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Dynamical pulse shaping in a nonlinear resonator
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A synchronously pumped passive ring resonator, containing an optical fiber as a nonlinear el-
ement, is studied experimentally and numerically. Period doubling cascades up to period 32 and
chaos are observed in the sequence of pulse energies emerging from the resonator. We provide evi-
dence that beyond this instability, individual pulses encounter an instability of their temporal profile.
Pulse shapes develop a substructure that may be stationary, periodic, or chaotic. The full problem
thus actually involves formation of a spatiotemporal structure. In contrast to many other spatiotem-
poral instabilities studied in optics, we deal here with strictly one-dimensional, longitudinal spatial

structure.

PACS number(s): 42.50.Ne, 42.65.Re, 42.50.Rh

I. INTRODUCTION

Consider an optical resonator, filled with a material
that has a nonlinear index of refraction. Ikeda and co-
workers [1] have pointed out that such a system can dis-
play chaos if light above a certain threshold power is ir-
radiated. The explanation relies on the interference be-
tween two waves: the input light, plus the light that has
completed a round trip in the resonator, where the lat-
ter has undergone nonlinear interaction. This reasoning
leads to the formulation of a simple recursive relation
(“Ikeda map”) which can be written as

2 L
An = Ajy +nexp [7' (900 + 7"22 |An-—1|2>:| An_1 .
(1)

Here, A, denotes the electric field amplitude in the
cavity after the nth round trip, Ag¢ the input field, n the
feedback efficiency, ¢q the static resonator phase, L the
length of the Kerr medium, A the wavelength, and n,
the nonlinear index of refraction. Note that the equation
in this simple form implies an instantaneous nonlinear
response.

In a first experimental test of that theory, Nakatsuka
et al. [2] used a single mode optical fiber as a nonlinear
medium. Fibers have a very fast Kerr nonlinearity [3]
that can be considered instantaneous for most purposes.
Also, a suitably chosen fiber will guarantee a single trans-
verse mode; complications from a possible generation of
transverse beam structure (see, e.g., [4]), not considered
in Eq. (1), are thus ruled out.

The disadvantage of fiber is that the nonlinear index
change is small: For typical fibers, it is in the range of
3x1072% I where I is the intensity in the fiber (in W/m?)
[3]. This small value necessitates high light powers for
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any appreciable effect, not easily attainable in cw opera-
tion. Therefore, a train of picosecond pulses from a mode
locked laser was used in [2]. The round trip time of the
cavity was matched to the pulse repetition time to ensure
interference of each pulse with its counterpart from the
previous round trip.

With this synchronously driven passive cavity, an in-
stability was indeed observed in [2]. That work has there-
fore been considered a confirmation of Ikeda’s prediction
as well as the first demonstration of chaos in a passive
optical system.

However, the laser was not only mode locked but also Q
switched. Consequently, there were no steady conditions,
and only transient behavior could be observed. Also, that
experiment had no control over the crucial parameter
of the cavity round trip phase. Therefore, no further
analysis of the results was possible.

Several subsequent experimental approaches to the
fiber ring system have been reported [5-7] that employed
continuous trains of pulses from mode-locked pump lasers
to assure steady conditions, but only [6] had control over
the cavity phase. Meanwhile, considerable progress has
been made in the understanding of the mechanism. In
particular, the roles of modulational instability [7,8] and
group velocity dispersion [6,9] were discussed. We ba-
sically corroborate the conclusions of these references.
Beyond that, we present particularly clean experimen-
tal information on the temporal evolution. We do have
knowledge of the cavity phase, and we are able to record
long strings of data with the help of fast digitizing oscil-
loscopes. (First results from our experiment were given
in [10,11].) On these data we base a detailed comparison
with numerical calculations.

The approach with a one-dimensional mapping like
Eq. (1) implies that each pulse is uniquely described by
a single number, referring to its energy. However, for the
plane wave case originally discussed by Ikeda [1], it has
been shown in [12] that the fixed points of the Ikeda map
are unstable to transverse spatial perturbations. Vallée
[9] argued that in the case of transverse confinement by
a waveguide, as considered here, an analogous argument
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should hold for the longitudinal spatial direction. As a
consequence spatial structure should be inevitable, and
a large number of degrees of freedom may be present.
Thus, a one-dimensional mapping would have to fail. Van
der Mark et al. [6] have presented experimental indica-
tions in support of this reasoning.

