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Pattern formation in a liquid-crystal light valve with feedback,
including polarization, saturation, and internal threshold effects
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The use of liquid-crystal light valves (LCLV s) as nonlinear elements in diffractive optical systems
with feedback leads to the formation of a variety of optical patterns. The spectrum of possible spa-
tial instabilities is shown to be even richer when the LCLV's capability for polarization modulation
is utilized and internal threshold and saturation eKects are considered. We derive a model for the
feedback system based on a realistic description of the LCLV's internal function and coupling to a
polarizer. Thresholds of pattern formation are compared to the common Kerr-type approximation
and show transitions involving rolls, squares, hexagons, and tiled patterns. Numerical and experi-
mental results con6rm our theoretical predictions and unveil how patterns and their typical length
scales can be easily controlled by changes of the parameters.

PACS number(s): 42.65.Pc, 42.50.Ne, 42.82.Fv, 42.50.Gy

I. INTRODUCTION

Spontaneous pattern formation in the transverse do-
main of nonlinear optical devices is attracting a grow-
ing interest not only for its relevance to fundamental
physics but also for possible applications to optical in-
formation technology [1—5]. Many theoretical, computa-
tional, and experimental studies have demonstrated the
universality of the coupling of diffraction and optical non-
linearities to generate patterns with a considerable degree
of spatiotemporal complexity. Lasers, optical paramet-
ric oscillators, Kerr and saturable nonlinearities, liquid-
crystal light valves (LCLV's), photorefractive materials,
and many others have been utilized to display the uni-
versality of optical pattern formation [1—6].

In spite of this remarkable success, quantitative agree-
ment between models and experiments is still lacking,
making the exploitation of optical patterns for appli-
cations a nontrivial task. One of the main difIiculties
arises in the design of an optical system flexible (com-
plex) enough to display a large variety of spatiotemporal
behaviors, yet simple enough to be accurately described
by models of few partial differential equations. It is the
aim of this paper to show that the use of LCLV's in sim-
ple feedback configurations, with the inclusion of polar-
ization control, displays the richest versatility of pattern
generation to date and can be accurately modeled by
equations easy to integrate numerically. We also present
the experimental realization of large aspect ratio patterns
and the control of their spatial scales.

LCLV's have been used to study the onset of optical
patterns for some time [7—17], often including geometri-
cal transformations such as rotations in the feedback. Re-
cently, however, interest has shifted to simplified schemes
with higher symmetry, which use these devices to ap-
proximately realize the arrangement of a single feedback

Kerr slice setup [12,13,15—17], following the suggestions
of Firth and D'Alessandro [18—22].

LCLV's are optically addressable spatial modulators
and were designed originally for display applications
[23—26]. Such applications always make use of the
LCLV s ability of polarization modulation, which is
transformed into an amplitude-intensity modulation by
use of a polarizer. More recent experiments, however,
have been limited to sole phase modulation. LCLV's have
great experimental advantages with respect to other pas-
sive nonlinearities: these include high modulation sen-
sitivity (allowing for the use of low power lasers), large
space-bandwidth product (i.e. , large transverse aspect ra-
tio), and slow time scales (allowing for simple recording
of the pattern dynamics). A LCLV can be regarded as an
optical nonlinearity with spatially separated interaction
light-matter and matter-light.

Theoretical and computational studies of pattern for-
mation in single feedback systems have often been based
on Kerr nonlinearities. LCLV's in experimental setups
have been shown to display such a type of nonlinear-
ity [10]. While we recognize that this is a reasonable
approximation to describe qualitative features of the ex-
perimental results, LCLV's present a far wider flexibility
in terms of pattern formation whenever a more careful
treatment of the underlying physics is taken into consid-
eration. Moreover, a quantitative comparison between
experimental and theoretical results becomes available.
In the following we generalize a previous theoretical ap-
proach to LCLV's with feedback in order to include po-
larization modulations as well as saturation and inter-
nal threshold effects. We show that these effects lead to
unexpected and intriguing forms of pattern generation.
More important, the main deviations of our theoretical
approach from the Kerr approximation are shown to be
in consistent and in quantitative agreement with exper-
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iments. A LCLV system including polarization modula-
tion, but not saturation and internal threshold effects,
has been discussed briefly in [14].

The generalization of the LCLV model means that
part of the simplicity of the Kerr approximation is lost.
For example, the number of independent parameters in-
creases. This corresponds, however, to a larger amount
of experimental control of the process of pattern forma-
tion, a considerable advantage with respect to previous
studies. By selecting physical values of the parameters,
we present generic sequences of pattern generation, mod-
ification, and competition.

The paper is organized'as follows. In the next section,
the diffractive feedback to the LCLV is described math-
ematically and the effects of polarization modulation in-
cluded in the model equations. In Sec. III we provide
a short review of the operation of the LCLV and details
about the inclusion of the internal processes of the LCLV
in the model. The homogeneous steady state solutions
are described in Sec. IV. A linear stability analysis to
determine the threshold. of pattern formation is provided
in Sec. V. The results of extensive numerical simulations
are presented in Sec. VI and are later compared with
experimental results in Sec. VII. A short discussion and
conclusions are presented in Sec. VIII.
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FIG. 1. Liquid-crystal light valve: LC: liquid-crystal layer,

M: mirror, PC: photoconductor layer, E: transparent elec-
trodes. The reorientation of the liquid-crystal molecules ac-
cording to an intensity distribution incident on the write side
from the right is indicated.

II. DESCRIPTION OF THE FEEDBACK

The type of reHective LCLV considered here consists
of a write side sensitive to the light intensity [photocon-
ductor layer (PC)], and a birefringent, phase modulat-
ing, read-out side [liquid-crystal layer (LC)] (see Fig. 1).
The spatial intensity distribution of the write beam is
transformed into a corresponding phase and, possibly,
polarization modulation of the read-out light beam. The
basic idea behind the feedback operation is that a homo-
geneous pump wave reads out the changes of refractive
index in the LCLV and then, after passing through the
polarizer and propagating freely over a Gnite distance
I, feeds back the information on the write side of the
LCLV. The schematic feedback setup is shown in Fig. 2
while the corresponding unfolded and simplified scheme
is shown in Fig. 3. Lenses are used to image the LCLV
read-out plane. If the image plane Pl is located in &ont
of the write plane (see Fig. 2), the feedback wave prop-
agates freely over a length I before reaching the write
side. The resulting difFraction induces spatial instabili-
ties and pattern formation, as will be closely investigated
in the following sections. Diffraction can be prevented by
imaging the read-out beam onto the write side exactly
(I = 0). By locating the image plane behind the LCLV
it is also possible to exploit an intrinsic symmetry of the
system and simulate a self-focusing nonlinearity [27,28]
(see the end of Sec. III for mare details).

