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Reexamining the assumption that elements of reality can be I,orentz invariant
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We examine a gedanken experiment described by Hardy, which purports to prove that the "elements
of reality" corresponding to Lorentz-invariant observables cannot themselves be Lorentz invariant
without violating quantum mechanics. We consider a number of criticisms of this proof and show that
these criticisms are not convincing. We demonstrate that the contradiction, which arises in the gedank-
en experiment and forms the basis of Hardy s proof, has nothing to do with realism, but is a consequence
of the well-known noncovariance of the reduction postulate. A reexamination of the gedanken experi-
ment, using a more appropriate formalism, helps to clarify its implications. We conclude with a brief ap-
praisal of realist interpretations of quantum mechanics in the relativistic domain.

PACS number(s): 03.65.Bz

Bell [1] has constructed a realist quantum-field theory
and although this model is not very successful, it raises
some interesting questions. In particular, it raises the
question as to whether it is possible, in general, to make
theories of this nature fully Lorentz invariant. In a re-
cent paper, Hardy [2] has presented a gedanken experi-
ment where the question of Lorentz invariance can be ex-
amined in a particularly interesting manner. Using this
experiment he claimed to have proved that the "elements
of reality" corresponding to Lorentz-invariant observ-
ables cannot themselves be Lorentz invariant without
violating quantum mechanics. This proof was e6'ected by
first assuming Lorentz invariance for the elements of real-
ity referred to in the experiment and then showing that a
contradiction necessarily followed from this assumption.

More recently there have been a number of criticisms
of Hardy's proof [3,4]. In this paper we discuss these cri-
ticisms, and Hardy's reply [5], and show that they lead to
some confusion. A further criticism by Vaidman [6]
leads to the conclusion that the gedanken experiment
does not lead to any contradiction, because it involves a
pre- and postselected quantum system, for which, it is
claimed, the "product rule" does not apply. Unfor-
tunately, as we show in a separate paper [7], Vaidman's
analysis is not valid because it makes incorrect use of the
formula of Aharonov, Bergmann, and Lebowitz [8,9].

We will also show that Hardy's analysis of the gedank-
en experiment leads to the same contradiction even if we
reformulate it in terms of standard quantum mechanics
[10] and avoid any mention of realism. One difficulty is
that Hardy uses a formalism that is not suitable for the
relativistic case. When the gedanken experiment is ana-
lyzed using a more appropriate formalism, the source of
the contradiction and its implications are made explicit.

The apparatus used in the gedanken experiment con-
sists of two Mach-Zehnder interferometers that are ar-
ranged so that their paths overlap (see Fig. 1). An
electron-positron pair is created at S and one of the parti-
cles is fed into each interferometer. Both interferometers
have detectors attached to their outputs, labeled
C +,D + for the positron and C —,D —for the electron.
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FIG. 1. Double Mach-Zehnder interferometer for positrons

and electrons.

If the interferometer paths did not overlap, there would
be zero probability of a detection at either D + or D—
because of destructive interference within each inter-
ferometer. However, the overlap is such that there is a
probability —,

' for the particles to meet at a point I' and
annihilate. The possibility of this annihilation alters the
final detection probabilities, so that there is an overall
probability of —,', for the positron and the electron to be
detected at D + and D —,respectively.

Consider two sets of Lorentz observers IL, j and IL2 j
such that for the set IL, j, the positron is detected at
C+ or D + before the electron arrives at BS2—,while
for the set IL2j, the electron is detected at C —or D—
before the positron arrives at BS2+. From Hardy's
analysis the appropriate wave function for each L, im-
mediately before the detection of a positron at C+ or
D+ is
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while the wave function for each L2 immediately before
the detection of the electron at C —or D —is

Thus for the combination of detections at D + and D —,
respectively, one set of Lorentz observes, [L i ], on detect-
ing the positron at D +, will be able to predict with cer-
tainty that the electron must be in the state

~
u —&. This

means that, according to Hardy's sufficient condition
[11],"electron in state ~u

—&" constitutes an element of
reality for each I &. There is another set of Lorentz ob-
servers, [Lz], that, on detecting the electron at D —,can
predict with certainty that the positron must be in the
state ~u + &. So, for each L2, "positron in state ~u + &"
constitutes an element of reality. If L, and L2 adopt a
realist perspective and assume that the positron and the
electron follow trajectories, then L, can infer that the
electron must have passed through P, while L2 can infer
that the positron must have passed through P. But we
know that it is impossible to have both the positron and
the electron at P together since in that case they would
annihilate and therefore could not be detected at D +
and D —,respectively. Hence there is an apparent con-
tradiction, indicating that the elements of reality referred
to cannot be Lorentz invariant.

