.2)aI

(3.3)

where ( ) denotes the average over 8 at fixed A, . The first
term is the dynamical angle 60" and the second is the
classical geometric angle hag.

Expressing p in terms of I, q, and A, , we obtain

q 4+ 2I 2q 2 412)1/2

p' q (3.4)

and evaluating the indefinite integral of Eq. (3.1) we find

and BO/BA, is the rate at which the angle at fixed q and p
changes with the parameters. Integrating (3.2) we obtain
60, which does not depend on 0; however, each term in
the sum does depend on 0. These dependences can be el-
iminated by averaging over each contour of constant ac-
tion. We note that this allows (3.2) to be reinterpreted
[26] as a Hamilton equation in action angle variables: the
changing k introduces a time dependence which contrib-
utes to the transformed Hamiltonian a term BS/Bt,
whose I derivative can be shown to equal the extra term
(i)8/M, ) k in (3.2). Thus we obtain

S(q, I,A,(t) ) = ——1 Y pp
2 Z q

—I tan2 —i Ip
( 4+2I 2 2 412)1/2

—l'tan ' Iq2 12p2(q4 +2Ip2q2p4 12)1/2
+ - ——, - --+const,

1( q+2Ip q
—

p 1 )' — 2p
(3.5)

which gives

BS 10= = ——tan
BI 2

2 2

( 4+2I 2q2 412)1/2
&'Z l d+

0 p 2

From Eqs. (3.4) and (3.6), it follows that

q =p ((/I 1 sin28+I )'— (3.7)

2—2 P P« dt , (3.9)Z p

the geometrical angle shift is

1

p( )/ I 1 sin28+I )'/—

X V I —1 cos28—
2

sin20
Z

(3.8)

j d
0 2

&p' —pp + &p' —pp
Z Z p

and the total angle is

b8= J dt' .
0 p

b8g= J,(I,8, A(t')) dt'
BI 0 Bt

(3.10)

(3.11)

From (3.3), the dynamical angle shift is Now we use the exact solution to discuss the nonadia-
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i «
. p.

batic Hannay's angle. If the parameters A, (t) are periodic
functions of time with the same period T, i.e.,
A,(t+ T) =A,(t), the cyclic evolution of the system is

r

I T
(3.12}

11'„(q,t)=exp — g„(q, t)= Ug„(q, t) .

(4.6)

The operator I changes into I':
I'= UIUt . (4.7)

—p dp (3.13)
I'g'„(q, t) =A,„itr'„(q, t), (4.8)

The operator eigenvalue equation (4.2) is mapped into

Equation (3.13) is the geometric angle (nonadiabatic Han-
nay angle [20]) in a cyclic evolution over a circuit C in
parameter space, irrespective of whether the evolution is
adiabatic oI not.

where we find by straightforward calculation that

$2 2 2l2I =——x'p', +~, + p,
clq p q

(4.9)

IV. EXACT S401.UTIGN QI' THE KRMAK(OV SYSTEM:
QUANTUM PQINT OF VIEW

If we now define a new independent variable o =q/p, we
can write the eigenvalue equation in the form

In the quantum theory of (1.1), q and p become
quantum-mechanical operators p = —

i,irtB/Bq; the auxili-
ary function p remains a c number. The invariant I, (2.7),
is a constant Hermitian operator

+cr + P„(a)=A,„P„(o)
1 2 8 2 l

Bo' a

or I'P„(a)=A,„P„(a),where

(4.10)

dI ~I 1 [IH] 0
dt Bt

(4.1)
1 1
in &'

P p P
(4.11)

Lewis [2] and Lewis and Riesenfeld [9] first used constant
operators to solve time-dependent quantum-mechanical
problems.

I satisfying (4.1} has constant eigenvalues, which we
write as X„:

Ig„(q, t)=A, „Q„(q,t) .

Here, itj„(q, t) denote eigenfunctions of I which will, in
general, be time dependent. Lewis and Riesenfeld [9]
showed that the general solution to the Schrodinger equa-
tion for (1.1),

—A' Z. iitiY 2&%'Yq +—Xq +—1 2 8 8 2 Zl
2 Qq Bg

The factor 1/p' is introduced into (4.11) so that the
normalization condition

Ig'„'(q, t)g„'(q, t)dq= JP„'(o )P„(a)do =1 (4.12)

dx e x L (x)L (x)=5e
~

~ k ~ k I ~ ~~
kk r

holds. The important point is that the transformed ei-
genvalue problem (4.10) is an ordinary one-dimensional
time-independent Schrodinger equation with potential
V(a)= —,'[a' +(l/o ) ].