‘We show here in unprecedented clarity what other au-
thors have argued before: a simple one-dimensional (1D)
model like Eq. (1) is absolutely inadequate to describe
the physics of a synchronously driven nonlinear ring res-
onator. We will demonstrate that structures form in the
pulse shapes, which may be either stationary, or dynam-
ically evolving. Thus, for any given pulse energy there
can be a multitude of pulse shapes. These “longitudinal
structures” indeed correspond to structures observed in
a variety of optical experiments in the plane transverse
to the propagation direction.

We will further show that group velocity dispersion
in the resonator is a key parameter in this formation of
structure. Experimental results and extensive numerical
calculations will reveal its influence, and give an indica-
tion of the full complexity at work in this deceptively
simple experimental situation.

II. THE ROLE OF DISPERSION

Group velocity dispersion, disregarded in some of the
early studies, emerges now as one of the crucial ingredi-
ents [9]. The action of dispersion can be described as fol-
lows: Think of the pulses as being made up of many tem-
poral “slices,” each of which occupies an infinitesimally
narrow time slot. Now assume the absence of disper-
sion, and also exact synchronism of the resonator round
trip time with the input pulse repetition time. Then,
each slice will interact only with the corresponding slice
in the following pulse, but not at all with neighboring
slices. Consequently, the slices will evolve in total in-
dependence. If some of these slices then exhibit chaotic
dynamics, we are faced with the paradox that infinites-
imally close slices will exhibit macroscopically different
behavior, which would produce an infinitely wide optical
spectrum. It is obvious that the inclusion of dispersion
removes this paradox because it creates an interaction
between neighboring slices. The stronger the dispersion,
the more correlated the temporal evolution of neighbor-
ing time slots. In this sense, dispersion is one of the most
relevant parameters in the experiment. Other groups, in-
sofar as they recorded time series from the experiment,
were restricted to conditions of strong group velocity dis-
persion (silica fiber in the visible).

In order to vary dispersion, we selected fibers with
staggered amounts of dispersion. In the case with low-
est dispersion we approach the “paradox” case discussed
above. In that case, total dispersion is dominated by
higher order contributions, and the mechanism of cou-
pling between the temporal slices is quite different. This
will become apparent below.

III. EXPERIMENTAL SETUP
AND PROCEDURES

The setup of our experiment is shown in Fig.1. As
a light source we employ an additive pulse mode-locked
Nd:YAG (neodymium-doped yttrium aluminum garnet)
laser at A = 1.3188 um [13]. This laser produces a con-
tinuous train of pulses with a repetition rate of 82.4 MHz
that are ~ 12 ps wide, practically free of chirp, and sech?
shaped. Average output powers up to 1.5 W and peak
powers exceeding 1 kW are achieved so that nonlinear
phase shifts of the order of m can be produced in just
a few meters of fiber. Back reflections from the experi-
ment into the laser are suppressed by an optical isolator.
A half-wave retarder, together with the first polarizer in
the isolator, serves as a variable attenuator to set the in-
put optical power for the nonlinear resonator. Part of the
laser beam is split off and sent into a fast photodiode so
that the laser source is permanently monitored through-
out our experiments. None of the instabilities described
below occurs at this position.

The light enters the ring resonator through an input
coupling mirror. It has a reflectivity of R =30%. GRIN
lenses are employed for free space-to-fiber coupling; ef-
ficiencies of 60% are obtained. With all losses, the res-
onator has a finesse of 3.5.

Given the available optical power, there is a minimum
value for the fiber length, dictated by the required non-
linear phase shifts. We use L = 9.25m of fiber through-
out. Additional air paths bring the effective resonator
path length to 14.56 m. To achieve synchronous pump-
ing, this total cavity length is fine-tuned with a delay line,
so that the free spectral range (fo = 20.6 MHz) equals
one-quarter of the pulse repetition rate (f, = 82.4 MHz)
to within a few tens of micrometers. The length of the
cavity is adjusted for minimum threshold of the first bi-
furcation. This adjustment procedure provides a repro-
ducibility of the cavity length better than 50 pm.

Note that at any given time,; there are in fact four
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FIG. 1. Experimental setup. APM, additive pulse
mode-locked Nd:YAG laser; A/2, half wave retarder; OD, op-
tical diode (Faraday rotator and polarizers); C, custom-made
chopper wheel (see text); PZT, piezoelectric ring transducer;
F, 9.1-m polarization-maintaining fiber; Mi, mirrors (M1 has
4%, M2 has 31%, and M3 has 99% reflectivity); Li, lenses;
PDi, photodiodes (PD1 monitors the laser, PD2 the fre-
quency-doubled resonator output, PD3 the resonator output,
and P4 the resonator phase); SHG, second harmonic generat-
ing crystal.
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pulses traveling the fiber. However, their interaction is
negligible, and in the subsequent analysis of the data, we
will simply use only every fourth detector pulse. (In fact,
comparisons of the four interleaved data streams provide
'some useful consistency checks.)