Berndl and Goldstein [3], Clifton and Niemann [4],
and, in response to [3], Hardy [5] have attempted to
resolve this contradiction by using a number of different
arguments, which raise some interesting points. Their
main arguments can be summed up as follows.

(i) From a relativistic perspective, a prediction with
certainty, yielding an element of reality, may be applica-
ble only to certain Lorentz observers. For other Lorentz
observers, this prediction may correspond to a retrodic-
tion and these observers will not necessarily be able to
infer a definite outcome (i.e., with probability one) from
their retrodiction.

(ii) It is questionable whether those predictions with
certainty that are not ueriPable in the given experimental
setup can still legitimately be labeled as elements of reali-
ty.

(iii) The possibility of nonlocal infiuences further brings
into question the significance of some of the predictions
with certainty, in particular those predictions that could
only be confirmed by measurements performed in a re-
gion spacelike separated from the region in which the
measurements on which the predictions are based are
carried out.

These ar'guments are compounded, however, by the in-
troduction of the concept of contextuality by the above-
mentioned authors and by their suggestion that the con-
tradiction arising in the gedanken experiment can be
resolved by taking into account contextual aspects. Be-
fore we examine these arguments further, let us recall
how contextuality arises in realist interpretations of
quantum mechanics.

Several so-called "no-go" theorems [13] have purport-
ed to show that the results of quantum mechanics cannot
be derived using "hidden variables. " The proofs of these
theorems require an assumption that the hidden variables
be identified with the eigenvalues of observables, these
values being simply revealed in experiments. However,
Bell [14] has shown that contextual hidden variable
theories are not ruled out by the no-go theorems. In
these theories, the value taken by a hidden variable in the
context of a particular measurement may differ from the
value taken by it in the context of another measurement
that is incompatible with the first one. This suggests
that, physically, the context should be identified with the
apparatus used in an experiment. As a consequence, we
would expect the contextual properties of the hidden
variables in a particular experiment to become relevant
only if the apparatus is replaced or modified in some way.
However, in Hardy's gedanken experiment there is only
one single experimental arrangement, which is common
to all the Lorentz observers; hence it is not immediately
apparent in what sense contextual features could be
significant here. (Of course hidden variables cannot nor-
mally be predicted with certainty and hence they do not
in general satisfy the sufficient condition for elements of
reality [11]. Nevertheless, we can think of those elements
of reality that do satisfy this condition as comprising a
subset of the set of hidden variables. )

We now return to the arguments (i), (ii), and (iii). Con-
sider first how argument (i) relates to the gedanken exper-
iment. L, s prediction yielding the element of reality
electron in the state ~u

—
& (according to the sufficient

condition [11]) can only be made after the positron has
been detected at D +. This precludes the possibility of
L j making any prediction that might yield the element of
reality positron in the state ~u + &. Similarly, L2 s pre-
diction yielding the element of reality positron in the
state

~
u + & can only be made after the electron has been

detected at D —,thus precluding the possibility of L2
making any prediction that might yield the element of
reality electron in the state

~
u —&. L i can only retrodict

what the earlier state of the positron might have been had
the appropriate measurement been carried out and,
equally, L2 can only retrodict what the earlier state of the
electron might have been following an earlier (counterfac-
tual) measurement. These retrodictions cannot be made
with certainty; they do not yield outcomes with probabili-
ty one. However, it would be wrong to infer from this
relativistic prediction-retrodiction ambiguity that the
aforementioned elements of reality are context depen-
dent. It would be more accurate to describe them as "ob-
server specific. " A change of Lorentz observer does not
normally imply a change of context; simply introducing a
second Lorentz observer or Lorentz boosting the original
observer does not in general inhuence the system being
observed. The Lorentz observers can be at an arbitrary
spatial separation from the observed system and we
would not expect the Lorentz observers' wave functions
to be entangled with that of the observed system, so non-
local influences between observers and the observed sys-
tem are ruled out.

