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l-resolved intercombination transitions in Rydberg atoms in collisions with electrons
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A systematic study of semiclassical and quantum cross sections of l-resolved intercombination transi-
tions in Rydberg atoms due to collisions with fast electrons is performed in the Ochkur approximation
for principal quantum numbers n ~ 15 and all possible orbital numbers l and changes 61. The semiclassi-
cal approach provides reasonable estimates for cross sections over the angular-momentum range up to
l —n /2. Intercombination transitions are shown to obey the "Bethe rule": at large l the transitions with
n and l changing in the same direction dominate transitions with changes in opposite directions. It is
also demonstrated that the more deeply inelastic the collision is, the higher the multipoles hl that prevail
in the total cross section. The semiclassical approach makes it possible to derive simple analytic formu-
las for cross sections with an explicit dependence on principal and orbital quantum numbers.

PACS number(s): 34.60.+z, 34.80.Dp

I. INTRODUCTION

The purpose of this paper is to conclude the study of
intercombination transitions in Rydberg atoms in col-
lisions with electrons initiated in the previous work [1].
In that work, which hereafter will be referred to as paper
I, we have used the Ochkur approximation as a suitable
approach to fast collisions with spin change [2]. Radial
matrix elements were evaluated by means of the Heisen-
berg correspondence principle to utilize the quasiclassical
properties of highly excited levels [3—6]. That approach
enabled one to extract analytic expressions and trends for
matrix elements and radial factors and to show that for
orbital numbers l, 1' (and b, l) small compared to principal
quantum numbers n, n', the semiclassical cross sections
were in good accord with the exact quantum calculations.

This work extends the treatment to arbitrary angular
momenta. Large angular mornenta are important, be-
cause, first, they furnish the major contribution to the to-
tal I-averaged cross section n ~n' and, second, the corre-
sponding wave functions are clear from nonhydrogenic
corrections due to the quantum defect (in contrast to low
angular momenta).

We will present a detailed comparison of theoretical
quantum and semiclassical cross sections for arbitrary I.
The data show that the quality of the semiclassical ap-
proximation remains fairly high well beyond the region of
its formal validity, i.e., small I values. Especially good
accuracy is found for transitions when the principal and
orbital quantum numbers change in opposite directions.
The results also demonstrate that the intercombination
transitions obey the "Bethe rule" [7], much like dipole ra-
diative transitions do: at large I the transitions with n
and I changing in the same direction dominate over tran-
sitions in opposite directions. Further, we present the
evidence of an irnrnediate correlation between the energy
transferred to the atom in the course of the collision, i.e.,
An, and the value of hl for the most intensive I-resolved
transitions. In conclusion, we show that, if the orbital
numbers I, I' involved are not very small, it is possible,
based on analytical trends obtained in paper I, to perform

the summation in the multipole expansion and derive

simple closed-form approximate formulas for cross sec-
tions. These formulas explicitly depend on the initial and
final principal and orbital quantum numbers and may
serve as guiding estimates.

The paper has the following structure. Section II con-
tains the systematic comparison of quantum and serni-
classical calculations along with the discussion of major
trends. Section III presents analytic formulas for col-
lision strengths. The summary of the results is given in
Sec. IV. Atomic units with Ry for the energy are used
throughout the paper.

II. COMPARISON OF QUANTUM
AND SEMICLASSICAL RESULTS

Consider the transition nlL ~n'I'L' with spin change
ES=1(LS coupling is assumed) in a Rydberg atom, in-

duced by an exchange collision with a fast electron. Ac-
cording to paper I [1],the Ochkur approximation for the
cross section averaged over magnetic quantum numbers
gives

8m 1
nl n'1' 6 + 1

nl n'I'
2l +

Q„t „.t.= (21 + 1)(2l'+ 1)

I I'
Xg (2~+1) p p ()

where k is the magnitude of the projectile wave vector,
and M=(2S+1)/2(2S&+1), S and S being spins of the
atom after collision and the atomic core. Radial factors

were obtained with hydrogenic wave functions
and also, as an alternative, in the semiclassical approxi-
mation

(nl
~j (Qr)~n'1')-( m2)

' J j„(gr)exp( ibn8)d8—
where r=(1—s cosu), O=u —ssinu, u and s being the
eccentric anomaly and eccentricity, respectively. Based
on (1) we have systematically compared quantum and
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FIG. 1. Quantum and semiclassical collision strengths
(nn') Q„I „L as functions of / for b n =0, 6/=1.