All fibers were single mode and polarization maintain-
ing, and light was linearly polarized along the slow axis
of the fiber throughout. Fiber ends were angle cut to
reduce spurious reflections. According to earlier expe-
rience, manufacturer’s information on fiber dispersion is
not always very accurate. We therefore selected the fibers
used here from the stock of one manufacturer (Fibercore,
Chandlers Ford, U.K.) on the basis of our own measure-
ments, using white light interferometry over a wavelength
range from 1200 to 1750 nm in a setup similar to [14].
Table I lists the dispersion properties of all three fibers
used here. The accuracy of these measurements was ob-
viously most critical for fiber A. The reproducibility of its
zero dispersion wavelength was +1nm. The largest sys-
tematic errors are to be expected from the wavelength
readout of the monochromator involved; we therefore
calibrated this readout with the 1318.8 nm line of the
Nd:YAG laser.

For a comparison with theory, we also determined the
nonlinearity coefficient v = 27ny /A Aegr of the fibers. Aeg
is the effective mode field area of the fiber. This was done
through comparison of directly measured self-phase mod-
ulated spectra and numerical results at different input
powers similar to the method of [15]. Fiber parameters
are given in Table I.

Thermal fluctuations and acoustic perturbations pro-
duce slight length changes that let the cavity phase drift
over several free spectral ranges on slow time scales (mil-
liseconds to seconds). This drift makes it impossible to
take data at a known resonator phase unless either the
resonator length is stabilized by some means, or the phase
is somehow recorded along with all measurements. We
use a fairly simple method that was already described
in [10]. A custom-made chopper wheel is employed to
repetitively switch between small signal and large signal
regimes. At the same time, the resonator length is slowly
ramped with a piezoelectric ring transducer (PZT). A
1% tap on the ring resonator is used to monitor the Airy
function in the small signal case, so that the resonator
phase during the relatively short large signal intervals
can be interpolated.

At the remaining port of the input coupling mirror,
we can monitor the processes in the ring with various
techniques. All experimental results described below are
taken at this output. One of the first checks was with a
monochromator at the appropriate wavelengths to con-
vince ourselves that there was no noticeable stimulated

TABLE I. Relevant properties of fibers used here.

Raman scattering.

In this paper we restrict ourselves to results based
on direct digitalization of the pulses. Since the optical
pulses are much faster than the temporal resolution of
any electronics, we can only measure integrated values
of pulse energies. Of course, any dynamical processes
in the “central slice,” i.e., at the pulse peak, will be
nearly swamped in this integral value by contributions
from the pulse wings. To discriminate the pulse peak
against the wings, we send the resonator output light
through a nonlinear optical crystal (LilO3) for second
harmonic generation (SHG). The resulting red light is
recorded with a Si avalanche diode-low noise amplifier
combination with 300 MHz bandwidth (Analog Modules
713A-4-B). Its output is sent to a digital storage oscillo-
scope, the sampling rate of which is synchronized to the
pulse repetition rate. At different stages of this research,
either a Tektronix RTD710A or a LeCroy 9354L digital
storage oscilloscope was used. Data are taken with 10-bit
(Tektronix) or 8-bit (LeCroy) vertical resolution.

IV. EXPERIMENTAL RESULTS

A typical example for measured time series from fiber
B (intermediate dispersion) is shown in Fig. 2. This ex-
ample is compiled from 32 000 data points (pulse energies
Esuc at PD2) sampled every 48ns. The trace covers a
total time interval of 1.5 ms. Over this time interval, the
resonator phase g is slowly ramped from 0.37 to —1.17.
From ¢o = 0 to —0.37 we observe P2 behavior; mod-
ulation in the corresponding fundamental signal reaches
a maximum depth of about 40%. From ¢o = —0.37 to
po = —0.67 there is a forward period-doubling cascade,
which can be followed up to period 16. In the consecutive
phase range, pulse energies form two broadbands, which
finally merge to a single band like the one at the begin-
ning of the time series. Similarly, there is a transition
from irregular to periodic behavior at ¢o = 0.17 through
reverse period-doubling bifurcations. We interpret the
broadband structures as deterministic chaos.