Now consider arguments (ii) and (iii). It is true that
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the predictions yielding the elements of reality electron in
state

~
u —) and positron in state

~

u + ) are not verifiable
by means of the experimental setup described in [2]. Fur-
thermore, alternative experimental setups designed to
verify either of these predictions separately would not be
suitable for verifying both predictions simultaneously [3].
However, the sufficient condition [11] does not require
that predictions be verifiable in order to qualify as ele-
ments of reality. This condition is formulated in terms of
the predictability of results of hypothetical measure-
ments. According to this formulation, it is irrelevant
whether such measurements are, or indeed can be, car-
ried out. Similarly, the possibility of nonlocal influences
does not affect the ability of L, and L2 to make predic-
tions with certainty about the states of the electron and
the positron, respectively. The sufficient condition [11]
would have to be modified in some way if predictions that
could be verified only by measurements made in a space-
like separated region were deemed to be unreliable be-
cause of possible nonlocal influences.

As far as contextuality is concerned, the suggestion
that arguments (ii) and (iii) indicate that the elements of
reality discussed in [2] are context dependent can be seen
to be incorrect. Quantum-mechanical probabilities in
general are independent of context. (The idea that
quantum-mechanical probabilities could be context
dependent in a retrodict&ve sense arose in the work of Al-
bert, Aharonov, and D'Amato [15],but their analysis has
been shown to be erroneous by Bub and Brown [16] and
Sharp and Shanks [17].) Hence, if the value taken by a
particular element of reality can be predicted with proba-
bility one, then, since this probability is not context
dependent, it follows that this same element of reality can
be predicted with certainty to have the same value in all
contexts. In other words, the elements of reality satisfy-
ing the sufficient condition [11] are not context depen-
dent. (Of course, if there are elements of reality not satis-
fying this condition, then these elements of reality might
be context dependent; but such elements of reality do not
enter the argument leading to the contradiction in [2].)
Clearly then, the contextual argument does not provide a
convincing resolution of the contradiction arising in
Hardy's gedanken experiment.

Clifton and Niemann [4] further suggest that, from an
orthodox perspective, the contradiction derived by Hardy
can be accounted for by the noncovariance of position
operators. For example, it has been shown that a spin-
ning particle that is localized for one Lorentz observer
will not be localized for any other Lorentz observer [18].
However, as we have already remarked, in Hardy's argu-
ment the relevant inferences about particle positions are
counterfactual and do not involve measurements and so
position operators do not enter the discussion. Thus the
apparent noncovariance of Hardy's elements of reality is
essentially unrelated to the noncovariance of position
operators.

Let us reexamine Hardy's argument in more detail. An
essential step in arriving at the contradiction involves an
analysis of the collapse of the entangled two-particle
Schrodinger wave function. Hardy argues that for an ob-
server L &, the collapse occurs across the constant time

hyperplane defined by the time of detection of the posi-
tron at D + as measured by the observer L

&
while for

another observer L2, the collapse occurs along a constant
time hyperplane defined by the time of detection of the
electron at D —as measured by that observer. Thus for
L, the wave function given by Eq. (1) collapses to
~d + )

~
u —), while for L2 the wave function given by Eq.

(2) becomes ~u + ) ~d
—). In other words, Li argues that

since D + registered, the state of the electron before it ar-
rived at BS2-, but after it passed P, was ~u

—), while L2
argues that since D —registered, the state of the positron
before it arrived at BS2+ and after it passed P was
~u + ). Now a detection at D+ and D —for the same
electron-positron pair implies that, if we combine the
conclusions of L j and L2 for this pair, then the positron
must be in the state

~

u + ) and the electron must be in
the state ~u

—). But this combined state is impossible
according to standard quantum mechanics, because at no
stage in its evolution does the wave function describing
the system contain a

~
u + ) ~u

—) term, since this term,
according to Hardy, produces annihilation quanta. So
the contradiction remains even if we stick to the standard
interpretation of quantum mechanics [10], avoiding any
mention of trajectories or elements of reality. Hence we
see that the contradiction has its roots in the noncovari-
ant nature of the collapse formalism and has nothing to
do with how we choose to interpret quantum mechanics.