FIG. 3. Quantum and semiclassical collision strengths
(nn') Q„I „I as functions of l for b,n =1,6/= —1.

semiclassical exchange cross sections for principal quan-
turn numbers n ~15 and all possible orbital numbers /

and changes 6/ =/' —/. Below we illustrate the most typ-
ical trends for some selected values of n and / changes.
All numerical and analytic results are presented in the
form of collision strengths Q as this simplifies the formu-
las and gives an idea of the relative contributions of tran-
sitions with different b, / to the total cross section n ~n .

Elastic transitions hn =0 are illustrated in Fig. 1. As
expected from paper I, for small / and small changes
5/=/ —/' the semiclassical results either coincide or are
very close to quantum calculations. It is seen, however,
that the correspondence principle provides reasonable ac-
curacy even for / that are not actually small. By "reason-
able" accuracy we mean an error up to 20—30%%uo, which
is typical for Born-type estimates. In fact, that level of
discrepancy is not exceeded approximately up to / nl2. -
We would like also to point out the nonmonotonic rela-
tionship between semiclassical and quantum results for
elastic transitions. The semiclassical calculations un-
derestimate the cross sections for b, /=0 and overestimate
for 6/&1. For dipole transitions 6/=1 both methods
seem to be consistently close for all /.

Consider now inelastic transitions hn &0. The results
are depicted in Figs. 2 —5. First of all we observe that the
main tendency persists. The quality of the semiclassical
approximation remains fairly acceptable within a range
of / ~ n j2. The worst discrepancies over a factor of 2 are

found only for maximal / =n —1. Further, it is seen that
the semiclassical transition strengths always rise smooth-
ly as / increases. Quantum results demonstrate mostly
the same trend. Deviations from monotonicity and even
quasioscillatory behavior are possible, however, especial-
ly for large / and b, /. The reason is that radial factors A
from (1) are not, strictly speaking, smooth functions of /

and 6/ and the calculations usually show clear evidence
of that fact. However, the multipole summation over ~ in
(1) and the factor of (2/+ 1)(2/'+ 1) mitigate this feature,
so that traces of nonmonotonicity occasionally show up
in the transition strengths, as in Fig. 4.

Interestingly enough, there exists an analogy to the so-
called "Bethe rule" for intercombination transitions as
well. Bethe and Salpeter indicated [7] that for large / the
dipole radiative transitions with n and / changing in the
same direction dominate over transitions with opposite n

and / change. The comparison of Fig. 2 to Fig. 3 and Fig.
4 to Fig. 5 indicates a similar phenomenon for collisional-
ly induced transitions with spin change. At the same
time, as is seen in Figs. 2—5, for inelastic transitions semi-
classical strengths are consistently smaller than quantum
ones. As a result, the quality of the semiclassical approx-
imation is appreciably higher for transitions with oppo-
site n and / changes, compared to "parallel" change tran-
sitions. In fact, in the former case the semiclassical re-
sults closely reproduce quantum data practically for all /.

Finally we resort to contributions of different 6/ to the
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FIG. 2. Quantum and semiclassical collision strengths
( nn ') Q„I „ I as functions of l for hn = 1, 6/ = 1.

FIG. 4. Quantum and semiclassical collision strengths
(nn') Q„L „L as functions of l for hn =5, 61 =3.
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FDIC&. 6. Relative contribution of all transitions with given
~bi~ to the total n +n' strength g—t~, ~

Q„~ „,/Q„„as a func-
tion of ~hl ~. bn =0 and hn = l.