Note that if the scan direction is reversed, transition
points between periodic and chaotic behavior occur at
slightly different positions. Moreover, we find differences
in the dynamical behavior of the four pulses evolving in
parallel in the resonator. In some cases we observe that
one of the four interleaved time series shows, e.g., stable
P1 behavior, while the others exhibit a P2. In other
words, different dynamical patterns are possible for the
same set of parameters, and there is hysteresis at the
transition points.

A closer look at the time series reveals that at the bi-
furcation points there are several crossovers in the traces

Dispersion values and nonlinearity refer to the laser wavelength

A = 1318.8 nm and to the slow axis of the fiber. All fibers were supplied by Fibercore.

Fiber | Type | Ao (nm) B2 (ps®/km) Bs (pss/km)l v (m™* W)
A HB1500 (YD355-01) 1322 0.25 —0.08 4.7 x 1073
B HB1250 (YD762-01C) 1420 7.4 —0.075 4.8 x 1073
C HB1500 (YD535-01A) 1480 11.8 —0.064 8.0 x 1073
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FIG. 2. Experimental recording of a time series. Data were
sampled every 48 ns using SHG detection (PD2 in Fig. 1).
The detector was ac coupled. To cover the interval of 1.5 ms
a total number of 32000 data points was recorded while the
phase was slowly ramped. Peak power in the fiber was set to
P = 140 W; this leads to a nonlinear phase shift of ¢n = 2.
Dispersion: B2 = 7.4 ps®/km, 83 = —0.075ps®/km. In the
inset a magnification of a “wiggly” bifurcation is displayed.

(see inset). These “wiggly” bifurcations have been re-
peatedly observed in the periodic regime. They are most
conspicuous in the case of the low dispersion fiber A. An
explanation will be given below.

Figure 3 shows power spectra, calculated via Fourier
transform of short segments (2048 to 8192 data points)
of experimental time series. Subharmonic behavior of
frequency fo/z (period z) is denoted as Pz. We routinely
observe the period doubling sequence up to P16, and
occasionally see P32. Note that it is generally hard to
observe period doubling beyond P8 in optical systems.
It is possible in our case because at the high frequencies
involved here the signal is not corrupted by 1/f noise.
We thus achieve a remarkable signal-to-noise ratio in the
experiment.

The last two panels of Fig. 3 show a broadband back-
ground that corresponds to the chaotic bands in the time
series. On top of this background there can be more (P2-
X) or less (x) indication of periodic content. The partly
chaotic, partly periodic signal could be either weak chaos
or chaos in the pulse peak superimposed with P2 oscilla-
tion in the pulse wings. The ambiguity is resolved with
the help of simultaneously recorded time series from both
fundamental and second-harmonic generation and SHG
(see Fig. 4), since the latter gives more weight to the
peak and less to the wings. In comparison, there is a
relative attenuation of the P2 feature in the second har-
monic signal. We therefore conclude that in fact different
segments of the pulses undergo different dynamics: the
pulse peaks evolve chaotically while there is P2 behavior
in the wings. This conclusion should already caution us
that any characterization of the pulses by a single num-
ber each (its energy) is unlikely to capture the processes
at work.

While the spectra display spectral information, we pro-
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FIG. 3. Power spectra of experimental data. Frequencies
are normalized to the repetition rate of f,=20.6 MHz; sub-
harmonic behavior of frequency fo/z (period x) is denoted
as Pz. x denotes a chaotic signal, and P2-x a similar signal
with a strong P2 component. Nonlinear and static resonator
phases: (P1) ¢n1 = 7, wo = 0.2m; (P2) @n = 1.57, po = 0.37;
(P4) pn1 = 1.5m, po = —0.3m; (P8) pn1 = 1.77, po = 0.17;
(P16) pn1 = 2.4m, po = 0.1m; (P32) pn = 2.1m, @o = 0.87;
(P2-x) ¢n1 = 1.7m, 0o = —0.97; (X) @n1 = 2.57, po = 0.27.

ceed to an investigation of temporal correlations. Fig-
ure 5 shows first return maps constructed from the same
data as in Fig. 3. The return map labeled x is an unstruc-
tured cloud around the bisector, whereas the P2 content
of the data in P2-x results in a splitting of the corre-
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FIG. 4. Spectra showing the simultaneous occurrence of P4
and chaotic behavior at ¢n = 1.87, po = 0.3w. Top trace:
square root of the second harmonic signal (PD2). Bottom
trace: fundamental signal (PD3).
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FIG. 5. Return maps (Lorenz plots) of the P4, P2-x, and
x data displayed in Fig. 3. In all cases, the lower left corner
is the origin (zero power).

sponding return map. These experimentally obtained
maps look very different from the ones expected from
a 1D map like Eq. (1). We will show below why this
difference is indeed to be expected.