Typical time constants w of the LCLV are in the range
of some ten milliseconds while it takes the light wave only
some nanoseconds to travel through the feedback loop.
Because of this large separation of time scales, the feed-
back is assumed to be instantaneous. On the time scale of
wave propagation, the LCLV is considered stationary and
the dynamics of the light field neglected. After passing

(cos@2 )B = cos @q cos @2
~

q
sin 42

( cos@2 lC = sm C x sm 4
S1I1

(2)

M1 L1

BS1 LCLV 'P1

FIG. 2. Scheme of feedback setup: the beam splitters BS1,
BS2, and the mirrors guide the modulated wave to the LCLV's
write side, thereby passing the polarizer P. The lenses L1,
L2 image the read-out side onto the plane Pl, the feedback
wave can be observed at the screen S.

through the LCLV, the input electric Geld E;„is phase
modulated and its polarization changed. Then, a polar-
izer is used to transfer the polarization modulation into
an amplitude modulation. These processes can be con-
veniently described via the Jones calculus [29]. The 2 x 2
matrices M and 'P describe the action of the LC layer
and the polarizer, respectively,

E = PME;„=(Be '~ + C)E;„,
where

( cos'g, sing, cosg, ) ~(e
*'&

0)~
( sin/2 cos@2 sin @2 ) E 0 1 ) '
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I'IG. 3. Unfolded setup. The pump beam
E;„coming from the left passes through the
liquid-crystal layer (LC), where the extraor-
dinary polarization experiences the phase
shift P. The beam then passes the polarizer
and the phase and intensity modulated wave
E propagates over a length L before reach-
ing the photoconductor (PC).

and where P is the nonlinear phase shift introduced by the
LCLV (see the next section for details about its evolution

equation), E is the amplitude of the modulated wave
after passing through the polarizer (see Fig. 3), @q is the
angle of the input polarization, and 42 is the angle of
the polarizer axis, both with respect to the optical axis
of the LC layer.

In order to get an overview of the system's basic prop-
erties, we have selected some representative cases: (a)
sole phase modulation corresponding to 4'q ——42 ——0,
(b) maximum polarization modulation corresponding to

45, and (c) an intermediate case of
4& ———42 ——22.5 .

After the polarizer, the vector character of the wave
is no longer relevant and kee space propagation can be
described via the stationary, scalar, paraxial wave equa-
tion:

V~E —2ik —E = 0,
Oz

where k is the wave number of the light Geld. Prom this
equation we can deGne a diKraction operator B by using
E(z = L) = D(E(z = 0)j for the propagation over a
distance L Aformal s.olution of (3) is

The feedback intensity If is also the intensity distribution
observed at the output of the setup displayed in Fig. 2.

III. PRINCIPLES OF OPERATION
OF THE LIQUID-CRYSTAL LIGHT VALVE

A schematic diagram of a reBective LCLV is presented
in Fig. 1. The liquid crystal and photoconductor layers
are separated by a dielectric mirror, so that the read-
out beam, being reHected at the internal mirror, passes
twice through the liquid-crystal layer. Across both layers
an external low-&equency ac voltage V & is applied via
two transparent electrodes. The resulting electrical Geld
transfers the information about the intensity distribution
of the write beam from the PC layer to the LC layer. By
changing the number of charge carriers, the impedance
of the PC layer is locally reduced according to the local
intensity of the write beam, leading to an increase of the
electrical Geld across the LC layer. For simplicity we
consider a linear change of the local voltage VI,c across
the LC layer with the write intensity I, i.e.,

Vz, c = (Kg+ K;I )V,„t,
—i(L/2k)v~ (E (4)

where now the transverse space coordinates have been
rescaled via

2k
„

2kx= —x, y= —y,L ' I
so that

V = —V'~, l = —l.I 2 - 2k
2k ' L (7)

where Ef denotes the amplitude of the feedback wave
resulting &om the diKracted and modulated wave E
(see Fig. 3).

To close the feedback loop, we make the intensity of the
feedback wave equal to the write intensity of the LCLV:

where rd is the adimensional proportionality between
Vgg and the external voltage in the absence of light while
K; rules the linear dependence on I . Both vg and K; de-
pend on the device and on the &equency of the external
ac voltage V

Because of the reorientation of the liquid-crystal
molecules, the LC layer acts like an optical retarder plate,
where the refractive index of the slow axis (the extraor-
dinary beam) depends on the voltage Vr, o and thus on
the intensity distribution on the write side. The read-out
wave correspondingly experiences a phase and polariza-
tion modulation that depends on the angle 4q between
the optical axis of the LC layer and the polarization of the
input beam. In general, a linearly polarized input beam
becomes elliptically polarized after passing through the
LC. The action of the LC layer is not instantaneous be-
cause of viscous damping of the molecule rotation and
of internal BC time constants. There is also a spatial
coupling, mainly resulting from lateral diffusion of the



794 R. NEUBECKER, G.-L. OPPO, B. THUERING, AND T. TSCHUDI 52

charge carriers in the PC layer [26,30]. It is possible
to consider the LCLV as a slow, diffusive, and disper-
sive optical nonlinearity with spatially separated interac-
tion light ~ matter (writing process) and znatter -+ light
(read-out process).

Our model of the LC layer considers a parallel aligned
nematic liquid crystal where all molecules look like long
rods, their long axes being initially oriented parallel to
each other and to the glass substrate (see Fig. 1). Under
the action of an electrical field perpendicular to their long
axis, the molecules experience a torque trying to reori-
ent them parallel to the field and therefore perpendicular
to the surface. However, strong intramolecular (elastic)
forces which are typical of the liquid-crystalline phase
are also present. Their effect is to couple the orienta-
tion between adjacent molecules. Since the molecules at
the surface have a fixed orientation (generally referred
to as strong anchoring), the elastic forces counteract
the action of the external field. In particular, this gen-
erates a threshold behavior ("Freedericksz transition" )
[23,24,31,32] which corresponds to no reorientation below
a certain critical value of the local voltage VL~. Above
such threshold, a continuous change in the reorientation
of the molecules is found when increasing the field. The
saturated state is reached when almost all molecules are
oriented parallel to the external field. Since the effective
re&active index n decreases with the write intensity, we
are in the presence of a defocusing type of nonlinearity.
The reorientation of the molecules can be described in

0 for VLC ( Vqh

g=g VLC —Vth ~——2arctan
~

—
l

for Vi,c & Vti, ,
2 Vp )

where Vqh is the threshold voltage. Both Vqh and Vp de-
pend on the specific parameters and on the thickness d
of the LC layer.

Optically, the LC layer appears as a thin, uniaxially
bire&ingent layer. The effective refractive index n for the
extraordinary wave is related to the reorientation angle
by [34]

cos 0 sin 0
2 7n (10)

where n, and n are the extraordinary and ordinary
re&active indices, respectively. For small differences
An = n —n (typically of the order of 0.2), we can
approximate (10):

n n + Ancos 0,

so that the total phase difFerence P between extraordi-
nary and ordinary waves reads

terms of a mean angle which represents the rotation of
the molecules' long axis averaged over the layer thickness
[33]:

VLc Vth l 2 / Vi,c Vth ~
cos ——2 arctan — = 1 —tanh LC + th

Vp ) ( Vp

(12)

where P „=2kdAn with k being the light wave num-
ber. This function is displayed in Fig. 4. Note that in
this and all following figures all variables and parameters
are dimensionless unless specified otherwise. Because of

the negative slope of the saturation function, a positive
„belongs to a self-defocusing nonlinearity. Making

use of (8), we now replace the internal voltages by

1..
I I I I I I I t I

I
I I I I ~ I I I I I I I I I I 1 I I I

I
I I I I 1 I I I ~

~ .M

VLc —Vih

Vo
'C tO +

Vp

:—P,I + Jb,

1.0
8-

~~ 0.8

0.6

E 0.4

0.2

0.0
0 1 2 3

ferrite intensity p..I„
FIG. 4. Saturation function of phase depending on ferrite

intensity for di8'erent values of the bias intensity Jb. The lin-
ear (Kerr) approximation at the turning point is also shown.

where we have defined

Pa= V ) Jb= (14)

It should be pointed out here that even if Jb looks like
an intensity ("bias intensity"), it does not correspond to
a physical intensity of a light wave, but it is proportiorial
to the external voltage. While P „

is fixed by the de-
vice, Jb is an easily accessible control parameter in an
experiment. In the following, P „

is kept constant to
the value 5' corresponding, for example, to a LC layer
thickness of d = 10pm and a birefringence of An = 0.08
for a light wavelength of 633 nm.