total cross section n ~n'. In paper I we have already in-
dicated that for spin-change collisions the dipole-allowed
transitions had no dominance over dipole-forbidden tran-
sitions. Here we would like to elaborate this point fur-
ther. In fact, there exists a correlation between the hl
value of the transitions that contribute most to the total
cross section n ~n ' and the extent to which the collision
is inelastic, i.e., An. In particular, as shown in Fig. 6, for
elastic collisions hn =0 the collision strength is dominat-
ed by monopole and dipole transitions 61=0,1. For
moderately inelastic collisions An =1 the leading contri-
bution comes from dipole transitions. And for strongly
inelastic collisions such as An =5 in Fig. 7 the major role
shifts to multipole interactions EI »1. This trend is con-
sistent with previous studies by Flannery and McCann [8]
and the author [9] and has a natural interpretation. Elas-
tic An =0 and slightly inelastic hn =1 collisions are
dominated by the long-range projectile-atom interactions,
corresponding to small Al —1. Large energy transfer to
the atom An »1 occurs at relatively small impact pa-
rameters, associated with higher multipoles and large
angular-momentum transfer Al »1. This explains the
success of the approach to intercombination transitions
based on the binary encounter approximation (Stabler
[10), Webster, Hansen, and Duveneck [11],Beigman and
Matusovsky [12]).

/
l —L'f

FIG. 7. Relative contribution of all transitions with given
~hl

~
to the total n ~n' strength g~~, ~

Q„l „~IQ„„asa func-
tion of ~b, /~. En=5.

Q„( „I =n (2/+1)(2/'+1)A
Imin

where A =0.339 if hl =0 and A =0.513 otherwise;
/;„=min(/, /').

(2) For inelastic collisions An )0:

0„1 „ t.=(nn') (2/+1)(2/'+1)
an '~2

(/~+/)2/3 /~ /
2/3

X I;„+C (3)

hn =1,where 8 =00638, C =0 if and
C =[/;„/(/;„+ 5 ) ] otherwise.

The validity of formulas (2) and (3) assumes that orbital
quantum numbers involved are not very small, i.e.,
/;„~2. In that range the error of (2), (3) varies mostly
within S—10%. The stronger deviations over 10% are
possible for An & 0, although they are not typical. At the
same time, whenever (2) and (3) overestimate the semi-
classical results, it in fact improves the quality of approx-
irnation because the exact quantum calculations for
An &0 always exceed the semiclassical data. For l;„=0
or 1 it is advisable to use directly (1) which reduces in this
case to one or two terms only.

III. ANALYTIC FORMULAS
FOR COLLISION STRENGTHS

Inasmuch as the semiclassical approach furnishes a
reasonable accuracy over the fairly broad range of orbital
quantum numbers l, it makes it advisable to obtain
closed-form analytic formulas based on this approxima-
tion.

To that end we use the analytic trends derived in paper
I: %-(b,n) /' if lr=0; %-a / if b, n =0;
N-max(Sn '/3, ~ '"}an '/3~ '"ifbn)oand~)0.
Then by means of the completeness conditions for 3j
symbols along with the asymptotic behavior

2
I I'

—1/K when Ir))b/, multipole expansion (1)

reduces to the following formulas:
(1) For elastic collisions bn =0:
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It is instructive to compare the exchange collision
strengths (2), (3) with those for nondipole transitions
without spin change [9]:

0„, „,-(nn') (2l +1)(2l'+ 1 )(2b 1+ I)

l 1' ~ min(b. n ' b, l ')
X

(an )'(at )'

The latter contains pronounced dependence on hn and
Al, whereas for exchange transitions we observe very
slow sensitivity to hn and Al.

IV. CONCLUSIONS

We have presented a detailed comparison between
semiclassical and quantum results for cross sections of I-
resolved intercombination transitions in Rydberg atoms.
The data indicate that the quality of the semiclassical ap-
proximation is sufficient for reasonable estimates within a
fairly broad range of orbital quantum numbers I, i.e., up
to I n/2-. Especially good accuracy is found for transi-
tions when principal and orbital quantum numbers
change in opposite directions. It is then shown that the

intercombination transitions obey the "Bethe rule": tran-
sitions with the same direction of n and I changes dom-
inate over transitions with opposite changes, in direct
similarity with dipole radiative transitions. We have also
demonstrated that Al values of the transitions contribut-
ing most to the total cross section have a strong correla-
tion with the extent to which the collision is inelastic.
And 6nally, based on the semiclassical approach we have
derived simple analytic formulas for the exchange cross
sections containing an explicit dependence on the princi-
pal and orbital quantum numbers.

In conclusion, we would like to bring attention to the
absence of the experimental data on intercombination
transitions in Rydberg atoms present calculations could
be compared with.
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