All results discussed up to this point were obtained
with fiber B. From the discussion in Sec. II, we expect
the amount of dispersion in the fiber to have a strong
influence on the observed behavior. In particular, use of
fiber A with its extremely small second order dispersion
should bring us into a parameter regime in which the
pulse formation in the cavity is strongly affected by third
order dispersion (33, whereas with fiber C, only minor
quantitative changes are expected.

Indeed, experiments with fiber C show essentially the
same behavior as the ones discussed above, so that show-
ing separate figures here seems unwarranted. However,
with fiber A the length adjustment of the fiber ring is
much more critical, and for deviations of more than a
few tens or micrometers, much of the nonlinear behavior
disappears. Even with the most careful adjustment of
the cavity length, we find much less purely periodic be-
havior, and chaotic behavior covers a much wider section
of the parameter range than before. Specifically, periodic
evolutions are found in just a very small parameter range
{—0.67 < 9o < 0,0.37 < @q < 0.67}, and most of this
is P2. It is hard to find P4, and we never saw higher
periodicities than an occasional P16.

The experimental results presented so far already in-
dicate by themselves that an explanation with a simple
1D map must fail just as much as a treatment of the
pulses as entities that do not undergo internal changes.
Instead, the observations can be naturally explained if
pulse reshaping is taken into consideration. This is best
addressed with a numerical simulation.

V. NUMERICS

We have implemented a numerical code to describe
the combined action of dispersion and nonlinear optical
mechanisms inside the fiber ring cavity. Our computa-
tion scheme basically consists of two steps for every round
trip — propagation through the fiber and interference at
the input coupler. Either step can be treated by con-
ventional means. It is the combination of the two and
their repetition that produce the phenomena described
here. The propagation is described by a modified nonlin-
ear Schrodinger equation [3]

8A(z,t) i, 8%A(z,t) 1 8%A(z,t)
2. T2 ar 6P o @

= i7]A(2,1) [ A(2, 1),

with the optical amplitude A and the second and third
order dispersion (32 and (s, respectively. Linear losses
in the fiber may be neglected here. We also explored
inclusion of Raman scattering, but it turns out that for
the parameter range discussed here it has no significant
effect. This is in accord with experimental observations,
and we will disregard Raman scattering in the following
discussion.

Equation (1) is computed with the symmetrized split-
step Fourier method [3]. We typically use a temporal dis-
cretization of AT = 50fs with a grid size of 1024 points
and a spatial discretization Az between 1 and 10 cm. Sev-
eral conservation laws [16] are used to check the accuracy
of the simulation. We find it important to optimize Az
and AT such that minimum deviations from the conser-
vation of pulse energy £ = [ |A|2 dt and of the quantity
® =i [(ADA*/dt — c.c.) dt occur.

After every propagation there is interference with a
new pulse from the light source. The complete nth round
trip in the cavity can be calculated by the recurrence
relation

A, (0,t) = Ain(t) + nexp(ipo)An—1(L, t). (3)

We use a feedback efficiency n = 0.41, as calculated from
the observed small signal finesse of the cavity. The sim-
ulation is initialized with zero power inside the cavity.

In comparison with Eq. (1) the variable A in this rela-
tion is now a function of space and time. There are in fact
two time scales: “global time” is denoted by the round
trip number n. “Local time” (time across the pulse) ¢
and position z enter through Eq. (2). Also, A;, now rep-
resents the shape of the input pulses. Equations (2) and
(3) therefore constitute a generalized version of Eq. (1).

Since the case of constant input power is contained in
this extended model as a special case, we can reproduce
the physical situation that is assumed in the Tkeda map
by making A;, = const. Such a continuous wave simu-
lation is not very realistic because competing processes
like stimulated Brillouin scattering are not taken into ac-
count. Nevertheless, it can serve to give a first indication
of at which power levels instabilities are to be expected.
As anticipated, we find that the first bifurcation occurs
when the maximum nonlinear phase, referred to a single
fiber transit of the light, reaches the order of 7. This is
in accord with the results of Ikeda [1].