By heuristically including the limited spatial and tem-
poral resolution of the LCLV, we obtain the following
expression [7,8,26]:
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~—P —lV'~P+Pt

This corresponds to a negative propagation length and
we can exploit an interesting symmetry of the system.
In fact our model is invariant under the following trans-
formation:

1 for (p,I + Jb) & 0
1 —tanh (p, ,I + Jb) for (p.,I + Jb) ) 0

(15)

I m —L,
4'max ~ 4 max

E;„-+E,.*„,
(18)

g2 82where V'& ——, + 2 is the transverse Laplacian. The
effective time constant 7 and the effective diffusion length
l depend on the actual device and on the operating con-
ditions [26,30].

In the past, LCLV's have been described via a linear
dependence of the induced phase on the write intensity

l 7 L4'+ 0 = p I + 4'o,
Ot

(16)

where Po is the initial phase for vanishing I and pb
is the modulation sensitivity. Under this approximation,
LCLV's are equivalent to a slow, diffusive, Kerr-type non-
linearity, since Eq. (16) is similar to the models used to
describe various Kerr media [35—37]. Figure 4, however,
clearly shows that a linear approximation of the satura-
tion function can have a limited justification, only. In
fact, nearly the full range of 0 & P & P „

is often ac-
cessible experimentally. In the following, we will discuss
main differences between the Kerr approximation (16)
and the model (15) based on the more appropriate de-
scription. One possibility to linearly approximate the
saturation function (15) is to expand around the turning
point as shown in Fig. 4, obtaining the following relations
between the coefEcients:

where the second equation is replaced by pA. —+ —
pA,

in the Kerr approximation. The invariance described
by (18) means that a negative propagation length cor-
responds to a change of the character of the nonlinear-
ity, provided that an (inessential) operation of conjuga-
tion of the input field is performed. By using the same
experimental setup, both cases of self-focusing and self-
defocusing nonlinearities can be analyzed and compared
with the model.

IV. STATIONARY AND HOMOGENEOUS
STATES

In order to gain information about the system (5) and
(15) [or (5) and (16) for the Kerr case], we first study the
stationary and spatially homogeneous solutions P~ l. By
assuming a plane input wave and imposing ~

——V~ ——0

one obtains the feedback intensity I&

IP = (B + C + 2BCcos P) I;„=n (1+icos/) I;„,

with the following definitions:

4 max
Pb — ~ Ps)

Po P „—+ ln l

3 3 ( 2

(17)

n = B + C = — cos (4q —@2) + cos (4q + @2)

2B [cos(@q —42) + cos(@z + @z)]
cos (4y —42) + cos (4 y + IJ2)

2BC cos (4q —4'2) —cos (4q + @2)
n cos~ (@q —@2) + cos2 (4'q + 4'2)

(2o)

Finally, by inserting (5) into (15), or into (16) for the
approximated Kerr case, the description of the LCLV
feedback system is reduced to a single equation for the
free variable P(x, y, t) The res.ulting partial differential
equation is the subject of the following three sections.

Before ending this section, we consider the case where
the image plane Pl is located behind the write plane.

I

Here p describes the amount of polarization modulation
set by the polarization angles and o, the linear losses
which depend on the given configuration. Any additional
loss in the feedback loop, e.g. , leakage through the sec-
ond beam splitter shown in Fig. 2, can be transferred
directly into an effective value of the input intensity. For
the saturation case one obtains

for (p, I~+ Jb) & O

„(I—tanh n(1+ icos/~ l)p, I;„+Jb ) for, (p, ,Iy + Jb) & 0, (21)

while for the Kerr approximation

P~ ~ = ScII + q4 = cc (I + pccs 4~ ~) SaI; + 4'c .

(22)

The corresponding plots of P~ l versus the input in-

l

tensity are shown in Fig. 5. The system shows optical
multistability except for the case of pure phase modu-
lation (@q ——42 ——0, i.e., p = 0). The form of the
curves changes with the parameter Jg to the extent that
the first hysteresis loop can degenerate into differential
gain. The width of all hysteresis loops critically depends
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on the polarization configuration. p = +1 correspon s
to the maximum effect leading to the separation of the
branches w i e or pr h h'1 f = 0 the multistability vanishes.
Analogous plots for the approximated Kerr type nonlin-
earity contain similar features apart from the fact t at
there is no hami ol' 't t the number of stable branches e-
cause of the absence of saturation. In the presence o
saturation, the accessible range of the phase is restricted

and so the number of multistableto 0 ( (p '+max &

t t '
1 't d. The multistable behavior of such a sys-

tem is well known and has already been described and
realized in experiments [25,38,39].

For certain critical values ~~„;qof the pf the hase the feed-
bac in ensi yb k t 't I vanishes. For example, in the case
of p = +1, P„;tis an integer multiple of 2' w i e or

——1 ~~ .t is an odd integer multiple of m'. Values of—1, ~crit ls an 0
„;tcorrespond to discontinuities which separate discon-

nected branches (see Fig. 5) and provide a good guideline
for the understanding of some of the system's properties.

higher order branch roughly takes place for P
while the down switching happens at P P„;t—vr. or-
respondingly, the system can be initially positioned on a
critical state P(I;„=0) = P,»t by settmg

20

Ji «iq ——arctanh(gl 4crit/4m»). (23)

F + ——g = 45 (i.e. , p = —1) and P~» ——5' we
= 4~ = 0.4812.fi d J (P = 2~) = 1.0317 and Ji„»t(P= 4~bcrit

n out to markAs will be seen later on, these situate. ons turn o
a drastic c ange in e s ah th t bility properties of the system
and therefore provide a good characterization of the sys-
tem even or a wea er egrei k d ree of polarization modulation.
Optical multistability is also observed in nonlinear inter-
ferometers, e.t ~40~ e +. in resonators containing a isper-

d . There however, the case of thesive nonlinear me ium. e
resonator withdisconnected branches corresponds to a resonator wit

usin j doesThe sign of the nonlinearity (focusing-defocusing oes
no pat lay any peculiar role on t e stationary states as

s S'"rthe correspon ing ind g intensity transfer functions f
d t depend on either the sign of P „orthe sign oono e

and thepA... e main i ere. Th d'8 rence between the saturation
~ ~ ~ ~

Kerr cases is t a j.n e oh t th former there is a limitation of
the phase range (0 ( P ( P ) so that the number of
multistable branches is also limited.

Apart from the internal threshold, the final nonlinear-
ity is determine o yd b th b the polarization configuration

an lesand the satura ion. eh t t The setting of the polarization ang es
is mainly described by the parameter p(@i,@2), w i e or
the saturation max ancp d J are the most important pa-
rameters Usually the selection of a certain LCI.V appa-
ratus and of a specific regime of operation Sxes P „and
the polarization angles whcle Jb rema yins easil accessible
by the external supply voltage. For these reasons, we wi
concentrate on e variath variation of Jb in the following.