So far our discussion has been restricted to the nonrela-
tivistic Schrodinger formalism; however, the noncovari-
ant feature of the collapse is still present in the Dirac
theory and in quantum electrodynamics. Discussions of
this difficulty with noncovariance have a long history go-
ing back to the pioneering work of Landau and Peierls
[19]. As a consequence of this analysis, Berestetskii,
Lifshitz, and Pitaevskii [20] write, ".. . we reach the con-
clusion that the entire formalism of [nonrelativistic]
quantum mechanics becomes insufficient in the relativis-
tic case. The wave functions lt(q), in their original sense
as carriers of unobservable information, cannot appear in
the formalism of a consistent relativistic theory. " A simi-
lar sentiment has been expressed by Dirac [21]. He
points out that for typical Hamiltonians used in field
theory "it is not possible to get a solution of
Schrodinger's equation for which the state vector stays in
Hilbert space" and that, as a consequence of this, we
must abandon the notion of a wave function in such a
theory. But here we are not dealing with such Hamil-
tonians and the wave function used in the description of
Hardy's experiment can be written down. This leaves
open the question as to whether it is possible to find a
description of the collapse process that is Lorentz invari-
ant.

One notable attempt to provide such a description has
been made by Hellwig and Kraus [22]. They have sug-
gested that the state reduction does not occur instantane-
ously, but takes place along the backward light cone of
the measurement event. This model does indeed satisfy
the formal requirements of Lorentz invariance (since the
light cone transforms into itself under a Lorentz transfor-
mation), although the idea of some form of propagation
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backward in time in all frames may be physically unap-
pealing to some. Nevertheless, it does have the advan-
tage of yielding the correct quantum-mechanical proba-
bilities for measurements of local observables, although it
does not give the correct probabilities for nonlocal ob-
servables of the type discussed by Aharonov and Albert
[23]. They have shown that the measurement of certain
nonlocal observables is possible for relativistic quantum
systems without violating causality (despite the long-
standing rejection of such a possibility by Landau and
Peierls [19]) and that, because of this, Hellwig and
Kraus's prescription for the reduction process must be
deemed unsatisfactory.

A reexamination of the noncovariance of the standard
state vector collapse formalism carried out by Aharonov
and Albert [24] shows that, if relativistic considerations
are taken into account, the state of a quanturn-
mechanical system cannot, in general, be described by a
function of space-time, but necessitates the introduction
of a functional on the set of spacelike hypersurfaces. This
leads to the description originally formulated by Tomo-
naga [25] and Schwinger [26] when quantum electro-
dynamics was being developed. Here the ordinary
Schrodinger wave function g(x, t) is replaced by the func-
tional %(t (x)), where o is the set of spacelike hypersur-
faces through the space-time point x. The functional-
based formalism enables Aharonov and Albert to intro-
duce a fully-Lorentz-invariant prescription for describing
a measurement event at x. Immediately after such a mea-
surement, the state of the observed system is given by a
functional that encompasses all the possible collapsed
wave functions relating to the set of spacelike hypersur-
faces containing x.

The discussion of Aharonov and Albert leading to the
introduction of the functional involves "verification"
measurements of a nonlocal observable. As already men-
tioned, this leads Aharonov and Albert to reject the rnea-
surement prescription of Hellwig and Kraus and to con-
clude that the state reduction process must instead be in-
stantaneous. However, once we adopt the notion of an
instantaneous collapse, the necessity of the functional
description becomes evident even when we consider a sys-
tem that is subjected to measurements of local observ-
ables only. Consider, for example, a one-particle system
in the state g;f;(x, t). Suppose we perform a measure-
ment in the laboratory frame at (x &, t &

) and that, as a re-
sult, the state of the system collapses instantaneously to
g„(x,t). We then ask, "What is the value that the wave
function describing the state of this system takes at the
point (x2, tz), where (x&, t, ) and (x2, t2) are spacelike
separated'?" According to the standard reduction postu-
late, there are two possible answers g;P; (xz, t 2 ) and
g„(x2, t2); which answer is obtained depends on the
choice of Lorentz frame to which the measurement is re-
ferred. The two possible answers are obviously not relat-
ed by a Lorentz transformation and for this reason the
Schrodinger wave function describing the system cannot
be a covariant function of space-time. However, the in-
troduction of a functional, which encompasses both wave
functions g, g;(x, t) and P„(x,t), when referred to the set
of spacelike hyperplanes containing the point (x2, t2), en-

ables us to formulate a covariant description. If one con-
tinues to use the instantaneous collapse of nonrelativistic
quantum mechanics in a relativistic context, then the in-
troduction of the functional becomes essential if arnbigui-
ties are to be avoided.