It is thus reasonable to expect that the far wings of the
pulses, insofar as they have power less than this thresh-
old, will not experience any dramatic modification by the
nonlinearity. This reasoning is confirmed by the numeri-
cal results. Indeed, we find that only the central segment
of the pulse, in which the power exceeds threshold, is af-
fected strongly. A steep transition, much like a domain
wall, forms in the wings close to the position where the
power crosses threshold. We will therefore refer to the
central part of the pulse, within the domain walls, as the
nonlinear domain, and to the wings outside as the lin-
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FIG. 6. Numerically simulated pulse profiles (power vs lo-
cal time) of a period-8 evolution. ¢n = 1.1m, o = —0.457,
B2 = 7.4 ps®/km; B3 = —0.075ps® /km. Labels at top desig-
nate the dominant periodicity in the corresponding pulse re-
gion; labels on the side refer to the sequence of pulse profiles.
The arrow indicates the threshold for the first appearance of
a P2 in the iteration with constant input.

ear domain. Dispersion modifies the domain walls as the
pulses propagate on.

Results of several runs of the simulation are shown in
Figs. 6-10. In Fig. 6 the different stages of a P8 sequence
are plotted into one graph. Clearly, zones of different pe-
riodic behavior are resolved. The region of P8 in the
center of the pulse is surrounded by zones of decreasing
period. The domain wall is located near the border be-
tween P4 and P2, and is indeed close to the point where
the power exceeds the cw threshold. Undulations are
created by the sudden jump of power at the domain wall

100

-10 0 10
1 (ps)

FIG. 7. Numerically simulated pulse profiles (power vs lo-
cal time) in the chaotic regime. Each figure consists of 50
single traces. 800 preiterations served to let transients die
out. P8x: ¢n = 1.2m, po = —0.457. P2-x: ¢on = 1.77,
wo = —05m. x: @n = 2.5m, o = 0.3w. Dispersion:
B2 = 7.4 ps®/km; B3 = —0.075 ps®/km in all three examples.
Arrows indicate the first appearance of a P2 in the iteration
with constant input.
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FIG. 8. Return maps and spectra of the time series corre-
sponding to the spatial pulse structures displayed in Figs. 6
and 7. 500 preiterations served to let transients die out. In all
return maps, the lower left corner is the origin (zero power).
Note that this figure shows signals as they would appear at
detector PD3 while all other computational results shown in
this paper are referred to the entrance face of the fiber.

and move out into the linear domain where they seem
to decay exponentially. They change phase every round
trip and thus form a P2 regime.

An example for simultaneous occurrence of periodic
and chaotic behavior is shown in Fig. 7 (panel P8-x).
Here, the same resonator phase was assumed as in Fig. 6,
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FIG. 9. Simulation of four subsequent pulse shapes in

the chaotic regime for different dispersion. ¢n = 1.4m,
po = 0.657. Top panels: [z = 7.4 ps?/km,
Bs = —0.075ps®/km; bottom panels: B = 0.5 ps®/km,

Bs = —0.08 ps® /km.
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FIG. 10. Numerical simulation of the transient behavior of
pulse profiles leading to the “wiggly” bifurcation. ¢n = m,
@o = 0.057, dispersion as in Fig.2. Top trace: Evolution of
pulse energy vs global time. Bottom panels: Solid lines refer
to the pulse profile at the displayed iteration number; dashed
lines show the pulse profile after one more iteration step.

but the input power was raised slightly. Again, there
are domain walls close to the cw threshold, and the P2
regime looks very similar to the previous case. The pe-
riodic zones up to P8 already appear fuzzy, and there is
chaotic dynamics in the pulse center. Upon further in-
crease of input power the fuzziness increases to the point
where little (Fig. 7, panel P2-x) or no (panel x) indi-
cation of periodic behavior is present in the nonlinear
domain. Note that the last two graphs have been cal-
culated for parameters similar to those pertaining to the
experimental observation of the return maps and spectra
in Figs. 3 and 5.

Figure 8 shows the power spectra and return maps per-
taining to the data of Figs. 6 and 7. A comparison with
the experimental spectra and return maps in Fig. 4 re-
veals detailed agreement. In particular, the return maps
in the chaotic regime are washed out in a similar way.
This is, of course, a result of the more or less independent
temporal evolution of different segments of the pulse.