V. IINEAR STABILITY ANALYSIS

20,

2 4
input intensity p,.I,„

As soon as diffraction is taken into consideration (L g

for this behavior is the linear stability analysis. We add

homogeneous solution of the preceding section.

15 4 = 4"+ v (~, 9, t) with Ilv II «4 (o) (24)

10—

~J.=—

and impose the following conditions:

0 2 = -27-—p = Ap, V'~p = —g (p,
Ot

(25)

Jb—

0 I t I

4 6
input intensity p..I,„

10

homo eneous solution af-FIG. 5. Multistable stationary, horn g
n for di8'erent values of the biaster the inclusion of saturation or i s

pp p
= 45 . Negative slopes are ue o e

type of nonlinearity, y~ = Gm l = 0.2.

~ Li 2k is an unscaled transverse wave num-where q = q~ is
ber. Note that while the spatial condition of in

dence, Bessel functions are a solution in polar coordi-
nates, allowing for a separate (yet equivalent) interpreta-
tion of the stability analysis. Whenever the exponent A

is larger t an zero, e ph th erturbation grows exponentially
and breaks up the stationary, homogeneous solution.

Inserting (24) and (25) into (5) and (15) [or (16) for
the Kerr case], we obtain for the saturation case
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—2P Psin(q ) + csin(q —
g )A=

I + p cos P(o)

y(o)1—
4 max

x arctanh 1—y(o)

max
(26)

and

{P')—Wo) P»n(~') + ~»n(4' —&")
I +. p cos P(o)

—/ j —1 (27)

for the Kerr case. In both cases only the 6rst term on
the right-hand side can be positive, which means that
difI'raction is the cause of the spatial instability. The
only role of dift'usion, the other spatial coupling process
involved in the LCLV system, is to damp higher spatial
frequencies (A —/ q2) and therefore to stabilize the
spatial structures.

The boundaries between stable and unstable parame-
ter regimes are plotted in Figs. 6 and 7 by keeping @z, 42,
l, Js, and P „(orPo for the Kerr case) constant. Note
that we consider a finite value of t = I/2k/I = 0.2 as

difFusion is always present in real experiments. Unstable
regimes for q = 0 correspond to the unstable branches of
the stationary, homogeneous solutions (see Fig. 5). The
horizontal lines, which have the most prominent eÃects
for the case of

~ p ~= 1, correspond to the critical values
of the phase P„;t,, as discussed above in Sec. IV. Fig-
ure 8 illustrates how an increasing parameter p, i.e. , the
amount of polarization modulation, deforms the shape of
the stability curves.

A natural choice of the control parameter would be the
input pump intensity I;„.However, because of the mul-
tivalued nature of the relation between I;„andP, theCo)

stability curves plotted versus I;„arecomplex, folded,
and then diKcult to interpret. Since there is a continu-
ous, monotonous relation between the induced phase and
the pump intensity in each individual stable branch, the
threshold of the instability corresponds, in general, to
the lowest minimum of the stability curves P (q, A = 0)(o)-
versus q. We will see later that there is one exception
to this rule where the threshold is found in correspon-
dence of a local maximum. The lowest possible unstable
wave number is always favored because of the role played
by the difFusion which damps higher spatial &equencies
(their local minima showing then a higher threshold).
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o. —10

0 2 3
wavenumber q
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FIG. 6. Boundaries between stable and unstable (gray
shaded areas) regimes for A = 0 including saturation for
pure phase modulation @i ——Qz = 0 (upper plot) and maxi-

0mum polarization modulation gi ———Qz ——45 (lower plot),
Jq = 0 in beth cases. Self-focusing (positive phase change
b,P = P( —P „)0) and self-defecusing (negative phase

& 0) nonlinearity are included in each plot.

FIG. 7. Boundaries between stable and unstable (gray
shaded areas) regimes for A = 0 in the case of Kerr approxima-
tion for pure phase modulation v/ji ——Q2 = 0 (upper plot) and
maximum polarization modulation Qi = 45,lower
plot), $0 ——0 in both eases. Self-focusing (positive phase
change AP = P —P~ ) 0) and self-defocusing (negative
phase change AP = @ —P & 0) nonlinearity are included
in each plot.
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The threshold can be found as the local minimum of

FIG. 8. Progressive modi6cations of the stability curves by
varying the polarization modulation for the defocusing case
with Jg =0.
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which corresponds to the result given by D'Alessandro
and Firth for the single-feedback Kerr slice [18—20].

For all other cases it is necessary to use a Newton al-
gorithm to numerically determine the threshold values
jth and I;„th. These are shown in Fig. 9 for a range of
the bias intensity Jp in the saturation case. The graphs
for the Kerr case show very similar features and are then
omitted. Note that the implicit nature of the thresh-
old equations makes analytical studies of the stability of
patterns above threshold an almost impossible task. For
example, the weakly nonlinear analysis suggested in [20]
can only be implemented by coupling several numerical
methods with obvious diKculties of convergence of the
algorithms. Only specific patterns arising in limited do-
mains of the parameter space can be studied in this way,
further reducing the relevance of this complex technique

dA =, d(q') + dP = 0
OA „2 OA

cI q

that can be rewritten as

Bg cIA cIA

~(q') ~(q')

For the case including saturation we obtain

(28)

(29)
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1 5 ---.—- —.—. ---
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0 5 =-=-- --------!-
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while for the Kerr case the threshold corresponds to
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~(q') 1 + p cos P(o)
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It is important to note that in some instances a homo-
geneous (q = 0) instability corresponds to the lowest
threshold.

Unfortunately it is not possible to express the thresh-
old conditions (26) and (30) [(27) and (31) for the Kerr
approximation] in an explicit way, except for one special
case. For vanishing diffusion (l 0) and pure phase mod-
ulation (p = 0) we recover in the Kerr approximation the
following threshold conditions:

FIG. 9. Pattern forming threshold for focusing and defo-
cusing nonlinearities, and three polarization configurations

45' (solid line), v/rq
———@q ——22.5' (dashed

line), and vga = —@2 = 0' (dash-dotted line). The upper plot
shows the square of the unstable wave number at threshold q~i,
versus Jz. The lower plot shows the threshold pump intensity
p, I;„thversus Jg. In the lower plot, focusing and defocusing
cases are presented in the left and right part of the figure,
respectively.
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in a broad overview of the main features of our model.
For these reasons, the stability analysis of patterns above
threshold is omitted here.

For pure phase modulation, both qth and I;„thdo not
change with Jb. With the inclusion of polarization mod-
ulation (p g 0), however, the unstable wave number qq~

presents a dependence on Jb. For maximum polariza-
tion modulation (i.e. , 4q ———@2 ——45; p = —1), the
unstable wave number varies between zero and ~n for
the focusing case and between ~m and v'2z for the de-
focusing case. In other words, the typical pattern length
scale can easily be adjusted by the external supply volt-
age of the LCLV for a fixed diffraction length. The fee of
this interesting feature is that the pump threshold also
depends on Jb. In particular for critical values Jb „-tof
the bias intensity [see Eq. (23)] the pump threshold may
diverge.

A rough estimate of the minimum pump threshold is
obtained by the condition of qth equal to the constant
value of the pure phase modulation case. For values of
Jb around 2, the pump threshold diverges as the sys-
tem is driven into saturation. As was already seen for
the single-feedback Kerr slice, the corresponding unsta-
ble wave numbers for the focusing and the defocusing
case are separated by ~or; self-defocusing patterns always
show a smaller length scale.