As is easily veriied, by use of the orthogonality rela-
tion

can be written in the form

g(q, t)=QC„e " g„(q,t),

=~A
Bt

(4.3)

(4 4)

(a )—1), (4.13)

the normalized solution f'„(q, t) can be written as

'
(q, t)= 1)k k&

I (k+c+1)P

where C„are constants, g„(q, t) are the eigenfunctions of
I defined by (4.2), and the phase functions a„(t) are found
from the equation

(4.5)

where the states g„(q, t) are orthonormal, ( P„~P„)=5„„.
For simplicity we assume I to have a discrete spectrum.

The key point of our analysis is to perform the unitary
transformation

2

gl c —1/2
k for n =2k, (4.14)

where the Lk(o )'s denote generalized Laguerre polyno-
mials satisfying

o +(c+—' —o ) +k L' ' (a )=0
do.

(4.15)

and the constant eigenvalue A,„ is exactly given by
A,„=(n+c+—,

' )A' where A' c(c —1)=l . The complete
normalized state is thus given by
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f„(q,t)=
1 Yp —p q q

p p p
exp (4.16)

batic Berry's phase [22]. If the parameters X(t) are
periodic functions of time with the same period T, i.e.,
A, (t + T) =A, (t), the cyclic evolution of the system is

There remains the problem of finding the phases a„(t)
which satisfy a" = (—n+c+ —') —— — ~ + dt'iz

0 p Z p
(4.26)

t(a„(t)= ()„d( H t(t„—),a

where

at (t) = ((t„ t t( „)

(4.17) and

(4.18)

as = (—n +c+—,')f — — dp .
L

is the geometrical phase and

a „"( t ) = —
(
t('„—t)„) (4.19)

is the dynamical phase. Carrying out the unitary trans-
formation U the right-hand side of Eq. (4.17) becomes

gaia„(t)= P'„ iA +iR+q +u5~ — I' P'„
a a Z ~

Bt p Bq 2p

(4.20)

t( „(t)=(y„-,l y„) .
p'

Using (4.10) and the normalization of P„we have

(4.21)

a„(t)=—(n +c+—,')f dt' .
i Z(t')

(4.22)
0 p

Substituting for P„ in the expression for a„(4.19), the
geometrical phase is hence found to be

t

where we have used the auxiliary Eq. (2.6) to eliminate
X( t ) from H. Next substituting P'„(q, t )

=( 1 lp' )P„(q Ip) into (4.20) we find

Z
D=w 1

P

I /2
Z d Y

D2 dt Z

where AD=(XZ —Y ), XZ & Y Furth. ermore, expand-
ing with respect to

Z d Y « 1,
WD2 dt

We have proved in this paper that the solution to ihe
classical Ermakov system reduces to solving one of the
equations (2.6) or (2.8) in terms of solutions of the other
equation. These results are sometimes referred to as the
nonlinear superposition law in the literature [27].

In the quantum case, the solution to the Ermakov
Schrodinger equation (4.3) reduces to solving the one-
dimensional Schrodinger equation (4.10). In fact, Eq.
(4.25) together with (4.16) and (4.23) is a quantum-
mechanical superposition law.

We conclude with the adiabatic limit of our, so far, ex-
act treatment. jLet us assume that the external parame-
ters (X, Y, Z) perform an adiabatic excursion during the
time T in the parameter space so that
(X, Y;Z)(0)=(X, Y;Z)(T). In the adiabatic limit, the p
term in the auxiliary equation (2.6) may be ignored; then
we obtain

1 dag = —(n+c+ —')
0 2 dt' Z we obtain

Yp pp p
Z p

Z

p
Z p

and the dynamical phase is

t Z 1 da = (n+c+——') +-
n

.p

(4.23)
Z Z d Y

=WD
p 2wD

When this adiabatic expression is substituted into (3.11)
or (4.22), we may obtain the total angle (or phase) accu-
mulated in a cyclic adiabatic evolution:

b,0= f dt i' —f dR V- —,R =(X, Y;Z),
0 c 2WD Z

g(q, t)=QC„exp i dt' g„(q, t) .
~n ~Z(t')

0 p
(4.2S)

Now we use the exact solution to discuss the nonadia-

(4.24)

Finally the exact solution of the Schrodinger equation
(4.3) is

a„(t)= (n +c+—,' )A f dt —u)D

Y+(n +c+—')irt dR V'-.
c 2w ~ ZD J

where the first term is the dynamical angle (or phase) and
the second is the geometrical Hannay's angle (or Berry's
phase) [24,25].
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