The influence of dispersion is best demonstrated under
conditions of fully developed chaos, i.e., chaos with al-
most no periodic content. Two short numerical sequences
of chaotic pulse profiles are displayed in Fig. 9. All pa-
rameters are equal, except dispersion. The top-hat-like

pulse shapes make the distinction between the central
nonlinear domain and the linear domain in the slopes
very clear. Both examples show fragmentation in the
nonlinear domain, and in either case, the domain walls
are close to the cw threshold and seem to seed undula-
tions. :

On the other hand, there are also obvious differences:
The substructures are relatively smooth in the case of
high dispersion, and much more spiky for low disper-
sion. In the latter case, third order dispersion makes
itself noticeable through an obvious asymmetry in the
pulse profiles: The undulations are visible only in the
trailing slope, and the spikiness is most severe in the
leading half of the nonlinear domain.

This asymmetry due to third order dispersion is also
responsible for the “wiggly” behavior in the transients
mentioned in the section on experimental results. The
top panel of Fig. 10 shows an example of the transient
evolution of pulse energies in a P2 regime. The panels be-
low show the pertaining pulse shapes at different stages in
that evolution. In each panel, two traces are shown: the
solid line refers to the iteration step as given in the label;
the dashed line shows the next pulse. Both subsequent
pulses are almost indistinguishable in the linear domain.
In contrast, inside the nonlinear domain the subsequent
pulse seems to be a flipped-over version of the previous
one. This leads to an alternation in pulse energy: Pulses
at even iteration numbers (solid line) have lower energy,
and at odd numbers the energy is higher. This change in
pulse energy would manifest itself as a P2 behavior in an
experiment.

Again, the steep domain walls seed undulations, which
are more apparent in the trailing slope. At the leading
domain wall, a shock front begins to move into the non-
linear domain at an early stage (iteration number 100)
and continues to walk across the pulse.

After about 800 iterations the shock front has reached
center pulse. Here, flipping over does almost nothing to
the pulse energy. As the front moves on, there is again
an alternation between two pulse energies. Note, how-
ever, that now even pulses have higher energy. Thus a
crossover in the pulse energy pattern has occurred. In
this example there is only one shock front, and thus a
single crossover. Multiple shock fronts will lead to “wig-
gly” bifurcations as observed in the experiment.

We therefore explain the wiggles as a transient phe-
nomenon in the presence of third order dispersion. Note
that for the parameters used in Fig. 10 3 is the dominant
order of dispersion on time scales down to 7 = |B3/02| =
10fs [3]. This makes it clear why the wiggles occur more
pronouncedly in the case of fiber A with its extremely
low second order dispersion and therefore more promi-
nent third order dispersion (in that fiber, third order dis-
persion takes over for structures shorter than ~ 160 fs).

The explanation holds even semiquantitatively: the
propagation speed relative to the pulse, 5fs per round
trip in this example, turns out numerically to be propor-
tional to 3, both in amount and sign. In fact, we never
observed “wiggles” and the propagation of shock fronts
in the pulse in the case of 83 = 0. Note, however, that
this situation cannot be accessed experimentally, as there
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is always a contribution of higher order dispersion. Also,
the speed of propagation roughly corresponds to the dif-
ference in propagation delay for two Fourier components
that are spread out in frequency by the inverse of the rise
time of the shock front, 300 fs.

Both the shock fronts in the “wiggly” bifurcation and
the spatial undulations in the pulse profiles are closely
related phenomena. In the absence of dispersion we ob-
serve the formation of a discontinuity at the domain wall
(compare [5]). Due to dispersive coupling this discon-
tinuity is not only washed out but rather leads to the
formation of shock fronts and oscillatory structures.

VI. DISCUSSION

The experimentally recorded time series can represent
each pulse only by one number — its energy. Never-
theless, we provided ample evidence that the shapes of
the individual pulses are subject to dramatic changes.
Pulse substructure is being formed that may be station-
ary, or evolve periodically or even chaotically. A number
of more or less indirect clues were obtained from the ex-
periment, and a numerical analysis was able to explain
all observations. Thus we arrive at a detailed picture of
the spatiotemporal structure formation.

The fact that the pulse energies undergo period-
doubling bifurcations has been observed by other authors
before [2,5,6], if not with the same clarity as achieved
here. The signal-to-noise ratio of our experiment allows
detection of P32; also, the important parameter of res-
onator phase is measured so that meaningful comparisons
with theory are feasible.