If the diffraction length L is set to zero in our system,
pattern formation is in general avoided as the typical pat-
tern length scale A = 2vr/q ~I/qth tends to zero. Pat-
terns are then suppressed by diffusion and/or the limited
spatial resolution of the system. In the present case, we
observe very small or even vanishing values of qtb —+ 0,
which can balance the above efFect. Even for very small
diffraction lengths I, patterns with finite length scale can
still emerge. This can be relevant for practical applica-
tions, where it is often desirable to avoid pattern forma-
tion in order to use other features of the system (e.g. ,
the multistability for parallel optical memory). Since the
slightest defocusing of the imaging of the read-out beam
onto the write side of the LCLV introduces difFraction,
the LCLV setup easily produces spatial instabilities even
in cases of careful adjustment of the optics.

Discontinuities of the unstable wave number and of the
pump threshold appear for the critical values of Js„;t[see
Eq. (23)]. This can easily be understood Rom the change
of the shape of the stability curves near critical points, as
shown in Fig. 10 for a defocusing medium, and in Fig. 11
for the focusing case. These graphs also illustrate the
shift of t;he first minimum which determines the unsta-
ble wave number jqh for a given Jb. Furthermore one
can see that in the defocusing case the local minimum
near j = 2.5 competes with an unstable regime at q = 0
corresponding to a homogeneous instability, shortly after
crossing a critical point. Since higher q's are damped by
difFusion, the homogeneous instability can survive within
a short interval of values of Jb, until a jump to a finite
value of q (see Fig. 9). Note also that in this case the sta-
bility curves are very Bat so that instead of a well-defined
unstable wave number a whole range of wave numbers
participates in the formation of the pattern.

For the focusing case, such a competition does not take
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FIG. 10. Progressive modifications of the stability curves
near the critical bias intensity J& for the defocusing case.
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FIG. 11. Progressive modi6cations of the stability curves
near the critical bias intensity J& for the focusing case.

place since near Jb Jb„;tthe homogeneous and inho-
mogeneous instabilities coincide. However, in the exper-
imentally relevant case of finite pump beam waists, this
competition may still take place. The limited beam size
can suppress any patterns with very low (or vanishing)
wave numbers. Therefore the closest higher order wave
number belonging to the next lowest local minimum of
the stability curves (see Fig. 11) may come into play and
force an inhomogeneous instability.

The linear stability analysis cannot decide the outcome
of the competition between homogeneous and inhomoge-
neous instabilities. In any case, it is important to study
the coexistence of a stable, Hat solution and a pattern
forming solution because it can lead to the formation of
the so-called "isolated states. " These are single, indepen-
dent; spots, which do not necessarily arrange in geomet-
rically ordered patterns [41—43].

The stability properties of the case including satura-
tion fundamentally difFer from the Kerr approximation
in one particular instance. When the system is strongly
driven into saturation, any perturbation of the feedback
wave will no longer induce a corresponding change of the
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tern before a modification of the refractive index takes
place. An abrupt reaction of the system and a behav-
ior that strongly depends on the "wake-up" condition
$(p, ,I;„=—Jb) = P „areobserved. An example
for P „=5', Jb = —5, defocusing nonlinearity, and
@q ———@2 ——45' is shown in Fig. 13. Again we are faced
with a very fiat stability curve leading to the participa-
tion of a wide band of wave numbers to the process of
pattern formation close to threshold.

0
2

wavenumber q

VI. NUMERICAL SIMULATIONS

FIG. 12. Shrinking of the instability regimes with increas-
ing Jb for a focusing nonlinearity and pure phase modulation
gq ——g2 ——0. Jb = 0.0, 1.0, 1.8 from the largest to the small-
est loops, respectively. The "lower" threshold corresponds
to the lowest local minimum, the "upper" threshold to the
highest local maximum.
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FIG. 13. Stability curves for operation below the LCLV's
internal threshold with Jb ———5, defocusing case, and maxi-
mum polarization modulation vga = Qq ——45'.—

phase and therefore will die out. The homogeneous state
is stable for high saturations and correspondingly the sta-
bility curves are closed loops in. Fig. 6 (in the case of
maximum polarization modulation this feature does not
appear in the graph since the upper limit is obtained at a
critical phase value P = P„;t——P „).From Fig. 12 one
can also see how the size of the unstable regime shrinks
with increasing bias intensity Jb, since the system comes
closer to saturation. Here we are led to the interest-
ing situation that it should be possible to overrun the
pattern formation by driving the system into a homoge-
neous and saturated state. Vice versa, by deerea8ing the
pump intensity from the homogeneously saturated state,
one crosses a spatial instability that we label as "upper
threshold" in contrast to the "lower threshold" for pat-
tern formation obtained with increasing pump power.

Another interesting situation can be studied in this sys-
tem. Setting Jb to a negative value corresponding to an
operating point below the internal threshold, the pump
intensity needs to attain a threshold value p, I;„=—Jb
in order to induce a reaction in the LCLV [see Eq. (15)].
In this way, a high intensity light is present in the sys-

The results of the preceding section already display
the richness of instabilities of the LCLV feedback system
with the inclusion of polarization and saturation effects.
In order to present a complete description of the behavior
of the system, however, numerical simulations are nec-
essary. In this section we provide a survey of the most
interesting cases for plane wave pumping by selecting pa-
rameter values corresponding to the most representative
situations.

The numerical computer code is a combination of finite
difference and spectral methods. The diffusion equation
is separated from the propagation and is integrated by
using a hopscotch scheme [44]. This numerical method
alternates an implicit and an explicit scheme on even
and odd sublattices of the original grid (in general of
128 x 128 points). It has been already used successfully in
the description of thin Kerr slices in front of a single mir-
ror [19,20] and in other nonlinear optical systems. The
propagation part is then solved exactly by a straightfor-
ward use of fast Fourier transform. The codes have been
optimized to run efficiently on dedicated workstations.
Transients have been discarded. All patterns shown in
this section are images of the phase distribution in the
plane transverse to the propagation, the feedback inten-
sity distribution, in general, having the same transverse
structure. Any constant bias of the phase is not shown
in the images, so that the images represent the spatial
phase variation only.

The main result of these simulations is the fact that
the system under consideration presents a large variety
of patterns. In particular, all "basic" patterns, such as
rolls, squares, hexagons, and negative hexagons were ob-
served. In Fig. 14 a selection of structures close to thresh-
old is presented. They correspond to the same polariza-
tion configuration under a simple variation of the bias
intensity Jb. Other typical results are shown in Fig. 15.

Close to threshold, stationary patterns are dominant.
The term "close" depends on the parameter selection. In
most cases, the asymptotic patterns are stationary for
at least 10'%%uo above threshold. In some cases, however,
we are not able to find regular and stationary patterns
even for input intensities just 10 times above thresh-
old. Other patterns show a complex order, constituted
of small spots of different height which form complicated
subpatterns on a larger hexagonal or even square lattice
(see Fig. 14 for Jb = 0.2). Sometimes the whole pattern
constantly moves as a rigid structure across the trans-
verse plane. These complex patterns develop in general
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for small values of Jg, where the saturation function has
a large curvature (~ 0$/BI;„~).If the feedback intensity
grows locally, the system experiences a higher sensitiv-
ity to local phase modulations. This eÃect can lead to a
runaway process destabilizing the regular pattern imme-
diately above threshold.