We can now see how Hardy's formulation of his
gedanken experiment, which is carried out in terms of
wave functions as opposed. to wave functionals, inevitably
leads to difficulties. The state of the two-particle system
immediately after one of the particles passes through a
beam splitter BS2 (or reaches a detector) depends on
which set of Lorentz frames is used. By introducing the
functional-based formalism and employing the prescrip-
tion for state reduction proposed by Aharonov and Al-
bert, these ambiguities can be avoided. Thus when the
positron is detected at D +, we should not single out a
particular spacelike hypersurface passing through the
space-time point at which the detection occurs. In fact,
the state of the system, when the positron is detected at
D +, will collapse to a functional that encompasses
ld+ &lu —

&, (i~&2)ld+ &(ilc —
&
—ld —&),

~
d + ) ~d —). Similarly, the state of the system, when the

electron is detected at D —,will collapse to a functional
encompassing ~d —&~u+ &, (i/&2)~d —&(i~c+ &—

~
d + ) ), and

~
d —)

~

d + ) . A contradiction will arise if
we single out the two wave functions

~
d + )

~

u —) and
~d —) ~u + ) and then try to draw inferences from their
combination. The functional-based approach shows that
we have no justification for doing this. The system is
never actually in the state

~
d + ) ~

u —) or in the state
~d —) ~u + ). The only unambiguous conclusion we can
draw from the detection at D + is that the positron ends
up in the state ~d + ), while the only unambiguous con-
clusion we can draw from the D —detection is that the
electron ends up in the state ~d —). Taken together,
these two detections show that the final state of the two-
particle system must be

~
d + ) ~

d —) . The other col-
lapsed states referred to by Hardy have no physical basis;
they are the result of applying an inappropriate formal-
ism and it is not surprising that they lead directly to a
contradiction.

The functional-based formalism helps to clarify the im-
plications of the gedanken experiment. First, it shows
that we cannot, after all, derive a contradiction simply by
combining L&'s description of the state of the electron
with Lz's description of the state of the positron. Second,
it makes explicit the observer-specific properties of the
predicted measurement results electron in state ~u

—)
and positron in state ~u + ), of L, and L2, respectively.
Finally, it shows that the predicted outcome of a mea-
surement on a system cannot necessarily be identified
with the state of that system prior to the measurement,
even if the measurement outcome can be predicted with
certainty. For example, when the positron is detected at
D +, the state of the electron is then given by a function-
al; but L& can still predict with certainty that if an ap-
propriate measurement were carried out on the electron,
immediately following, in L

&
s frame, the detection of the

positron at D +, then the state of the electron would be
found to be ~u

—). Hence the use of the functional-based
formalism brings into focus the way in which the
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identification of elements of reality with the predicted re-
sults of counterfactual measurements becomes particular-
ly questionable in the relativistic case. (Of course, if the
sufficient condition for elements of reality [11]is modified
so that predicted results of counterfactual measurements
are excluded, then Hardy's proof will no longer work
since all the elements of reality he discusses are of this
type )

The necessity of introducing the functional-based for-
malism highlights the difhculties that can arise with prop-
erty attribution in the relativistic domain. For example, if
we analyze the gedanken experiment from a relativistic
perspective, then, immediately after the positron is
detected, we cannot attribute a definite wave function to
the two-particle system because, as we have seen, this sys-
tem must be described by a functional. However, if we
restrict the analysis to the nonrelativistic domain, then
we can assign a definite wave function to the system as
soon as the positron is detected. In an interesting recent
paper ([27] and references therein), Ghirardi and Grassi
have argued that the added constraints on attributing
properties to quantum systems in the relativistic domain
have important implications for the interpretation of the
Einstein-Podolsky-Rosen experiment. We will now give a
brief summary of Ghirardi and Grassi's argument and
show that the introduction of the functional can be seen
to support their conclusion.