In addition to showing this temporal bifurcation
scheme, our combination of experimental and numeri-
cal results provides a clear indication that there also is
a spatial instability coupled to the temporal instability.
This instability can be followed through the subharmonic
and into the aperiodic regime. In the latter, we deal with
turbulence, i.e., spatiotemporal chaos. The key param-
eter to couple spatial and temporal structures is disper-
sion. Dispersion, which has been disregarded in some of
the early investigations, was systematically varied in this
work.

All our observations can be well understood in the pic-
ture of pulses composed of small temporal slices. Assum-
ing precise cavity length adjustment for exact synchro-
nism with the pump pulse train, each slice interacts with
its corresponding slice in the subsequent pulse through
interference once every round trip. In the absence of
dispersion (a very artificial assumption), there would be
no coupling between neighboring slices. One would then
have to consider infinitesimally narrow slices, and thus
arrive at the paradox mentioned in the Introduction.

Dispersion will, of course, introduce coupling between
neighboring slices [9]. In other words, while interference
provides an interaction in “global time,” dispersion does
so in “local time.” For finite dispersion, it is therefore
more reasonable to consider slices of some finite width
that scales with the amount of dispersion present: The
less dispersion, the shorter the correlation in local time.

In a comoving frame of reference, structure in local time
translates into spatial structure. We conclude that the in-
terplay of Kerr nonlinearity, dispersion, and repetitive in-
terference forms longitudinal spatial substructure in the
pulses.

The pulses used in our experiments are between one
and two orders of magnitude wider than the typical size
of the substructures in the pulse (Figs. 7 and 9). The
effective number of degrees of freedom is therefore high.
Due to this high number of degrees of freedom, return
maps in the chaotic parameter range are smeared out to
the unstructured clouds as displayed in Fig. 8. For the
same reason, it is difficult in the case of the low dispersion
fiber to find parameters where all of the pulse undergoes
periodic evolution; most of the time some part of the
pulse evolves chaotically, so that the recorded time series
which average over all of the pulse will rarely show purely
periodic dynamics.

Of course, any misalignment of the ring cavity length
from precise synchronism with the input pulse train will
introduce an additional interaction between otherwise in-
dependent slices (see also [17]). It is therefore clear why
length adjustment is more critical with less dispersion,
as was found experimentally. Note that length misalign-
ment creates a coupling that acts in one direction. It
therefore more closely resembles the effect of third order
dispersion, since second order dispersion acts symmetri-
cally.

Since we can record time series long enough for mean-
ingful evaluation with statistical methods, we are able
to calculate quantitative information about the degree
of complexity in the problem. Such detailed time series
analysis will be presented in a forthcoming paper.

VII. OUTLOOK

The synchronously driven resonator is closely related
to a famous standard example of a chaotic system, the
kicked rotator [18]. The main difference is that here the
duration of the “kick” is not arbitrarily short: It is much
longer than the shortest time constant in the system,
the optical cycle. Therefore, and because of the wave
nature of optical fields, we have to discuss interference
once every round trip.

We have shown that spontaneous formation of struc-
tures evolves from this self-interference. In contrast to
most work on pattern formation in nonlinear optics, we
deal here with a longitudinal structure. While this is
technically more difficult to study in an experiment, it is
interesting in that we have a truly one-dimensional spa-
tial system. It should therefore be more traceable by
mathematical techniques, e.g., coupled maps, and pro-
vides an intermediate step in the understanding of the
even higher complexity of turbulence in all spatial di-
mensions.

The coupling length, and thus the effective number of
degrees of freedom, can be chosen at will in our system.
In contrast, it is generally hard in other systems to vary
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the aspect ratio, or Fresnel number, over a large range
without changing other parameters — let alone change
the sign.

In fact, by variation of fiber dispersion one should be
able to scan the whole transition range from purely tem-
poral, i.e., low-dimensional chaos to full spatiotemporal
turbulence. Our numerical simulations provide guidance
in designing such an experiment. It might also be inter-
esting to perform a similar experiment as described here
in the regime of anomalous dispersion where optical soli-
tons can be expected to form. Such experiments are now
underway.

Let us finally point out that a better understanding
of this system might pave the way to an enhanced un-
derstanding of mode-locked lasers, which are the “active”
counterpart of the passive resonator considered here. For
example, our experiment bears striking similarities with
an additive pulse mode-locked laser, in which a syn-
chronously driven resonator containing a fiber is respon-
sible for the shaping of short light pulses. In our opinion

it is not unusual that chaotic processes are at work in
such lasers. However, this fact goes unnoticed most of
the time, and very few reports are available today that
point it out [19]. We hope that it will become more
widely appreciated in the future.
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