Regarding regular patterns, the transitions between
hexagons and squares, and between squares and rolls, is
mostly smooth under variations of Jb. Approaching the
hexagon-square transition, for example, one of the three
space directions in the hexagonal grid breaks the sym-
metry and starts to dominate (see Fig. 14 for Jg = 1.5)
causing the hexagons to deform into a rhombic struc-
ture [as in Fig. 15(b)] until they finally reach a square
pattern. Similarly, when one direction of the square lat-
tice prevails, the spots start to merge until the forma-
tion of stable rolls. Rolls appear to be always related to
squares, the latter often afFecting the transients. Direct
transitions, between hexagons and rolls have not been ob-
served. Roll patterns are often subjected to weak zigzag
instabilities leading to a kind of "wavy" rolls, as shown
in Fig. 15(a).

To get an overview of the dependence of the type of
pattern on the main parameters p(vPi, @2) which specifies
the polarization configuration, and Jg which depends on
the external voltage, a rough outline of the bifurcation
diagram, in the vicinity of the threshold, is presented in
Fig. 16. The symbols used to indicate the pattern type
correspond to those introduced in Figs. 14 and 15. Note
that the computation of these diagrams requires a con-
siderable amount of GPU time. Some global features can
be identified &om this diagram: (a) The complex pat-
terns mentioned above only appear for small values of
Jg and more often in the self-defocusing case than in the
focusing one; (b) hexagons doininate the regime of inter-
mediate bias intensity Jp well above the I CLV's internal
threshold but away from strong saturation. In particular,
for focusing nonlinearities, hexagons persist on a broad
range of the parameter space, while in the defocusing case
other types of patterns might prevail. For strong mod-
ulations of the polarization (large values of @i) and for
both signs of the nonlinearity, the presence of patterns
other than the hexagons increases. In particular, rolls ap-
pear and persist in the upper right corner of the diagram,
i.e., for large polarization modulations and incipient sat-
urations. As already mentioned, squares always appear
between hexagons and rolls. Square structures develop
kom hexagons via a continuous deformation where rhom-
bic structures are the intermediate step. It is therefore

b) (& )

e) (*)

FIG. 1&. Samples of typical patterns ob-
tained just above threshold: (a) rolls show-
ing zigzag instability ("wavy" rolls) for

= 40', focusing case, Jb = 1.5,
(b) rhombic structure for gi ———g2 ——45',
defocusing case, Jz = 1.5, (c) partially or-
dered ragged spots for Qi ———@2 = 45',
defocusing case, Jq ——1.05, (d) complex or-
dered structure for Qi = —g2 ——22.5', defo-
cusing case, Jb ——D.7, 2.5'70 above threshold,
(e) complex ordered structure for same pa-
rameters as (d), but 10%%ua above threshold.
(f) Roll pattern for negative bias intensity
Jg = —5, 1t?i ———1t?2 ——45', defocusing case.
Each square has sides of length 4.8 in nor-
malized space units.
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FIG. 16. Bifurcation diagram showing the type of pattern
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figuration and the amount of saturation. w: complex struc-
ture, : hexagons, *: negative hexagons, =: rolls, —:"wavy"
rolls, o: rhombic structure, T: ragged, weakly disordered
spots, Q: isolated states.

somewhat arbitrary to draw the line between deformed
hexagons and rhombic patterns.

In the vicinity of the critical values of Jb(P„;t)of Eq.
(23) and for large polarization modulation, we find a
dynamical (weakly turbulent) state, in which spots and
a reminiscent hexagonal lattice are still observable [see
Fig. 15(c)]. In one case, evidence of the so-called "iso-
lated states" has been found (see the end of this section
for details). All the rare cases of negative hexagons be-
long to large values of the saturation.

Many diferent patterns are also found in the case of
pure phase modulation. This is one of the main diKer-
ences between our and the Kerr model for which phase-
only modulation generates hexagons only [18—20]. One
can then conclude that the nonlinearity introduced by the
saturation function and controlled by Jb is responsible for
the generation of diferent types of patterns. However, we
note here that the addition of the nonlinearity caused by
the polarization modulation also influences the pattern
type and modifies the pattern scenarios.

Figure 17 shows the characteristic spatial wave num-
ber determined numerically in a comparison with the re-
sults of the linear stability analysis for the case of max-
imum polarization modulation. For the case of pure
phase modulation (gq ——v/rz ——0) the characteristic wave
number is found to be insensitive to changes of J~ and
to agree with the constant value predicted by the the-
ory. Discrepancies between the numerical simulations

FIG. 17. Comparison of the wave numbers between the
numerically found patterns and the theoretical estimate (solid
line) for maximum polarization modulation @q = —@2

——45'.

and the results of the linear stability analysis are mainly
due to the utilization of periodic boundary conditions,
which have been chosen to approximate the plane pump
wave. The complete translational symmetry of a plane
wave, however, is not achievable since any regular pat-
tern evolving and containing the transverse wave vectors
q, has also to satisfy the periodic boundary condition
q, = n(2n/A) e + m(2vr/A) e„,where A is the linear size
of the grid (note that this is very similar to the prob-
lem of x-ray diffraction in crystals). Only a discrete set
of wavenumbers q, is allowed, their density being higher
the larger the number of grid points. In order to Gt this
constraint, patterns can rotate without modifying their
characteristic wave number. For further matching, the
value of the wave number shifts, causing small discrep-
ancies between theory and simulations.

In the presence of rolls, only one wave number is
obtained from the computed images. Squares were
never found to deform to rectangles via the slight shift
of the wavelengths in the two independent directions.
Hexagons, however, do often deform to adapt to the pe-
riodic boundaries. In this way, two, sometimes three
slightly diKering wave numbers were found for each
hexagonal configuration (see Fig. 17). It is interesting
to note that at least one of these wave numbers always
matches the theoretical value almost exactly. Moreover,
simulations on larger lattices have shown the discrepan-
cies to vanish.

As stated in the preceding section, pattern formation
can be overrun by driving the system into saturation. As
an example, we have chosen a self-defocusing nonlinear-
ity and the following parameters: gq ———g2 ——22.5

up, p,.I,„=0.625 up, p.,I,„=~.o down, p, .I,„=-O. BH5

FIG. 18. Examples of patterns developing
while overrunning the unstable regime for in-
creasing (up) and decreasing (down) pump,
intensity as indicated. Each square has sides
of length 9.6 in normalized space units.
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PIC. 19. Changes of the average phase and deviation from
average phase versus the increasing (solid line) or decreasing
(dashed line) bias intensity Jb Ver. tical lines show the posi-
tion of the theoretical lower and upper thresholds.

and Jg = 1.8. In this set of simulations, the pump in-
tensity was increased in steps from below threshold until
saturation was reached, and then reversed. It was in-
deed possible to reach a homogeneous saturated state.
Moreover, the existence of an "upper" threshold for pat-
tern formation (see Fig. 12) obtained by decreasing the
pump intensity, has been confirmed. Typical patterns
observed in these simulations are shown in Fig. 18. We
find that the evolution of rolls undergoes a pronounced
zigzag instability. Shortly before their collapse into the
homogeneous, saturated state, rolls break transversally
and form a herringbone kind of pattern. Note that when
decreasing the pump intensity, only straight rolls have
been observed.