Suppose two spin-half particles are prepared in the
singlet state (1/+2)(I1&Jz) —Ip, fz)) and then fly apart
in opposite directions along the x axis. At (x&, ti ) the z
component of spin of particle 1 is measured, yielding the
result o,'=1. Now, in a nonrelativistic treatment of this
scenario, we can infer that, for t (t„the z component of
the spin of particle 2 is not well defined, whereas for
t ) t

y
it has the definite value 0', = —1 . In other words,

particle 2 instantaneously acquires the definite property
"cr,= —1" at time t„as the result of an event that takes
place at an arbitrary spatial separation from it. However,
if we look at this situation from a relativistic perspective,
then we cannot assign a definite z component of spin to
particle 2 until its path intersects the future light cone
from (xi, t, ). In the relativistic picture the two-particle
system must be described by a functional, which, for any
point on the section of particle 2 s path in between its in-
tersections with the past and future light cones from
(x „ti ), encompasses both (1/&2)( I T i lz ) I & & &z) ) and

I pi, $z, ). It follows that, in the relativistic case, there is
no implication of a superluminal inhuence causing parti-
cle 2 to acquire the property o, = —1. This absence of
any necessary "spooky action at a distance" in the rela-
tivistic case is emphasized by Ghirardi and Grassi.

We now discuss briefly whether, notwithstanding the
questions raised by the gedanken experiment, it is still
possible to develop a Lorentz-invariant realistic interpre-
tation of quantum mechanics. A well-known interpreta-
tion of quantum mechanics involving particle trajectories

is Bohm s ontological interpretation [28], in which parti-
cles can be nonlocally linked with each other via the
quantum potential. The actual position and momentum
of a particle are beables (a term coined by Bell [1] to con-
trast with the usual usage of the term "observables" in
quantum mechanics), that is, they are assumed to exist in-
dependently of measurement or observation. Although
this model, when considered at the observable level, yields
the same Lorentz invariant probabilities as the orthodox
approach, Bohm never claimed that his interpretation is
Lorentz invariant at the beable level. Indeed Bohm and
Hiley [29] have suggested that Lorentz invariance may
arise as a statistical feature of an underlying stochastic
process that is not Lorentz invariant.

In fact, if we are considering a system restricted to just
two nonlocally correlated particles (such as the one de-
scribed by Hardy), then it is possible to construct a realis-
tic model that is effectively covariant at the beable level
by assuming that the nonlocal correlations work instan-
taneously in the center-of-momentum frame only. Mod-
els of this type have been proposed by Droz-Vincent [30]
and by Vigier [31] and are covariant in the sense that
they do not require the introduction of a global preferred
frame. Unfortunately, however, the center-of-momentum
approach becomes problematic if we try to extend it to
systems involving three or more particles.

Another set of models, which attempt to give a realis-
tic description of the reduction process, involves the con-
cept of "spontaneous localization. " The relativistic linear
continuous spontaneous localizations model [32] does not
require a preferred Lorentz frame and cannot, even in
principle, be used to transmit information faster than
light. However, this model also rules out the possibility
of ever explaining its stochastic features in terms of a
deeper theory.

Another means of avoiding the requirement for a pre-
ferred frame altogether would involve abandoning the
model based on a unique set of particle trajectories as a
representation of the processes taking place at the beable
level and replacing it with a model where, in general, the
beables are represented by irreducible distributions of sets
of trajectories. Each Lorentz observer would then "expli-
cate" a single set of trajectories, defined by instantaneous
nonlocal correlations in his or her particular frame. The
notion of a unique set of particle trajectories would then
become an intermediate concept since such unique sets
would be neither beables nor observables. The suggestion
that distributions of trajectories should be considered ir-
reducible has already been made by Prigogine [33], al-
though for entirely different reasons. In his investigation
of the possibility of introducing a microscopic entropy
operator, Prigogine concluded that "[it] is the description
in terms of bundles of trajectories, or distribution func-
tions, that becomes basic; no further reduction to indivi-
dual trajectories or wave functions can be performed. "
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