In order to detect the onset of pattern formation in
these simulations, we have evaluated the standard devia-
tion of the phase taken over the whole image. In Fig. 19
the average of the phase is plotted versus the pump in-
tensity together with the positive and negative deviations
from such a value. The onset and collapse of pattern for-
mation can be easily identified by the abrupt change of
the standard deviation. In this plot the theoretical values
of the "lower" and "upper" thresholds are also reported
and they turn out to be in good agreement with the nu-
merical simulations. An interesting bistability between

a pattern and a homogeneous state exists just above
the upper threshold value (second dashed vertical line
in Fig. 19). The pattern, once established by increasing
the pump intensity, survives far above the upper thresh-
old into the regime of saturation. This behavior might
be related to the fact that robust rolls are expected to
develop in this region of the parameter space. Things
might be different in regimes where hexagons or squares
develop.

As long as saturation is involved, pattern formation
is observable in a limited interval of the pump intensity
(i.e. , between the lower threshold and strong saturation).
Again, this is not the case for a Kerr-type nonlinearity.
In the latter case, as in many other nonlinear optical
systems, dynamic and possibly disordered ("turbulent" )
states often arise from stationary and regular patterns
under the action of strong pumps. We brieBy discuss
here two examples of intensity patterns far above thresh-
old for self-focusing nonlinearity and maximum polar-
ization modulation @q

———@2 ——45' (see Fig. 20). In
the first case, the stationary pattern close to threshold
is hexagonal (see lower part of Fig. 20). By increasing
the pump, the spots become ragged and begin to jitter
around their lattice sites. Then spots start to merge,
new spots appear, the hexagonal order breaks down, and
the pattern becomes more and more dynamical. Never-
theless, for very high intensities, the hexagonal order is
reestablished. The breakdown and reappearance of the
hexagonal order appears to be a discontinuous process,
since intermediate ordered states have been observed as
well. These findings could be compared to experimental
observations done for a similar system [16].

The second case investigated here corresponds to the
same parameters but uses a higher value of the bias in-
tensity (see upper part of Fig. 20). We start from rolls
undergoing a zigzag instability. Eventually, the rolls start
to fragment into negative spots (dips instead of peaks)
forming patches on a rhombic pattern. In this sequence
almost no dynamics takes place, apart from a very slow
motion of the rolls (spots). Putting this together with
the findings obtained for the patterns of Fig. 18, one
could conclude that rolls are more robust than hexagons
in LCLV feedback systems.

Another feature apparent from the images of Fig. 20,
is that the typical length scale decreases with increas-
ing pump (up to 20% for the rolls, and 30% for

298 %

IG ~~--~

m~--, '~~he '
309 %

457 %

II' 'W:~19

444 %

FIG. 20. Samples of patterns obtained for
input intensities far above threshold, focusing
nonlinearity, gz ———g2 ——45', Jb = 1.6 (up-
per) and Jb = 1.1 (lower). Percentages of the
pump intensities relative to the correspond-
ing threshold values are also indicated. Each
square has sides of length 6.4 in normalized
space units.
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FIG. 21. Temporal sequence of wander-
ing isolated states for focusing nonlinearity,

ling

— t/p2 —40', Jb = 1 .0, and just above
threshold. Time is shown in units of 7. Each
square has sides of length 8.8 in normalized
space units.

the hexagons). This is in good agreement with the fact
that the stability curves, in the case of polarization mod-
ulation, bend towards higher spatial frequencies above
threshold for the self-focusing case (see Fig. 6, lower
plot). Note that this result of the linear stability analysis
holds far above threshold as well.

In the preceding section, the possibility of finding iso-
lated states in our system has been mentioned. Numeri-
cal evidence corroborates our claim. In Fig. 21 samples
of the temporal evolution of the transverse phase distri-
bution are shown for an evolution close to threshold, a
self-focusing nonlinearity, and a polarization configura-
tion of gq ———g2 ——40'. The threshold conditions are
roughly comparable to the ones shown in the lower plot of
Fig. 10; a very low unstable wave number (a reminiscence
of a homogeneous instability) coexists with a larger wave
number. In this sequence we observe individual spots,
slowly moving in the transverse plane. Two spots appear
to merge when their distance is smaller than a critical
value and repel at larger distances, suggesting the pres-
ence of long-range interactions. The sequence presented
in Fig. 21 has been found just above threshold where dy-
namical evolutions are more common. We aim to further
investigate localized states in future work and in partic-
ular to study the possibility of controlling the formation
of individual spots.

Finally, one example of operation below the LCLV's
internal threshold (Jb ( 0) is presented. In the case of a
defocusing nonlinearity, vga ———@2

——45' and Jb = —5,
we observed the formation of "wavy" rolls, as shown in
Fig. 15 (f). In contrast to previously described rolls (for
positive values of Jb), these rolls are noisy and have a
fuzzy profile. This is in agreement with the theoretical

ending that in such a case a whole band of spatial fre-
quencies becomes unstable (see Fig. 13).

VII. EXPERIMENTS

In this section we present experimental results that test
the reliability of our theoretical and numerical predic-
tions. A setup similar to the configuration presented in
Fig. 22 has already been used to investigate pattern for-
mation in presence of pure phase modulation [12,16]. We
have modified it to include polarization effects. Since the
phenomena described in the preceding sections are most
pronounced in the case of maximum polarization mod-
ulation, the angles of the input polarization and of the
polarizer have correspondingly been set around @q

——45'
and @2 ———45'. Nevertheless, the last paragraph of this
section describes a roll-hexagon transition due to satura-
tion effects in the pure phase modulation case to stress
the differences with the Kerr approximation.

Figure 22 shows the experimental con6guration: a lin-
early polarized Hewe laser is used as light source for the
pump wave and operates at 633 nm with an output power
of 10 mW. An acousto-optical modulator (AOM) is then
used to control the pump beam intensity, which is mon-
itored by a photodiode (PD). The light beam is then
expanded so that only its central part is used as input in
order to achieve a pump profile as flat as possible.

The feedback loop is set up by the erst beam splitter
BS1, the prisms Ml, M2, which act as mirrors, the polar-
izing beam splitter BS2, and the mirror M3. The lenses
L1 and L2 form a confocal configuration and image the

He-Ne AOM

I 3=1

RP

L 1'

LCLV

PD

PH

BS3 L3

CCD

L2

gM 2

I

P

BS2

X, /4 plate

(P 1)

FIG. 22. Scheme of the experimental
setup. Details are provided in the text.

(P2)

M3
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FIG. 23. Examples of experimentally found patterns for
the focusing case and values of the external voltage V„~as
indicated. The visible beam diameter is 6 mm.

LCLV output plane onto the plane Pl. After leaving this
plane, the feedback wave &eely propagates until reaching
the plane P2, which is the object plane of the lens I3.
This lens images the light distribution at P2 onto the
write side of the LCLV. In this way diffraction effectively
takes place between Pl and P2 only. The mirror M3 is
mounted on a computer-controlled slit, allowing for sim-
ple and precise control of the diffraction length 1. If the
object plane P2 is put in &ont of Pl, we can experimen-
tally simulate a self-focusing nonlinearity [28], without
changing the setup (see discussion above) . BS2 is a po-
larizing beam splitter that in coinbination with the A/4
retarder plate directs all the light coming from M2 to the
LCLV write side.

The feedback wave undergoes many re8ections at the
mirrors while propagating through the feedback loop. In
a misaligned setup, any light distribution entering the
feedback loop &om the LCLV read-out side would not
only be shifted when reaching the write side, but also
rotated. To facilitate the adjustment of the setup, which
requires simultaneous elimination of the shift and the ro-
tation, a rotating prism (RP) is utilized, allowing for fi-

nal compensation of any remaining rotation. The prop-
erly aligned setup is translationally (apart &om the pump
beain profile) and rotationally symmetric with respect to
the feedback wave propagation direction.

13V

I gk

k

13.8V
FIG. 24. Examples of experimentally found patterns for

the defocusing case and values of the external voltage V,„tas
indicated. The visible beam diameter is 8 mm.

FIG. 25. Transient evolution towards a ho-
rnogeneous state of an experimental hexago-
nal pattern (defocnsing case, V,„k——13.92 V).
The visible beam diameter is 6 mm.

t=2s t=14s t=60s
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Together with the lenses L1 and I2, the pinhole PH
forms a spatial low-pass 6lter, which controls the spa-
tial resolution of the system. Consequently, the effec-
tive diffusion length can be selected within a reasonably
wide range. In the present case it has been evaluated
at l = 80 pm. With an effective pump beam diameter
of 6 mm, our system reaches a resolution of 75 lines in
each transverse dimension. On one hand one would like
to achieve a very large aspect ratio for a comparison with
the theoretical and numerical predictions. On the other,
we avoid moving too close to the limit imposed by the
spatial resolution and select a ratio of pattern length scale
over aperture diameter A/A around 10 —20, a reasonable
compromise. As already discussed, the typical pattern
scale A = gl /2k x 27r/q differs between the self-focusing
and self-defocusing nonlinearities. Different propagation
lengths of L,g ——12 cm for the focusing and L,gg

——44 cm
for the defocusing case have then been chosen.

A charge-coupled device (CCD) camera, connected to a
video cassette recorder and a PC-based image processing
system, detects the feedback wave. The camera can be
positioned to detect either the intensity distribution in
the write plane of the LCLV or the corresponding spatial
Fourier spectrum in the focal plane of I3. The latter is
used to determine the dominant transverse wave number.
The spectrum was scaled by introducing a transmission
grating of known grating constant into the feedback loop.

Typical examples of stable patterns found for the fo-
cusing case are shown in Fig. 23, and in Fig. 24 for
the defocusing case. Clearly the formation of rolls and
hexagons can be identified. Differently &om hexagons,
rolls cannot 6t well into the circular boundary and a
competition of different orientations is observed. Simi-
lar roll patterns have previously been observed in [14j,
but have been ascribed to misalignments or aberrations
of the setup. Here we demonstrate that these patterns
are a generic feature of the coupling between diffraction
and polarization modulation and cannot be eliminated
by simple adjustment of the optics. Together with regu-
lar arrangements of hexagons, patterns are often affected

by defects. Clear square patterns have not yet been ob-
served. On one side, numerical simulations show that
their range of existence is rather small. On the other
hand, it is still unclear how robust square patterns are
and if they would survive under the effects of a limited
aspect ratio and circular boundaries. The pattern cor-
responding to V,„q ——9.5 V in the focusing case (see
Fig. 23) partially reminds one of the numerically ob-
tained patterns displayed in I"ig. 21, where uncorrelated
and isolated spots appear to exist. In the defocusing case
a competition between an inhomogeneous and a homo-
geneous state is observed. Hexagonally arranged spots
change their size and begin to merge (see Fig. 25) and
finally a global switching to a homogeneous state takes
place. This is experimental evidence that a Hat state,
related to an upper branch of the multistable plane wave
solution (cf. Fig. 5) can coexist with patterns. A system-
atic experimental investigation of pattern formation and
competition is planned to be the subject of future work.

In Fig. 26 a comparison between the experimentally
found dominant transverse wave number and theoretical
curves is presented and shows good agreement. There
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FIG. 26. Comparison between the dominant wave num-

bers found in experimental patterns and theoretical estimates
(solid lines). The upper (lower) curve corresponds to the de-

focusing (focusing) case. The external voltage is in volts.

FIG. 27. Experimental hexagon-roll transition due to sat-
uration in the pure phase modulation and defocusing case.
Hexagons are obtained for V,„t—— 11 V and rolls for
V,„~——12 V. The visible beam diameter is 8 mm.
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are only two &ee parameters, i.e., eg and Vtg, which re-
late the bias intensity Js to the external voltage [see Eq.
(13)]. Note that transverse wave numbers have not been
fitted on the experimental data and. that the unstable
wave numbers found experimentally are all lying within
the theoretically predicted range. For the focusing case,
we considered values of rd/Vo ——0.08 and Vqg/rrd = 8.0
while for the self-defocusing case Kd/Vo —— 0.22 and
Vt1,/rd = 9.5. Independent measurements provided val-
ues of rd/Vo ——0.222 and Vth/ed = 7.8. Except for the
value of ep in the self-defocusing case, quite a good agree-
ment is found with the actual fit of the parameters. It
is, however, still unknown how much these parameters
depend on the temperature and the &equency of the ex-
ternal voltage. In spite of this, experimental results show
an overall tendency in good agreement with our predic-
tions.

Finally, we present experimental evidence of pattern
transitions due to saturation in Fig. 27. As already
stressed in the previous sections, our model in the Kerr
approximation and for pure phase modulation reduces to
the equations studied by D'Alessandro and Firth [19,20]
which predicts hexagon formation only. By setting the
polarization angles in the experiment to zero and by
working close to saturation hexagons lose stability to rolls
for high values of the external voltage for defocusing non-
linearities. This transition can only be explained by the
inclusion of saturation effects in LCLV as described in
the previous sections.

VIII. CONCLUSIONS

described. The agreement with experimental results on a
broad area I CLV is good and allows for a high degree of
flexibility as well as control of the process of optical pat-
tern formation. In particular, we draw attention to the
possibility of choosing pattern type and scale by simple
reorientation of the polarizer and change of the external
voltage of the LCLV. Many transitions among patterns
have been observed in the simulations and in the exper-
iment. Disordered states due to the competing patterns
are presently undergoing characterization by exploiting
their proximity to well-established geometries.

Control over the process of pattern formation paves
the way to applications of spatiotemporal effects in non-
linear optics. Two main topics are of special interest.
The Grst regards the possibility of addressing localized
spots of light (see Fig. 21). Isolated spots appear to be
only weakly interacting, offering the possibility of local
storage of information in the LCLV system. Establishing
the relation (if any) with analogous phenomena [42,41]
is presently under investigation. The advantage of using
our model is its clear connection with experimental re-
alizations. The second subject of experimental and. also
theoretical interest is the generation and characteriza-
tion of weakly turbulent states. Transitions to disordered
states are observed in the simulations not only when pat-
terns compete but also by breaking of regularly arranged
peaks of light, before saturation sets in. We are studying
the effect of injection of light modulated at the original
(and now unstable) spatial wave vector in order to in-
duce stabilization and consequently control of disordered
states.

Diffractive feedback coupled with polarization modu-
lation in LCLV leads to a large variety of spontaneous
pattern formation. By including saturation and internal
threshold in the description of the LCLV, we have derived
a model capable of describing the appearance of rolls,
squares, hexagons, tiled patterns, and their competition.
In a comparison with models derived in the Kerr approx-
imation, major differences have been found in terms of
thresholds and type of patterns. Unexpected instabil-
ities below the LCLV internal threshold have also been
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